!********************************************************************* MODULE RKPARAM !parameters for Runge Kutta solver REAL,DIMENSION(3) :: yscal REAL h1,hmin,eps REAL co,freq,dl INTEGER,PARAMETER :: ndim=3 END MODULE RKPARAM !********************************************************************* MODULE BATHYGRID !bottom topography grid REAL rlonmax,rlonmin,rlatmin,rlatmax,rot INTEGER nx,ny,ip,jp REAL sx,sy,deltaz REAL(kind=4) ,DIMENSION(:,:),ALLOCATABLE :: grid REAL ,DIMENSION(1,6) :: einter REAL ,DIMENSION(1,12) :: dinter END MODULE BATHYGRID !********************************************************************* MODULE Raytraj !bottom topography grid real xch(1000),ych(1000),ach(1000),cch(1000) INTEGER nchunk REAL timestep,depthmin,depthmax END MODULE Raytraj !********************************************************************* MODULE Constants REAL, PARAMETER :: pi = 3.14159265,tpi=6.2831853,d2r=.01745329 REAL, PARAMETER :: max15bit=32768.,max8bit=256.,max7bit=128. REAL, PARAMETER :: max14bit=16384. INTEGER, PARAMETER :: i15bit=32768,i8bit=256,i7bit=128,i14bit=16384 REAL, PARAMETER :: g = 9.81 !gravity : SI (m/s^2) REAL, PARAMETER :: rhow = 1026. !water density : SI (kg/m^3) REAL, PARAMETER :: kappa = 0.4 !Von Karman's constant REAL, PARAMETER :: nu = 3.E-6 !Salt water kinematic viscosity REAL, DIMENSION(:,:),ALLOCATABLE :: Rayleigh INTEGER ntab END MODULE Constants !********************************************************************** SUBROUTINE tfact(depth,f,fact,fact2) !... calculates the transformation factor (dk/dko)*(cgo/cg) !... to avoid floating point exception in sinh, max value of sig=75 !... first get wave no. and group velocity at transformation site IMPLICIT NONE REAL, INTENT(in) ::depth,f REAL, INTENT(out) ::fact,fact2 REAL d,dk,c,cg,dk0,c0,cg0,dcdd CALL disp(depth,f,dk,c,cg,dcdd) d=800. CALL disp(d,f,dk0,c0,cg0,dcdd) fact=(dk/dk0)*(cg0/cg) fact2=(dk/cg) RETURN END !********************************************************************* SUBROUTINE ref(xs,ys,as,iflag,distmax) !********************************************************************* ! This routine integrates the ray equations (using the Cash-Karp Runge-Kutta ! driver RKdriver, from the initial position (xs,ys) until it crosses into a ! different zone. The subroutine returns the position and direction of the ! ray at the zone boundary. ! ! If the Fsource flag is equal to 1 then the routine also computes linear interpolation ! coefficents from the grid points. These coefficients are weighted by the propagation time. ! In order to do that the routine keeps track of the current timestep, ! direction bin and triangle. If any of these change then a new set of ! interpolation coefficients is generated. If not, the coefficients are updated ! and are given more weight. This is checked at every mini-timestep (h1) of the ! RKdriver. ! ! When the zone boundary is reached, coefficents are genrated in order ! to be able to interpolate energy density from the neighboring grid ! points at the end of the ray. !********************************************************************* USE BATHYGRID USE Constants USE Raytraj USE RKPARAM IMPLICIT NONE REAL,INTENT(in) :: distmax REAL,INTENT(inout) :: xs,ys,as !start position (grid units) and angle (rad) INTEGER,INTENT(out) :: iflag !IFlag=0 hit land or cross-shelf boundary, REAL x1,x2,tchunk,dt1, timetot REAL yrad(3) ! current x,y, and angle INTEGER kchunk,nstep !WRITE(6,*) 'xs ....',xs,ys,as,iflag yrad(1)=xs yrad(2)=ys yrad(3)=as tchunk=0. IFlag=2 nchunk=0 timetot=0. ! Starts first chunk CALL RKdriver(yrad) !take a step dt1=h1 tchunk=dt1 kchunk=1 DO nstep=1,100000 CALL RKdriver(yrad) !take a step tchunk=tchunk+dt1 timetot=timetot+h1 !WRITE(6,*) 'REF :',nstep,timetot,nchunk,distmax,tchunk,iflag,ip,jp,dl IF (tchunk.GT.timestep) THEN !timestep change nchunk=nchunk+1 xch(nchunk)=yrad(1)/d2r ych(nchunk)=yrad(2)/d2r ach(nchunk)=yrad(3)/d2r cch(nchunk)=dl tchunk=tchunk-timestep ENDIF !IF (ip.lt.20.or.ip.gt.nx-20) IFlag=0 IF (jp.lt.20.or.jp.gt.ny-20) IFlag=0 !WRITE(6,*) 'Iflag 1:',Iflag,ip,jp,nx,ny IF (dl.gt.depthmax) IFlag=1 IF (dl.lt.depthmin) IFlag=0 IF (timetot.gt.distmax) IFlag=1 IF (iflag.eq.0.or.iflag.eq.1) THEN !WRITE(6,*) 'Iflag:',iflag,dl,depthmin,nchunk*timestep+tchunk nchunk=nchunk+1 xch(nchunk)=yrad(1)/d2r ych(nchunk)=yrad(2)/d2r ach(nchunk)=yrad(3)/d2r cch(nchunk)=dl RETURN ENDIF ENDDO !end of do loop on nstep print *,' error - too many steps ' !stop RETURN end !********************************************************************** SUBROUTINE RKdriver(ystart) ! Integrates the 3 starting variables from 0 to h1 ! with accuracy eps. h1 is a guess of the step size, hmin is the ! min step size (0 is ok) ystart is overwritten with the desired ! answer ! yscal is a vector containing the typical scales of each variable ! these scales define the admissible errors: eps*yscal(i) !********************************************************************** ! The Cash-Karp Runge Kutta solver is adapted to this specific problem ! by Fabrice Ardhuin, june 1999, from Numerical Recipes, 2nd ed. !********************************************************************** USE RKPARAM USE Raytraj USE Constants IMPLICIT NONE REAL,DIMENSION(ndim),INTENT(inout) ::ystart INTEGER,PARAMETER ::maxstp=10000 REAL,DIMENSION(ndim) :: y,dydt REAL x,h,hdid,hnext INTEGER nstp x=0. h=h1 y(:)=ystart(:) DO nstp=1,maxstp CALL derivs(y,dydt) !WRITE(6,*) 'RK driver',freq,nstp,y(1),y(2),y(3),h,'##',dydt IF(x+h.gt.h1) h=h1-x !limits step if it goes over the remaining !time h1-x CALL rkqs(y,dydt,h,hdid,hnext) x=x+hdid IF(x.ge.h1) THEN ystart(:)=y(:) !WRITE(6,*) 'RKdriver',x,hdid,h1,nstp,dl !WRITE(6,*) 'ycurr',ystart RETURN ENDIF h=hnext ENDDO IF (dl.lt.depthmin) THEN ELSE WRITE(6,*) 'Step size too smal in RK driver',nstp,x,h1,hdid STOP ENDIF RETURN END !********************************************************************** SUBROUTINE rkqs(y,dydt,htry,hdid,hnext) ! Fifth order R-K step with monitoring of local error. Input ! is the n-vector of the input variable y and its derivatives ! dydt at the starting value of x. htry is the stepsize to be ! attempted, eps is the required accuracy and yscal is a ! vector against which error is scaled. On output, y and x ! are replaced by their new values,hid is the accomplished ! stepsize and hnext is the estimate of the next stepsize. !********************************************************************** USE RKPARAM IMPLICIT NONE REAL,DIMENSION(ndim),INTENT(inout) ::y,dydt REAL, INTENT(in) ::htry REAL, INTENT(out) ::hdid,hnext REAL,PARAMETER :: pgrow=-.2 REAL,PARAMETER :: pshrink=-.25 REAL,PARAMETER :: safety=.9 REAL,PARAMETER :: errcon=1.89e-4 !errcon=(5/safety)**(1/pgrow) REAL,DIMENSION(3):: yerr,ytemp REAL h,htemp,errmax INTEGER i,kount kount=0 h=htry DO kount=kount+1 CALL rkck(y,dydt,h,ytemp,yerr) errmax=0. DO i=1,ndim errmax=MAX(errmax,abs(yerr(i)/yscal(i))) ENDDO errmax=errmax/eps !WRITE(6,*) 'RKQS',errmax,kount,h,eps IF(errmax.GT.1) THEN htemp=safety*h*(errmax**pshrink) h=MAX(htemp,0.1*h) !h should always be positive !! !I got rid of the test on xnew=x ELSE IF(errmax.gt.errcon) THEN hnext=safety*h*(errmax**pgrow) ELSE hnext=5.0*h ENDIF hdid=h y(:)=ytemp(:) RETURN ENDIF ENDDO !WRITE(6,*) 'Step size too smal in rkqs' RETURN END !********************************************************************** SUBROUTINE rkck(y,dydt,h,yout,yerr) ! For ndim variables y and their derivs dydt known at y, use ! to advance solution over an interval h and return the ! incremented variables as yout ( which may be the same as y) ! the SUBROUTINE derivs(y,dydt) returns dydt at y USE RKPARAM IMPLICIT NONE REAL,DIMENSION(ndim),INTENT(in) ::y,dydt REAL, INTENT(in) ::h REAL,DIMENSION(ndim),INTENT(out) ::yout,yerr REAL,DIMENSION(ndim) :: ak2,ak3,ak4,ak5,ak6,ytemp REAL,PARAMETER :: A2=.2,A3=.3,A4=.6,A5=1.,A6=.875 REAL,PARAMETER :: B21=.2,B31=.075,B32=9./40. REAL,PARAMETER :: B41=.3,B42=-.9,B43=1.2 REAL,PARAMETER :: B51=-11./54.,B52=2.5,B53=-70/27.,B54=35./27. REAL,PARAMETER :: B61=1631./55296.,B62=175./512.,B63=575./13824. REAL,PARAMETER :: B64=44275./110592.,B65=253./4096. REAL,PARAMETER :: C1=37./378.,C3=250./621.,C4=125./594.,C6=512./1771. REAL,PARAMETER :: DC1=C1-2825./27648.,DC3=C3-18575./48384. REAL,PARAMETER :: DC4=C4-13525/55296.,DC5=-277/14336,DC6=C6-.25 ytemp(:)=y(:)+B21*h*dydt(:) CALL derivs(ytemp,ak2) ytemp(:)=y(:)+h*(B31*dydt(:)+B32*ak2(:)) CALL derivs(ytemp,ak3) ytemp(:)=y(:)+h*(B41*dydt(:)+B42*ak2(:)+B43*ak3(:)) CALL derivs(ytemp,ak4) ytemp(:)=y(:)+h*(B51*dydt(:)+B52*ak2(:)+B53*ak3(:)+B54*ak4(:)) CALL derivs(ytemp,ak5) ytemp(:)=y(:)+h*(B61*dydt(:)+B62*ak2(:)+B63*ak3(:)+B64*ak4(:)+B65*ak5(:)) CALL derivs(ytemp,ak6) yout(:)=y(:)+h*(C1*dydt(:)+C3*ak3(:)+C4*ak4(:)+C6*ak6(:)) yerr(:)=h*(DC1*dydt(:)+DC3*ak3(:)+DC4*ak4(:)+DC6*ak6(:)) RETURN END !********************************************************************** SUBROUTINE derivs(y,dydt) ! c=phase speed and dydt are the derivatives of the n vectors ! with respect to time. !********************************************************************** USE RKPARAM USE BATHYGRID IMPLICIT NONE REAL,DIMENSION(ndim),INTENT(in) ::y REAL,DIMENSION(ndim),INTENT(out)::dydt REAL mu,nu,sp REAL xg,yg,cg,depth,dcdx,dcdy,ca,sa,sa2 xg=y(1) yg=y(2) CALL speed(xg,yg,cg,depth,dcdx,dcdy) ca=cos(y(3)) sa=sin(y(3)) !dydt(3)=cg*(sa*dcdx/sx-ca*dcdy/sy) !spherical earth mu=6378100. !earth radius in meters nu=6378100. sp=cos(y(2)) dydt(1)=cg*ca/(nu*sp) ! x and y are the lon,lat in radians dydt(2)=cg*sa/mu sa2=ca dydt(3)=cg*(sa*dcdx/(sx*nu*sp)-ca*dcdy/(sy*mu)-sa2*sin(y(2))/(nu*sp)) RETURN END !********************************************************************** SUBROUTINE speed(lon,lat,cg,depth,dcdx,dcdy) !********************************************************************** ! Wave speed gradients, from Dobson (1967), for not-too-shallow water ! Code by William C. O'Reilly (1990-1998) ! Modified by Fabrice Ardhuin (1999) to accomodate any depth. ! Modified .................. 11/8/2000 with a Newton-Rapson method for ! the inversion of the dispersion relation !********************************************************************** ! uses biquadric interpolation (bilinear would not be smooth) !... calculates the depth, wave phase speed and gradients ! Positions of the grid points (+) used in the computations ! The current point xg,yg (*) is located in the [1,2,3,4] rectangle ! + 8 + 7 ! ! + 9 + 4 + 3 + 6 ! * ! + 10 + 1 + 2 + 5 ! ! + 11 + 12 !********************************************************************** USE BATHYGRID USE Constants USE RKparam IMPLICIT NONE REAL, INTENT(in) ::lon,lat REAL, INTENT(out) ::cg,depth,dcdx,dcdy REAL,DIMENSION(12,6),SAVE :: sxy=reshape((/ 0.30861241,0.23684207,0.21770331, & 0.23684207,-0.08492823,-0.05143541,-0.05143541,-0.08492823,0.00598086, & 0.13038277,0.13038277,0.00598086, & 0.05322964,0.19677030,0.14413872,0.10586122,0.09031100,-0.06758374, & -0.03349283,0.03349282,-0.18241626,-0.34031099,-0.12440190,0.12440190, & 0.05322964,0.10586122,0.14413872,0.19677030,0.03349282,-0.03349283, & -0.06758374,0.09031099,0.12440190,-0.12440191,-0.34031099,-0.18241625, & -0.125,-0.125,-0.125,-0.125,0.125,0.125, & 0.,0.,0.125,0.125,-0.,-0., & 0.05263157,-0.05263157,0.05263158,-0.05263157,-0.15789473,0.15789474, & 0.15789474,-0.15789473,-0.15789473,0.15789473,0.15789473,-0.15789473, & -0.125,-0.125,-0.125,-0.125,0.,0., & 0.125,0.125,-0.,-0.,0.125,0.125 /),(/12,6/)) INTEGER i,j INTEGER jp1,jp2,jm1,jm2 REAL X,Y,sigma,dy,k,c, dcdd REAL xg,yg,xp,yp,sig,aka,yhat,t,a,dddx,dddy xg=1.+MOD(lon-rlonmin*d2r,tpi)/sx yg=1.+(lat-rlatmin*d2r)/sy i=INT(xg) j=INT(yg) xp=mod(xg,1.0) yp=mod(yg,1.0) IF(ip.ne.i.OR.jp.NE.j) THEN ip=i jp=j ! for a full global grid jp1=mod(j+1,nx) jp2=mod(j+2,nx) jm1=mod(j-1,nx) jm2=mod(j-2,nx) dinter(1,11)=grid(i,jm1) dinter(1,12)=grid(i+1,jm1) dinter(1,10)=grid(i-1,j) dinter(1,1)=grid(i,j) dinter(1,2)=grid(i+1,j) dinter(1,5)=grid(i+2,j) dinter(1,9)=grid(i-1,jp1) dinter(1,4)=grid(i,j+1) dinter(1,3)=grid(i+1,jp1) dinter(1,6)=grid(i+2,jp1) dinter(1,8)=grid(i,j+2) dinter(1,7)=grid(i+1,jp2) einter=MATMUL(dinter,sxy) ENDIF depth=einter(1,1)+(einter(1,2)+einter(1,4)*xp+einter(1,5)*yp)*xp & +(einter(1,3)+einter(1,6)*yp)*yp dl=depth !... gradients of bottom depths dddx=einter(1,4)*2.*xp+einter(1,5)*yp+einter(1,2) dddy=einter(1,6)*2.*yp+einter(1,5)*xp+einter(1,3) !... calculate phase speed gradient with depth CALL DISP(depth,freq,k,c,cg,dcdd) dcdx=dcdd*dddx dcdy=dcdd*dddy RETURN END !********************************************************************* SUBROUTINE DISP(depth,freq,k,c,cg,dcdd) !********************************************************************* USE Constants IMPLICIT NONE REAL, INTENT(in) ::depth,freq !depth (m) and frequency (Hz) REAL, INTENT(out) ::k,c,cg,dcdd !wave number (m-1),phase speed (m/s) REAL dep,sigma,X,Y,dy, LOGFREQ, DLOGFREQ, ffile INTEGER I, ILOGFREQ ffile=2*freq*depth/4720 IF (ffile.GT.0) THEN LOGFREQ=1+(LOG(ffile)+7)/0.012638983606093 ELSE LOGFREQ=1. ENDIF IF (LOGFREQ.GT.1.AND.LOGFREQ.LT.FLOAT(ntab-1)) THEN ILOGFREQ=FLOOR(LOGFREQ) DLOGFREQ=LOGFREQ-ILOGFREQ c=Rayleigh(ILOGFREQ,2)*(1-DLOGFREQ)+Rayleigh(ILOGFREQ+1,2)*DLOGFREQ k=tpi*freq/c cg=Rayleigh(ILOGFREQ,3)*(1-DLOGFREQ)+Rayleigh(ILOGFREQ+1,3)*DLOGFREQ ! computes (dc/dh)/c dcdd=(2*freq)*(Rayleigh(ILOGFREQ+1,2)-Rayleigh(ILOGFREQ,2)) & /((Rayleigh(ILOGFREQ+1,1)-Rayleigh(ILOGFREQ,1))*1500)/c ENDIF IF (LOGFREQ.LE.1.) THEN c=Rayleigh(1,2) k=tpi*freq/c cg=Rayleigh(1,3) dcdd=0. ENDIF IF (LOGFREQ.GE.FLOAT(ntab-1)) THEN c=1500. k=tpi*freq/c cg=1500. dcdd=0. ENDIF RETURN END !********************************************************************* SUBROUTINE TABULATE_RAYLEIGH !********************************************************************* USE Constants USE RKPARAM IMPLICIT NONE REAL X,Y,H,F,FD INTEGER I,J ntab=434 ALLOCATE(Rayleigh(1:ntab,3)) OPEN(3,file='Rayleigh_speed.txt',status='old') DO J=1,ntab READ(3,*) Rayleigh(J,:) ENDDO CLOSE(3) RETURN END !********************************************************************** !********************************************************************** !********************************************************************** !********************************************************************** PROGRAM rayplot USE BATHYGRID USE Constants USE Raytraj USE RKPARAM IMPLICIT NONE REAL dtheta,theta0,xs,ys,sig,dw,dk,c,cg,dcdd,dto,h_len2 REAL h_len,dxy,dcdx,dcdy,a_step,ang,angs,distmax INTEGER I,J,nrays,Iray,k,ircode CHARACTER(len=120):: fblog,fbathy CALL Tabulate_Rayleigh OPEN(3,file='Ray3a.inpray',status='old') READ(3,'(a)') fblog READ(3,'(a)') fbathy READ(3,*) nrays READ(3,*) freq,dtheta,theta0,timestep,depthmax,depthmin,distmax freq=0.0373 READ(3,*) deltaz READ(3,*) xs,ys CLOSE(3) h_len=200 eps=0.00001 ! error tolerance in ray integration !------------------------------------------------------------------- ! Get bathymetry grid data !------------------------------------------------------------------- open(2,file=fblog) read(2,*) rlatmin,rlatmax,rlonmin,rlonmax read(2,*) rot read(2,*) sx,sy read(2,*) nx,ny close(2) yscal(1)=REAL(nx) yscal(2)=REAL(ny) yscal(3)=1. sx=(rlonmax-rlonmin)*d2r/(nx-1) sy=(rlatmax-rlatmin)*d2r/(ny-1) WRITE(6,*) 'sx:',sx,sy ! Get the grid itself xs=MOD(360+xs-rlonmin,360.)+rlonmin WRITE(6,*) 'lon,lat,rlonmin,rlatmin:',xs,ys,rlonmin,rlatmin ALLOCATE(grid(nx,ny)) open(2,file=fbathy,form='unformatted',access='direct',recl=4*ny) DO i=1,nx !beware 1 should be replaced by 4 on HP terminals read(2,rec=i) (grid(i,j),j=1,ny) ENDDO CLOSE(2) sig=2.*pi*freq dw=0. call disp(dw,freq,dk,c,cg,dcdd) !calculate phase speed over land dto=timestep !converts the time step to seconds !h_len2=cg*dto*0.2 !lengthen the steps for long output timestep h_len2=3000. WRITE(6,*) 'ds2,ds, depth:',h_len2,h_len,dw IF (h_len2 > h_len) h_len=h_len2 co=c hmin=0. h1=h_len/co !calculate initial ray time steps, h1 ! (major factor in computation time) xs=xs*d2r ys=ys*d2r CALL speed(xs,ys,c,dxy,dcdx,dcdy) WRITE(6,*) 'speed',xs,ys,dxy,c,dcdx,dcdy a_step=dtheta !OPEN(995,file='rays.bin',status='unknown',form='unformatted') OPEN(995,file='rays.asc',status='unknown') ang=theta0-a_step DO IRAY=1,nrays ang=ang+a_step angs=ang*d2r !transforms to radians CALL ref(xs,ys,angs,ircode,distmax) WRITE(6,*) 'ray:',IRAY,xs/d2r,ys/d2r,ang,ircode,nchunk,xch(nchunk),ych(nchunk),cch(nchunk) ! write(995) nchunk,ircode ! write(995) (xch(k),k=1,nchunk), & ! (ych(k),k=1,nchunk),(ach(k),k=1,nchunk) ! write(995,*) nchunk,ircode write(995,*) (xch(k),k=1,nchunk), & (ych(k),k=1,nchunk),(ach(k),k=1,nchunk),(cch(k),k=1,nchunk) ENDDO CLOSE(995) END