module module_random ! This module implements an array of pseudo-random number ! generators (PRNGs). The internal state of the PRNGs is stored ! in state1, state2, state3, and state4 arrays. The rand_grid ! routines will produce grids of random numbers from these ! generators. The sequence of random numbers will not vary with ! processor decomposition, operating system, computer, compiler or ! compiler optimizations, and will be the same every time the ! model is run (if the seed is unchanged). Each gridpoint will ! produce its own independent sequence of random numbers. ! The srand_grid routine seeds the random number generators, given ! an optional "seed" argument. Each random number generator in ! the grid is given a different seed, but those seeds are based on ! the seed you provide. If you do not provide one, the same value ! (0) will be used every time the model is run. That is chosen ! intentionally to ensure reproducability of results. ! The rand_grid routines will produce random numbers using the ! arrays of random number generators. The floating-point ! versions of rand_grid produce numbers between 0, inclusive, and 1, ! exclusive. The integer versions produce numbers that span the ! entire range of values representable by the datatype. The full ! precision of the floating-point values are generated. ! Also, this module is not dependent on dimension ordering. ! Arrays are defined as i,j,k, but the code still works if ! the dimensions have a different ordering ! The implementation of the PRNG is in bobrand.c ! Author: Sam Trahan, October 2011 interface rand_grid module procedure rand_grid_i4 module procedure rand_grid_r4 module procedure rand_grid_i8 module procedure rand_grid_r8 end interface contains subroutine srand_grid(state1,state2,state3,state4, & IDS,IDE,JDS,JDE,KDS,KDE, & IMS,IME,JMS,JME,KMS,KME, & ITS,ITE,JTS,JTE,KTS,KTE,seed) ! This routine initializes a grid of random number generators, ! using the optional seed argument. Every random number ! generator will have its own seed, but the seed you provide ! will be used to modify those seeds. If you provide the same ! seed, the same sequence of random numbers should be produced, ! regardless of computer, compiler, optimization, or operating ! system. ! If you do not provide a seed, the value 0 will be used, ! ensuring that each simulation will produce identical output. implicit none integer(kind=4), intent(inout) :: state1(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state2(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state3(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state4(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(in), optional :: seed integer(kind=4) :: iseed integer :: i,j,k INTEGER, intent(in) :: IDS,IDE,JDS,JDE,KDS,KDE, & IMS,IME,JMS,JME,KMS,KME, & ITS,ITE,JTS,JTE,KTS,KTE integer :: seeds(its:ite),n if(present(seed)) then iseed=seed else iseed=0 endif n=ite-its+1 ! Seed all random number generators. do k=kts,kte do j=jts,jte do i=its,ite seeds(i)=(kde-kds+1)*((jde-jds+1)*i+j)+k ! We can use the same seed here every time ! because bobraninit will use both the ! "seeds" array and the "seed" integer to ! create the actual seed for each generator. enddo call bobraninit(state1(its,j,k),state2(its,j,k), & state3(its,j,k),state4(its,j,k), & seeds,seed,n) enddo enddo end subroutine srand_grid subroutine rand_grid_r4(state1,state2,state3,state4,randdat, & IDS,IDE,JDS,JDE,KDS,KDE, & IMS,IME,JMS,JME,KMS,KME, & ITS,ITE,JTS,JTE,KTS,KTE) ! This routine fills randdat(ITS:ITE,JTS:JTE,KTS:KTE) with an ! array of random 32-bit floating-point numbers uniformly ! distributed from 0 (inclusive) to 1 (exclusive). ! ! Make sure you call srand_grid before calling this routine. implicit none integer(kind=4), intent(inout) :: state1(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state2(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state3(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state4(ims:ime,jms:jme,kms:kme) real(kind=4), intent(inout) :: randdat(ims:ime,jms:jme,kms:kme) integer :: i,j,k,n INTEGER, intent(in) :: IDS,IDE,JDS,JDE,KDS,KDE, & IMS,IME,JMS,JME,KMS,KME, & ITS,ITE,JTS,JTE,KTS,KTE n=ite-its+1 do k=kts,kte do j=jts,jte call bobranval_r4(state1(its,j,k),state2(its,j,k), & state3(its,j,k),state4(its,j,k), & randdat(its,j,k),n) enddo enddo end subroutine rand_grid_r4 subroutine rand_grid_i4(state1,state2,state3,state4,randdat, & IDS,IDE,JDS,JDE,KDS,KDE, & IMS,IME,JMS,JME,KMS,KME, & ITS,ITE,JTS,JTE,KTS,KTE) ! This routine fills randdat(ITS:ITE,JTS:JTE,KTS:KTE) with an ! array of random 32-bit signed integers. The integers will ! be uniformly distributed across the entire range of ! representation of their datatype: -2**31..2**31-1. ! ! Make sure you call srand_grid before calling this routine. ! ! If you want integers that fall in a specified range, you ! can produce them like this: ! ! do (for each gridpoint) ! ! random numbers uniformly distributed from 0..9: ! randdat(i,j,k)=mod(abs(randdat(i,j,k),10)) ! enddo implicit none integer(kind=4), intent(inout) :: state1(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state2(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state3(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state4(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: randdat(ims:ime,jms:jme,kms:kme) integer :: i,j,k,n INTEGER, intent(in) :: IDS,IDE,JDS,JDE,KDS,KDE, & IMS,IME,JMS,JME,KMS,KME, & ITS,ITE,JTS,JTE,KTS,KTE n=ite-its+1 do k=kts,kte do j=jts,jte call bobranval_i4(state1(its,j,k),state2(its,j,k), & state3(its,j,k),state4(its,j,k), & randdat(its,j,k),n) enddo enddo end subroutine rand_grid_i4 subroutine rand_grid_r8(state1,state2,state3,state4,randdat, & IDS,IDE,JDS,JDE,KDS,KDE, & IMS,IME,JMS,JME,KMS,KME, & ITS,ITE,JTS,JTE,KTS,KTE) ! This routine fills randdat(ITS:ITE,JTS:JTE,KTS:KTE) with an ! array of random 64-bit floating-point numbers uniformly ! distributed from 0 (inclusive) to 1 (exclusive). ! ! Make sure you call srand_grid before calling this routine. implicit none integer(kind=4), intent(inout) :: state1(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state2(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state3(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state4(ims:ime,jms:jme,kms:kme) real(kind=8), intent(inout) :: randdat(ims:ime,jms:jme,kms:kme) integer :: i,j,k,n INTEGER, intent(in) :: IDS,IDE,JDS,JDE,KDS,KDE, & IMS,IME,JMS,JME,KMS,KME, & ITS,ITE,JTS,JTE,KTS,KTE n=ite-its+1 do k=kts,kte do j=jts,jte call bobranval_r8(state1(its,j,k),state2(its,j,k), & state3(its,j,k),state4(its,j,k), & randdat(its,j,k),n) enddo enddo end subroutine rand_grid_r8 subroutine rand_grid_i8(state1,state2,state3,state4,randdat, & IDS,IDE,JDS,JDE,KDS,KDE, & IMS,IME,JMS,JME,KMS,KME, & ITS,ITE,JTS,JTE,KTS,KTE) ! This routine fills randdat(ITS:ITE,JTS:JTE,KTS:KTE) with an ! array of random 64-bit signed integers. The integers will ! be uniformly distributed across the entire range of ! representation of their datatype: -2**63..2**63-1. ! ! Make sure you call srand_grid before calling this routine. ! ! If you want integers that fall in a specified range, you ! can produce them like this: ! ! do (for each gridpoint) ! ! random numbers uniformly distributed from 0..9: ! randdat(i,j,k)=mod(abs(randdat(i,j,k),10)) ! enddo implicit none integer(kind=4), intent(inout) :: state1(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state2(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state3(ims:ime,jms:jme,kms:kme) integer(kind=4), intent(inout) :: state4(ims:ime,jms:jme,kms:kme) integer(kind=8), intent(inout) :: randdat(ims:ime,jms:jme,kms:kme) integer :: i,j,k,n INTEGER, intent(in) :: IDS,IDE,JDS,JDE,KDS,KDE, & IMS,IME,JMS,JME,KMS,KME, & ITS,ITE,JTS,JTE,KTS,KTE n=ite-its+1 do k=kts,kte do j=jts,jte call bobranval_i8(state1(its,j,k),state2(its,j,k), & state3(its,j,k),state4(its,j,k), & randdat(its,j,k),n) enddo enddo end subroutine rand_grid_i8 end module module_random