! ! ! ! MODULE module_shcu_nscv CONTAINS !------------------------------------------------------------------------------- subroutine shcu_nscv(dt,p3di,p3d,pi3d,qc3d,qi3d,rho3d, & qv3d,t3d,raincv,xland,dz8w,w,u3d,v3d, & hpbl,hfx,qfx, & mp_physics, & pgcon, & cp,cliq,cpv,g,xlv,r_d,r_v,ep_1,ep_2, & cice,xls,psat,f_qi,f_qc, & rthshten,rqvshten,rqcshten,rqishten, & rushten,rvshten, & pratesh,hbot,htop, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) !------------------------------------------------------------------------------- implicit none !------------------------------------------------------------------------------- !-- dt time step (s) !-- p3di 3d pressure (pa) at interface level !-- p3d 3d pressure (pa) !-- pi3d 3d exner function (dimensionless) !-- z height above sea level (m) !-- qc3d cloud water mixing ratio (kg/kg) !-- qi3d cloud ice mixing ratio (kg/kg) !-- qv3d 3d water vapor mixing ratio (kg/kg) !-- t3d temperature (k) !-- w vertical velocity (m/s) !-- dz8w dz between full levels (m) !-- u3d 3d u-velocity interpolated to theta points (m/s) !-- v3d 3d v-velocity interpolated to theta points (m/s) !-- ids start index for i in domain !-- ide end index for i in domain !-- jds start index for j in domain !-- jde end index for j in domain !-- kds start index for k in domain !-- kde end index for k in domain !-- ims start index for i in memory !-- ime end index for i in memory !-- jms start index for j in memory !-- jme end index for j in memory !-- kms start index for k in memory !-- kme end index for k in memory !-- its start index for i in tile !-- ite end index for i in tile !-- jts start index for j in tile !-- jte end index for j in tile !-- kts start index for k in tile !-- kte end index for k in tile !------------------------------------------------------------------------------- integer, intent(in ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte real, intent(in ) :: cp,cliq,cpv,g,xlv,r_d,r_v,ep_1,ep_2, & cice,xls,psat real, intent(in ) :: dt real, optional, intent(in ) :: pgcon real, dimension( ims:ime, kms:kme, jms:jme ),optional ,& intent(inout) :: rthshten,& rushten,& rvshten,& rqcshten,& rqishten,& rqvshten logical, optional :: F_QC,F_QI real, dimension( ims:ime, kms:kme, jms:jme ) ,& intent(in ) :: qv3d,& qc3d,& qi3d,& rho3d,& p3d,& pi3d,& t3d real, dimension( ims:ime, kms:kme, jms:jme ) ,& intent(in ) :: p3di real, dimension( ims:ime, kms:kme, jms:jme ) ,& intent(in ) :: dz8w,& w real, dimension( ims:ime, jms:jme ) , & intent(in ) :: raincv real, dimension( ims:ime, jms:jme ) ,& intent(inout) :: pratesh real, dimension( ims:ime, jms:jme ) ,& intent(out) :: hbot,& htop ! real, dimension( ims:ime, jms:jme ) ,& intent(in ) :: xland ! real, dimension( ims:ime, kms:kme, jms:jme ) ,& intent(in ) :: u3d,& v3d ! real, dimension( ims:ime, jms:jme ) ,& intent(in ) :: hpbl,& hfx,& qfx integer, intent(in ) :: mp_physics integer :: ncloud ! ! local ! real, dimension( its:ite, kts:kte ) :: del,& prsll,& dot,& u1,& v1,& t1,& q1, & qc2,& qi2 real, dimension( its:ite, kts:kte+1 ) :: prsii,& zii real, dimension( its:ite, kts:kte ) :: zll real, dimension( its:ite) :: rain real :: delt,rdelt integer, dimension (its:ite) :: kbot,& ktop,& icps real :: pgcon_use integer :: i,j,k,kp ! ! microphysics scheme --> ncloud ! if (mp_physics .eq. 0) then ncloud = 0 elseif ( mp_physics .eq. 1 .or. mp_physics .eq. 3 ) then ncloud = 1 else ncloud = 2 endif ! if(present(pgcon)) then pgcon_use = pgcon else ! pgcon_use = 0.7 ! Gregory et al. (1997, QJRMS) pgcon_use = 0.55 ! Zhang & Wu (2003,JAS) ! 0.55 is a physically-based value used by GFS ! HWRF uses 0.2, for model tuning purposes endif ! delt=dt rdelt=1./delt ! ! outer most J_loop ! do j = jts,jte do k = kts,kte kp = k+1 do i = its,ite dot(i,k) = -5.0e-4*g*rho3d(i,k,j)*(w(i,k,j)+w(i,kp,j)) prsll(i,k)=p3d(i,k,j)*0.001 prsii(i,k)=p3di(i,k,j)*0.001 enddo enddo ! do i = its,ite prsii(i,kte+1)=p3di(i,kte+1,j)*0.001 enddo ! do i = its,ite zii(i,1)=0.0 enddo ! do k = kts,kte do i = its,ite zii(i,k+1)=zii(i,k)+dz8w(i,k,j) enddo enddo ! do k = kts,kte do i = its,ite zll(i,k)=0.5*(zii(i,k)+zii(i,k+1)) enddo enddo ! do k = kts,kte do i = its,ite del(i,k)=prsll(i,k)*g/r_d*dz8w(i,k,j)/t3d(i,k,j) u1(i,k)=u3d(i,k,j) v1(i,k)=v3d(i,k,j) q1(i,k)=qv3d(i,k,j) ! q1(i,k)=qv3d(i,k,j)/(1.+qv3d(i,k,j)) t1(i,k)=t3d(i,k,j) qi2(i,k) = qi3d(i,k,j) qc2(i,k) = qc3d(i,k,j) enddo enddo ! icps(:) = 0 do i = its,ite if(raincv(i,j) .gt. 1.e-30) icps(i)=1 enddo ! ! NCEP SCV ! call nscv2d(delt=delt,del=del(its,kts),prsl=prsll(its,kts), & prsi=prsii(its,kts),prslk=pi3d(ims,kms,j),zl=zll(its,kts), & ncloud=ncloud,qc2=qc2(its,kts),qi2=qi2(its,kts), & q1=q1(its,kts),t1=t1(its,kts),rain=rain(its), & kbot=kbot(its),ktop=ktop(its), & icps=icps(its), & slimsk=xland(ims,j),dot=dot(its,kts), & u1=u1(its,kts), v1=v1(its,kts), & cp_=cp,cliq_=cliq,cvap_=cpv,g_=g,hvap_=xlv, & rd_=r_d,rv_=r_v,fv_=ep_1,ep2=ep_2, & cice=cice,xls=xls,psat=psat, & hpbl=hpbl(ims,j),hfx=hfx(ims,j),qfx=qfx(ims,j), & pgcon=pgcon_use, & ids=ids,ide=ide, jds=jds,jde=jde, kds=kds,kde=kde, & ims=ims,ime=ime, jms=jms,jme=jme, kms=kms,kme=kme, & its=its,ite=ite, jts=jts,jte=jte, kts=kts,kte=kte ) ! do i = its,ite pratesh(i,j) = rain(i)*1000./dt hbot(i,j) = kbot(i) htop(i,j) = ktop(i) enddo ! IF(PRESENT(rthshten).AND.PRESENT(rqvshten)) THEN do k = kts,kte do i = its,ite rthshten(i,k,j)=(t1(i,k)-t3d(i,k,j))/pi3d(i,k,j)*rdelt rqvshten(i,k,j)=(q1(i,k)-qv3d(i,k,j))*rdelt enddo enddo ENDIF ! IF(PRESENT(rushten).AND.PRESENT(rvshten)) THEN do k = kts,kte do i = its,ite rushten(i,k,j)=(u1(i,k)-u3d(i,k,j))*rdelt rvshten(i,k,j)=(v1(i,k)-v3d(i,k,j))*rdelt enddo enddo ENDIF ! IF(PRESENT( rqishten )) THEN IF ( F_QI ) THEN do k = kts,kte do i = its,ite rqishten(i,k,j)=(qi2(i,k)-qi3d(i,k,j))*rdelt enddo enddo ENDIF ENDIF ! IF(PRESENT( rqcshten )) THEN IF ( F_QC ) THEN do k = kts,kte do i = its,ite rqcshten(i,k,j)=(qc2(i,k)-qc3d(i,k,j))*rdelt enddo enddo ENDIF ENDIF ! enddo ! outer most J_loop ! return end subroutine shcu_nscv !------------------------------------------------------------------------------- ! !------------------------------------------------------------------------------- ! NCEP SCV (Shallow Convection Scheme) !------------------------------------------------------------------------------- subroutine nscv2d(delt,del,prsl,prsi,prslk,zl, & ncloud,qc2,qi2,q1,t1,rain,kbot,ktop, & icps, & slimsk,dot,u1,v1, & cp_,cliq_,cvap_,g_,hvap_,rd_,rv_,fv_,ep2, & cice,xls,psat, & hpbl,hfx,qfx, & pgcon, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) !------------------------------------------------------------------------------- ! ! subprogram: nscv2d computes shallow-convective heating and moistening ! ! abstract: computes non-precipitating convective heating and moistening ! using a one cloud type arakawa-schubert convection scheme as in the ncep ! sas scheme. the scheme has been operational at ncep gfs model since july 2010 ! the scheme includes updraft and downdraft effects, but the cloud depth is ! limited less than 150 hpa. ! ! developed by jong-il han and hua-lu pan ! implemented into wrf by jihyeon jang and songyou hong ! module with cpp-based options is available in grims ! ! program history log: ! 10-07-01 jong-il han initial operational implementation at ncep gfs ! 10-12-01 jihyeon jang implemented into wrf ! 18-05-04 jihyeon jang seperated the shallow convection module from nsas ! ! subprograms called: ! fpvs - function to compute saturation vapor pressure ! ! references: ! han and pan (2011, wea. forecasting) ! !------------------------------------------------------------------------------- implicit none !------------------------------------------------------------------------------- ! ! in/out variables ! integer :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte real :: cp_,cliq_,cvap_,g_,hvap_,rd_,rv_,fv_,ep2 real :: pi_,qmin_,t0c_ real :: cice,xlv0,xls,psat ! real :: delt real :: del(its:ite,kts:kte), & prsl(its:ite,kts:kte),prslk(ims:ime,kms:kme), & prsi(its:ite,kts:kte+1),zl(its:ite,kts:kte) integer :: ncloud real :: slimsk(ims:ime) real :: dot(its:ite,kts:kte) real :: hpbl(ims:ime) real :: rcs real :: hfx(ims:ime),qfx(ims:ime) ! real :: qi2(its:ite,kts:kte),qc2(its:ite,kts:kte) real :: q1(its:ite,kts:kte), & t1(its:ite,kts:kte), & u1(its:ite,kts:kte), & v1(its:ite,kts:kte) integer :: icps(its:ite) ! real :: rain(its:ite) integer :: kbot(its:ite),ktop(its:ite) ! ! local variables and arrays ! integer :: i,j,indx, jmn, k, kk, km1 integer :: kpbl(its:ite) ! real :: dellat, & desdt, deta, detad, dg, & dh, dhh, dlnsig, dp, & dq, dqsdp, dqsdt, dt, & dt2, dtmax, dtmin, & dv1h, dv2h, dv3h, & dv1q, dv2q, dv3q, & dv1u, dv2u, dv3u, & dv1v, dv2v, dv3v, & dz, dz1, e1, clam, & aafac, & es, etah, & evef, evfact, evfactl, & factor, fjcap, & gamma, pprime, betaw, & qlk, qrch, qs, & rfact, shear, tem1, & tem2, val, val1, & val2, w1, w1l, w1s, & w2, w2l, w2s, w3, & w3l, w3s, w4, w4l, & w4s, tem, ptem, ptem1, & pgcon ! integer :: kb(its:ite), kbcon(its:ite), kbcon1(its:ite), & ktcon(its:ite), ktcon1(its:ite), & kbm(its:ite), kmax(its:ite) ! real :: aa1(its:ite), & delhbar(its:ite), delq(its:ite), & delq2(its:ite), delqev(its:ite), rntot(its:ite), & delqbar(its:ite), deltbar(its:ite), & deltv(its:ite), edt(its:ite), & wstar(its:ite), sflx(its:ite), & pdot(its:ite), po(its:ite,kts:kte), & qcond(its:ite), qevap(its:ite), hmax(its:ite), & vshear(its:ite), & xlamud(its:ite), xmb(its:ite), xmbmax(its:ite) real :: delubar(its:ite), delvbar(its:ite) ! real :: cincr ! real :: thx(its:ite, kts:kte) real :: rhox(its:ite) real :: tvcon ! real :: p(its:ite,kts:kte), to(its:ite,kts:kte), & qo(its:ite,kts:kte), qeso(its:ite,kts:kte), & uo(its:ite,kts:kte), vo(its:ite,kts:kte) ! ! cloud water ! real :: qlko_ktcon(its:ite), dellal(its:ite,kts:kte), & dbyo(its:ite,kts:kte), & xlamue(its:ite,kts:kte), & heo(its:ite,kts:kte), heso(its:ite,kts:kte), & dellah(its:ite,kts:kte), dellaq(its:ite,kts:kte), & dellau(its:ite,kts:kte), dellav(its:ite,kts:kte), & ucko(its:ite,kts:kte), vcko(its:ite,kts:kte), & hcko(its:ite,kts:kte), qcko(its:ite,kts:kte), & eta(its:ite,kts:kte), zi(its:ite,kts:kte+1), & pwo(its:ite,kts:kte) ! logical :: totflg, cnvflg(its:ite), flg(its:ite) ! ! physical parameters ! real,parameter :: c0=.002,c1=5.e-4 real,parameter :: cincrmax=180.,cincrmin=120.,dthk=25. real :: el2orc,fact1,fact2,eps real,parameter :: h1=0.33333333 real,parameter :: tf=233.16, tcr=263.16, tcrf=1.0/(tcr-tf) !------------------------------------------------------------------------------- pi_ = 3.14159 qmin_ = 1.0e-30 t0c_ = 273.15 xlv0 = hvap_ km1 = kte - 1 ! ! compute surface buoyancy flux ! do k = kts,kte do i = its,ite thx(i,k) = t1(i,k)/prslk(i,k) enddo enddo ! do i = its,ite tvcon = (1.+fv_*q1(i,1)) rhox(i) = prsl(i,1)*1.e3/(rd_*t1(i,1)*tvcon) enddo ! do i = its,ite ! sflx(i) = heat(i)+fv_*t1(i,1)*evap(i) sflx(i) = hfx(i)/rhox(i)/cp_ + qfx(i)/rhox(i)*fv_*thx(i,1) enddo ! ! initialize arrays ! do i = its,ite cnvflg(i) = .true. if(icps(i).eq.1) cnvflg(i) = .false. if(sflx(i).le.0.) cnvflg(i) = .false. if(cnvflg(i)) then kbot(i)=kte+1 ktop(i)=0 endif rain(i)=0. kbcon(i)=kte ktcon(i)=1 kb(i)=kte pdot(i) = 0. qlko_ktcon(i) = 0. edt(i) = 0. aa1(i) = 0. vshear(i) = 0. enddo ! totflg = .true. do i = its,ite totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return ! dt2 = delt val = 1200. dtmin = max(dt2, val ) val = 3600. dtmax = max(dt2, val ) ! ! model tunable parameters are all here ! clam = .3 aafac = .1 betaw = .03 evfact = 0.3 evfactl = 0.3 val = 1. ! ! define miscellaneous values ! el2orc = hvap_*hvap_/(rv_*cp_) eps = rd_/rv_ fact1 = (cvap_-cliq_)/rv_ fact2 = hvap_/rv_-fact1*t0c_ ! w1l = -8.e-3 w2l = -4.e-2 w3l = -5.e-3 w4l = -5.e-4 w1s = -2.e-4 w2s = -2.e-3 w3s = -1.e-3 w4s = -2.e-5 ! ! define top layer for search of the downdraft originating layer ! and the maximum thetae for updraft ! do i = its,ite kbm(i) = kte kmax(i) = kte enddo ! do k = kts,kte do i = its,ite if (prsl(i,k).gt.prsi(i,1)*0.70) kbm(i) = k + 1 if (prsl(i,k).gt.prsi(i,1)*0.60) kmax(i) = k + 1 enddo enddo ! do i = its,ite kbm(i) = min(kbm(i),kmax(i)) enddo ! ! hydrostatic height assume zero terr and compute ! updraft entrainment rate as an inverse function of height ! do k = kts+1,kte do i = its,ite zi(i,k) = 0.5*(zl(i,k-1)+zl(i,k)) enddo enddo ! do k = kts,km1 do i = its,ite xlamue(i,k) = clam / zi(i,k+1) enddo enddo ! do i = its,ite xlamue(i,kte) = xlamue(i,km1) enddo ! ! pbl height ! do i = its,ite flg(i) = cnvflg(i) kpbl(i)= 1 enddo ! do k = kts+1,km1 do i = its,ite if (flg(i).and.zl(i,k).le.hpbl(i)) then kpbl(i) = k else flg(i) = .false. endif enddo enddo ! do i = its,ite kpbl(i)= min(kpbl(i),kbm(i)) enddo ! ! convert surface pressure to mb from cb ! rcs = 1. do k = kts,kte do i = its,ite if (cnvflg(i) .and. k .le. kmax(i)) then p(i,k) = prsl(i,k) * 10.0 eta(i,k) = 1. hcko(i,k) = 0. qcko(i,k) = 0. ucko(i,k) = 0. vcko(i,k) = 0. dbyo(i,k) = 0. pwo(i,k) = 0. dellal(i,k) = 0. to(i,k) = t1(i,k) qo(i,k) = q1(i,k) uo(i,k) = u1(i,k) * rcs vo(i,k) = v1(i,k) * rcs endif enddo enddo ! ! ! column variables ! p is pressure of the layer (mb) ! t is temperature at t-dt (k)..tn ! q is mixing ratio at t-dt (kg/kg)..qn ! to is temperature at t+dt (k)... this is after advection and turbulan ! qo is mixing ratio at t+dt (kg/kg)..q1 ! do k = kts, kte do i=its,ite if (cnvflg(i) .and. k .le. kmax(i)) then qeso(i,k) = 0.01 * fpvs(to(i,k),1,rd_,rv_,cvap_,cliq_,cice,xlv0,xls,psat,t0c_) qeso(i,k) = eps * qeso(i,k) / (p(i,k) + (eps-1.)*qeso(i,k)) val1 = 1.e-8 qeso(i,k) = max(qeso(i,k), val1) val2 = 1.e-10 qo(i,k) = max(qo(i,k), val2 ) endif enddo enddo ! ! compute moist static energy ! do k = kts,kte do i=its,ite if (cnvflg(i) .and. k .le. kmax(i)) then tem = g_ * zl(i,k) + cp_ * to(i,k) heo(i,k) = tem + hvap_ * qo(i,k) heso(i,k) = tem + hvap_ * qeso(i,k) endif enddo enddo ! ! determine level with largest moist static energy within pbl ! this is the level where updraft starts ! do i=its,ite if (cnvflg(i)) then hmax(i) = heo(i,1) kb(i) = 1 endif enddo ! do k = kts+1, kte do i=its,ite if (cnvflg(i).and.k.le.kpbl(i)) then if(heo(i,k).gt.hmax(i)) then kb(i) = k hmax(i) = heo(i,k) endif endif enddo enddo ! do k = kts, km1 do i=its,ite if (cnvflg(i) .and. k .le. kmax(i)-1) then dz = .5 * (zl(i,k+1) - zl(i,k)) dp = .5 * (p(i,k+1) - p(i,k)) es = 0.01*fpvs(to(i,k+1),1,rd_,rv_,cvap_,cliq_,cice,xlv0,xls,psat,t0c_) pprime = p(i,k+1) + (eps-1.) * es qs = eps * es / pprime dqsdp = - qs / pprime desdt = es * (fact1 / to(i,k+1) + fact2 / (to(i,k+1)**2)) dqsdt = qs * p(i,k+1) * desdt / (es * pprime) gamma = el2orc * qeso(i,k+1) / (to(i,k+1)**2) dt = (g_ * dz + hvap_ * dqsdp * dp) / (cp_ * (1. + gamma)) dq = dqsdt * dt + dqsdp * dp to(i,k) = to(i,k+1) + dt qo(i,k) = qo(i,k+1) + dq po(i,k) = .5 * (p(i,k) + p(i,k+1)) endif enddo enddo ! do k = kts, km1 do i=its,ite if (cnvflg(i) .and. k .le. kmax(i)-1) then qeso(i,k)=0.01*fpvs(to(i,k),1,rd_,rv_,cvap_,cliq_,cice,xlv0,xls,psat,t0c_) qeso(i,k) = eps * qeso(i,k) / (po(i,k) + (eps-1.) * qeso(i,k)) val1 = 1.e-8 qeso(i,k) = max(qeso(i,k), val1) val2 = 1.e-10 qo(i,k) = max(qo(i,k), val2 ) heo(i,k) = .5 * g_ * (zl(i,k) + zl(i,k+1)) + & cp_ * to(i,k) + hvap_ * qo(i,k) heso(i,k) = .5 * g_ * (zl(i,k) + zl(i,k+1)) + & cp_ * to(i,k) + hvap_ * qeso(i,k) uo(i,k) = .5 * (uo(i,k) + uo(i,k+1)) vo(i,k) = .5 * (vo(i,k) + vo(i,k+1)) endif enddo enddo ! ! look for the level of free convection as cloud base ! do i=its,ite flg(i) = cnvflg(i) if(flg(i)) kbcon(i) = kmax(i) enddo ! do k = kts+1, km1 do i=its,ite if (flg(i).and.k.lt.kbm(i)) then if(k.gt.kb(i).and.heo(i,kb(i)).gt.heso(i,k)) then kbcon(i) = k flg(i) = .false. endif endif enddo enddo ! do i=its,ite if(cnvflg(i)) then if(kbcon(i).eq.kmax(i)) cnvflg(i) = .false. endif enddo ! totflg = .true. do i=its,ite totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return ! ! determine critical convective inhibition ! as a function of vertical velocity at cloud base. ! do i=its,ite if(cnvflg(i)) then pdot(i) = 10.* dot(i,kbcon(i)) endif enddo ! do i=its,ite if(cnvflg(i)) then if(slimsk(i).eq.1.) then w1 = w1l w2 = w2l w3 = w3l w4 = w4l else w1 = w1s w2 = w2s w3 = w3s w4 = w4s endif if(pdot(i).le.w4) then ptem = (pdot(i) - w4) / (w3 - w4) elseif(pdot(i).ge.-w4) then ptem = - (pdot(i) + w4) / (w4 - w3) else ptem = 0. endif val1 = -1. ptem = max(ptem,val1) val2 = 1. ptem = min(ptem,val2) ptem = 1. - ptem ptem1= .5*(cincrmax-cincrmin) cincr = cincrmax - ptem * ptem1 tem1 = p(i,kb(i)) - p(i,kbcon(i)) if(tem1.gt.cincr) then cnvflg(i) = .false. endif endif enddo ! totflg = .true. do i=its,ite totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return ! ! assume the detrainment rate for the updrafts to be same as ! the entrainment rate at cloud base ! do i = its,ite if(cnvflg(i)) then xlamud(i) = xlamue(i,kbcon(i)) endif enddo ! ! determine updraft mass flux for the subcloud layers ! do k = km1, kts, -1 do i = its,ite if (cnvflg(i)) then if(k.lt.kbcon(i).and.k.ge.kb(i)) then dz = zi(i,k+2) - zi(i,k+1) ptem = 0.5*(xlamue(i,k)+xlamue(i,k+1))-xlamud(i) eta(i,k) = eta(i,k+1) / (1. + ptem * dz) endif endif enddo enddo ! ! compute mass flux above cloud base ! do k = kts+1, km1 do i = its,ite if(cnvflg(i))then if(k.gt.kbcon(i).and.k.lt.kmax(i)) then dz = zi(i,k+1) - zi(i,k) ptem = 0.5*(xlamue(i,k)+xlamue(i,k-1))-xlamud(i) eta(i,k) = eta(i,k-1) * (1 + ptem * dz) endif endif enddo enddo ! ! compute updraft cloud property ! do i = its,ite if(cnvflg(i)) then indx = kb(i) hcko(i,indx) = heo(i,indx) ucko(i,indx) = uo(i,indx) vcko(i,indx) = vo(i,indx) endif enddo ! do k = kts+1, km1 do i = its,ite if (cnvflg(i)) then if(k.gt.kb(i).and.k.lt.kmax(i)) then dz = zi(i,k+1) - zi(i,k) tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 ptem = 0.5 * tem + pgcon ptem1= 0.5 * tem - pgcon hcko(i,k) = ((1.-tem1)*hcko(i,k-1)+tem*0.5* & (heo(i,k)+heo(i,k-1)))/factor ucko(i,k) = ((1.-tem1)*ucko(i,k-1)+ptem*uo(i,k) & +ptem1*uo(i,k-1))/factor vcko(i,k) = ((1.-tem1)*vcko(i,k-1)+ptem*vo(i,k) & +ptem1*vo(i,k-1))/factor dbyo(i,k) = hcko(i,k) - heso(i,k) endif endif enddo enddo ! ! taking account into convection inhibition due to existence of ! dry layers below cloud base ! do i=its,ite flg(i) = cnvflg(i) kbcon1(i) = kmax(i) enddo ! do k = kts+1, km1 do i=its,ite if (flg(i).and.k.lt.kbm(i)) then if(k.ge.kbcon(i).and.dbyo(i,k).gt.0.) then kbcon1(i) = k flg(i) = .false. endif endif enddo enddo ! do i=its,ite if(cnvflg(i)) then if(kbcon1(i).eq.kmax(i)) cnvflg(i) = .false. endif enddo ! do i=its,ite if(cnvflg(i)) then tem = p(i,kbcon(i)) - p(i,kbcon1(i)) if(tem.gt.dthk) then cnvflg(i) = .false. endif endif enddo ! totflg = .true. do i = its,ite totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return ! ! determine first guess cloud top as the level of zero buoyancy ! limited to the level of sigma=0.7 ! do i = its,ite flg(i) = cnvflg(i) if(flg(i)) ktcon(i) = kbm(i) enddo ! do k = kts+1, km1 do i=its,ite if (flg(i).and.k .lt. kbm(i)) then if(k.gt.kbcon1(i).and.dbyo(i,k).lt.0.) then ktcon(i) = k flg(i) = .false. endif endif enddo enddo ! ! specify upper limit of mass flux at cloud base ! do i = its,ite if(cnvflg(i)) then k = kbcon(i) dp = 1000. * del(i,k) xmbmax(i) = dp / (g_ * dt2) endif enddo ! ! compute cloud moisture property and precipitation ! do i = its,ite if (cnvflg(i)) then aa1(i) = 0. qcko(i,kb(i)) = qo(i,kb(i)) endif enddo ! do k = kts+1, km1 do i = its,ite if (cnvflg(i)) then if(k.gt.kb(i).and.k.lt.ktcon(i)) then dz = zi(i,k+1) - zi(i,k) gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k) + gamma * dbyo(i,k) / (hvap_ * (1. + gamma)) tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 qcko(i,k) = ((1.-tem1)*qcko(i,k-1)+tem*0.5* & (qo(i,k)+qo(i,k-1)))/factor dq = eta(i,k) * (qcko(i,k) - qrch) ! ! rhbar(i) = rhbar(i) + qo(i,k) / qeso(i,k) ! ! below lfc check if there is excess moisture to release latent heat ! if(k.ge.kbcon(i).and.dq.gt.0.) then etah = .5 * (eta(i,k) + eta(i,k-1)) if(ncloud.gt.0) then dp = 1000. * del(i,k) qlk = dq / (eta(i,k) + etah * (c0 + c1) * dz) dellal(i,k) = etah * c1 * dz * qlk * g_ / dp else qlk = dq / (eta(i,k) + etah * c0 * dz) endif aa1(i) = aa1(i) - dz * g_ * qlk qcko(i,k)= qlk + qrch pwo(i,k) = etah * c0 * dz * qlk endif endif endif enddo enddo ! ! calculate cloud work function ! do k = kts+1, km1 do i = its,ite if (cnvflg(i)) then if(k.ge.kbcon(i).and.k.lt.ktcon(i)) then dz1 = zl(i,k+1) - zl(i,k) gamma = el2orc * qeso(i,k) / (to(i,k)**2) rfact = 1. + fv_ * cp_ * gamma * to(i,k) / hvap_ aa1(i) = aa1(i) + dz1 * (g_ / (cp_ * to(i,k))) & * dbyo(i,k) / (1. + gamma) * rfact val = 0. aa1(i)=aa1(i)+ dz1 * g_ * fv_ * max(val,(qeso(i,k) - qo(i,k))) endif endif enddo enddo ! do i = its,ite if(cnvflg(i).and.aa1(i).le.0.) cnvflg(i) = .false. enddo ! totflg = .true. do i=its,ite totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return ! ! estimate the convective overshooting as the level ! where the [aafac * cloud work function] becomes zero, ! which is the final cloud top limited to the level of sigma=0.7 ! do i = its,ite if (cnvflg(i)) then aa1(i) = aafac * aa1(i) endif enddo ! do i = its,ite flg(i) = cnvflg(i) ktcon1(i) = kbm(i) enddo ! do k = kts+1,km1 do i = its,ite if (flg(i)) then if(k.ge.ktcon(i).and.k.lt.kbm(i)) then dz1 = zl(i,k+1) - zl(i,k) gamma = el2orc * qeso(i,k) / (to(i,k)**2) rfact = 1. + fv_ * cp_ * gamma & * to(i,k) / hvap_ aa1(i) = aa1(i) + & dz1 * (g_ / (cp_ * to(i,k))) & * dbyo(i,k) / (1. + gamma) * rfact if(aa1(i).lt.0.) then ktcon1(i) = k flg(i) = .false. endif endif endif enddo enddo ! ! compute cloud moisture property, detraining cloud water ! and precipitation in overshooting layers ! do k = kts+1,km1 do i = its,ite if (cnvflg(i)) then if(k.ge.ktcon(i).and.k.lt.ktcon1(i)) then dz = zi(i,k+1) - zi(i,k) gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k) & + gamma * dbyo(i,k) / (hvap_ * (1. + gamma)) tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 qcko(i,k) = ((1.-tem1)*qcko(i,k-1)+tem*0.5* & (qo(i,k)+qo(i,k-1)))/factor dq = eta(i,k) * (qcko(i,k) - qrch) ! ! check if there is excess moisture to release latent heat ! if(dq.gt.0.) then etah = .5 * (eta(i,k) + eta(i,k-1)) if(ncloud.gt.0) then dp = 1000. * del(i,k) qlk = dq / (eta(i,k) + etah * (c0 + c1) * dz) dellal(i,k) = etah * c1 * dz * qlk * g_ / dp else qlk = dq / (eta(i,k) + etah * c0 * dz) endif qcko(i,k) = qlk + qrch pwo(i,k) = etah * c0 * dz * qlk endif endif endif enddo enddo ! ! exchange ktcon with ktcon1 ! do i = its,ite if(cnvflg(i)) then kk = ktcon(i) ktcon(i) = ktcon1(i) ktcon1(i) = kk endif enddo ! ! this section is ready for cloud water ! if(ncloud.gt.0) then ! ! compute liquid and vapor separation at cloud top ! do i = its,ite if(cnvflg(i)) then k = ktcon(i) - 1 gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k) & + gamma * dbyo(i,k) / (hvap_ * (1. + gamma)) dq = qcko(i,k) - qrch ! ! check if there is excess moisture to release latent heat ! if(dq.gt.0.) then qlko_ktcon(i) = dq qcko(i,k) = qrch endif endif enddo ! endif ! !--- compute precipitation efficiency in terms of windshear ! do i = its,ite if(cnvflg(i)) then vshear(i) = 0. endif enddo ! do k = kts+1,kte do i = its,ite if (cnvflg(i)) then if(k.gt.kb(i).and.k.le.ktcon(i)) then shear= sqrt((uo(i,k)-uo(i,k-1)) ** 2 + (vo(i,k)-vo(i,k-1)) ** 2) vshear(i) = vshear(i) + shear endif endif enddo enddo ! do i = its,ite if(cnvflg(i)) then vshear(i) = 1.e3 * vshear(i) / (zi(i,ktcon(i)+1)-zi(i,kb(i)+1)) e1=1.591-.639*vshear(i) & +.0953*(vshear(i)**2)-.00496*(vshear(i)**3) edt(i)=1.-e1 val = .9 edt(i) = min(edt(i),val) val = .0 edt(i) = max(edt(i),val) endif enddo ! !--- what would the change be, that a cloud with unit mass !--- will do to the environment? ! do k = kts,kte do i = its,ite if(cnvflg(i) .and. k .le. kmax(i)) then dellah(i,k) = 0. dellaq(i,k) = 0. dellau(i,k) = 0. dellav(i,k) = 0. endif enddo enddo ! !--- changed due to subsidence and entrainment ! do k = kts+1,km1 do i = its,ite if (cnvflg(i)) then if(k.gt.kb(i).and.k.lt.ktcon(i)) then dp = 1000. * del(i,k) dz = zi(i,k+1) - zi(i,k) ! dv1h = heo(i,k) dv2h = .5 * (heo(i,k) + heo(i,k-1)) dv3h = heo(i,k-1) dv1q = qo(i,k) dv2q = .5 * (qo(i,k) + qo(i,k-1)) dv3q = qo(i,k-1) dv1u = uo(i,k) dv2u = .5 * (uo(i,k) + uo(i,k-1)) dv3u = uo(i,k-1) dv1v = vo(i,k) dv2v = .5 * (vo(i,k) + vo(i,k-1)) dv3v = vo(i,k-1) ! tem = 0.5 * (xlamue(i,k)+xlamue(i,k-1)) tem1 = xlamud(i) ! dellah(i,k) = dellah(i,k) + & ( eta(i,k)*dv1h - eta(i,k-1)*dv3h & - tem*eta(i,k-1)*dv2h*dz & + tem1*eta(i,k-1)*.5*(hcko(i,k)+hcko(i,k-1))*dz ) *g_/dp ! dellaq(i,k) = dellaq(i,k) + & ( eta(i,k)*dv1q - eta(i,k-1)*dv3q & - tem*eta(i,k-1)*dv2q*dz & + tem1*eta(i,k-1)*.5*(qcko(i,k)+qcko(i,k-1))*dz ) *g_/dp ! dellau(i,k) = dellau(i,k) + & ( eta(i,k)*dv1u - eta(i,k-1)*dv3u & - tem*eta(i,k-1)*dv2u*dz & + tem1*eta(i,k-1)*.5*(ucko(i,k)+ucko(i,k-1))*dz & - pgcon*eta(i,k-1)*(dv1u-dv3u) ) *g_/dp ! dellav(i,k) = dellav(i,k) + & ( eta(i,k)*dv1v - eta(i,k-1)*dv3v & - tem*eta(i,k-1)*dv2v*dz & + tem1*eta(i,k-1)*.5*(vcko(i,k)+vcko(i,k-1))*dz & - pgcon*eta(i,k-1)*(dv1v-dv3v) ) *g_/dp ! endif endif enddo enddo ! !------- cloud top ! do i = its,ite if(cnvflg(i)) then indx = ktcon(i) dp = 1000. * del(i,indx) dv1h = heo(i,indx-1) dellah(i,indx) = eta(i,indx-1) * & (hcko(i,indx-1) - dv1h) * g_ / dp dv1q = qo(i,indx-1) dellaq(i,indx) = eta(i,indx-1) * & (qcko(i,indx-1) - dv1q) * g_ / dp dv1u = uo(i,indx-1) dellau(i,indx) = eta(i,indx-1) * & (ucko(i,indx-1) - dv1u) * g_ / dp dv1v = vo(i,indx-1) dellav(i,indx) = eta(i,indx-1) * & (vcko(i,indx-1) - dv1v) * g_ / dp ! ! cloud water ! dellal(i,indx) = eta(i,indx-1) * & qlko_ktcon(i) * g_ / dp endif enddo ! ! mass flux at cloud base for shallow convection ! (Grant, 2001) ! do i= its,ite if(cnvflg(i)) then k = kbcon(i) ptem = g_*sflx(i)*hpbl(i)/t1(i,1) wstar(i) = ptem**h1 tem = po(i,k)*100. / (rd_*t1(i,k)) xmb(i) = betaw*tem*wstar(i) xmb(i) = min(xmb(i),xmbmax(i)) endif enddo ! do k = kts,kte do i = its,ite if (cnvflg(i) .and. k .le. kmax(i)) then qeso(i,k)=0.01* fpvs(t1(i,k),1,rd_,rv_,cvap_,cliq_,cice,xlv0,xls,psat,t0c_) qeso(i,k) = eps * qeso(i,k) / (p(i,k) + (eps-1.)*qeso(i,k)) val = 1.e-8 qeso(i,k) = max(qeso(i,k), val ) endif enddo enddo ! do i = its,ite delhbar(i) = 0. delqbar(i) = 0. deltbar(i) = 0. delubar(i) = 0. delvbar(i) = 0. qcond(i) = 0. enddo ! do k = kts,kte do i = its,ite if (cnvflg(i)) then if(k.gt.kb(i).and.k.le.ktcon(i)) then dellat = (dellah(i,k) - hvap_ * dellaq(i,k)) / cp_ t1(i,k) = t1(i,k) + dellat * xmb(i) * dt2 q1(i,k) = q1(i,k) + dellaq(i,k) * xmb(i) * dt2 tem = 1./rcs u1(i,k) = u1(i,k) + dellau(i,k) * xmb(i) * dt2 * tem v1(i,k) = v1(i,k) + dellav(i,k) * xmb(i) * dt2 * tem dp = 1000. * del(i,k) delhbar(i) = delhbar(i) + dellah(i,k)*xmb(i)*dp/g_ delqbar(i) = delqbar(i) + dellaq(i,k)*xmb(i)*dp/g_ deltbar(i) = deltbar(i) + dellat*xmb(i)*dp/g_ delubar(i) = delubar(i) + dellau(i,k)*xmb(i)*dp/g_ delvbar(i) = delvbar(i) + dellav(i,k)*xmb(i)*dp/g_ endif endif enddo enddo ! do k = kts,kte do i = its,ite if (cnvflg(i)) then if(k.gt.kb(i).and.k.le.ktcon(i)) then qeso(i,k)=0.01* fpvs(t1(i,k),1,rd_,rv_,cvap_,cliq_,cice,xlv0,xls & ,psat,t0c_) qeso(i,k) = eps * qeso(i,k)/(p(i,k) + (eps-1.)*qeso(i,k)) val = 1.e-8 qeso(i,k) = max(qeso(i,k), val ) endif endif enddo enddo ! do i = its,ite rntot(i) = 0. delqev(i) = 0. delq2(i) = 0. flg(i) = cnvflg(i) enddo ! do k = kte,kts,-1 do i = its,ite if (cnvflg(i)) then if(k.lt.ktcon(i).and.k.gt.kb(i)) then rntot(i) = rntot(i) + pwo(i,k) * xmb(i) * .001 * dt2 endif endif enddo enddo ! ! evaporating rain ! do k = kte,kts,-1 do i = its,ite if (k .le. kmax(i)) then deltv(i) = 0. delq(i) = 0. qevap(i) = 0. if(cnvflg(i)) then if(k.lt.ktcon(i).and.k.gt.kb(i)) then rain(i) = rain(i) + pwo(i,k) * xmb(i) * .001 * dt2 endif endif if(flg(i).and.k.lt.ktcon(i)) then evef = edt(i) * evfact if(slimsk(i).eq.1.) evef=edt(i) * evfactl qcond(i) = evef * (q1(i,k) - qeso(i,k)) & / (1. + el2orc * qeso(i,k) / t1(i,k)**2) dp = 1000. * del(i,k) if(rain(i).gt.0..and.qcond(i).lt.0.) then qevap(i) = -qcond(i) * (1.-exp(-.32*sqrt(dt2*rain(i)))) qevap(i) = min(qevap(i), rain(i)*1000.*g_/dp) delq2(i) = delqev(i) + .001 * qevap(i) * dp / g_ endif if(rain(i).gt.0..and.qcond(i).lt.0..and.delq2(i).gt.rntot(i)) then qevap(i) = 1000.* g_ * (rntot(i) - delqev(i)) / dp flg(i) = .false. endif if(rain(i).gt.0..and.qevap(i).gt.0.) then tem = .001 * dp / g_ tem1 = qevap(i) * tem if(tem1.gt.rain(i)) then qevap(i) = rain(i) / tem rain(i) = 0. else rain(i) = rain(i) - tem1 endif q1(i,k) = q1(i,k) + qevap(i) t1(i,k) = t1(i,k) - (hvap_/cp_) * qevap(i) deltv(i) = - (hvap_/cp_)*qevap(i)/dt2 delq(i) = + qevap(i)/dt2 delqev(i) = delqev(i) + .001*dp*qevap(i)/g_ endif dellaq(i,k) = dellaq(i,k) + delq(i) / xmb(i) delqbar(i) = delqbar(i) + delq(i)*dp/g_ deltbar(i) = deltbar(i) + deltv(i)*dp/g_ endif endif enddo enddo ! do i = its,ite if(cnvflg(i)) then if(rain(i).lt.0..or..not.flg(i)) rain(i) = 0. ktop(i) = ktcon(i) kbot(i) = kbcon(i) icps(i) = 0 endif enddo ! ! cloud water ! if (ncloud.gt.0) then ! do k = kts,km1 do i = its,ite if (cnvflg(i)) then if (k.ge.kbcon(i).and.k.le.ktcon(i)) then tem = dellal(i,k) * xmb(i) * dt2 tem1 = max(0.0, min(1.0, (tcr-t1(i,k))*tcrf)) if (ncloud.ge.2) then qi2(i,k) = qi2(i,k) + tem * tem1 ! ice qc2(i,k) = qc2(i,k) + tem *(1.0-tem1) ! water else qc2(i,k) = qc2(i,k) + tem endif endif endif enddo enddo ! endif ! end subroutine nscv2d !------------------------------------------------------------------------------- ! !------------------------------------------------------------------------------- REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) !------------------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------------------- REAL :: t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & xai,xbi,ttp,tr INTEGER :: ice ! ttp=t0c+0.01 dldt=cvap-cliq xa=-dldt/rv xb=xa+hvap/(rv*ttp) dldti=cvap-cice xai=-dldti/rv xbi=xai+hsub/(rv*ttp) tr=ttp/t if(t.lt.ttp.and.ice.eq.1) then fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) else fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) endif ! if (t.lt.180.) then tr=ttp/180. if(t.lt.ttp.and.ice.eq.1) then fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) else fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) endif endif ! if (t.ge.330.) then tr=ttp/330 if(t.lt.ttp.and.ice.eq.1) then fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) else fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) endif endif ! END FUNCTION fpvs !------------------------------------------------------------------------------- ! !------------------------------------------------------------------------------- subroutine nscvinit(rthshten,rqvshten,rqcshten,rqishten, & rushten,rvshten, & restart,p_qc,p_qi,p_first_scalar, & allowed_to_read, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !------------------------------------------------------------------------------- implicit none !------------------------------------------------------------------------------- logical , intent(in) :: allowed_to_read,restart integer , intent(in) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte integer , intent(in) :: p_first_scalar, p_qi, p_qc real, dimension( ims:ime , kms:kme , jms:jme ) , intent(out) :: & rthshten, & rqvshten, & rushten, & rvshten, & rqcshten, & rqishten integer :: i, j, k, itf, jtf, ktf ! jtf=min0(jte,jde-1) ktf=min0(kte,kde-1) itf=min0(ite,ide-1) ! if(.not.restart)then do j = jts,jtf do k = kts,ktf do i = its,itf rthshten(i,k,j)=0. rqvshten(i,k,j)=0. rushten(i,k,j)=0. rvshten(i,k,j)=0. enddo enddo enddo ! if (p_qc .ge. p_first_scalar) then do j = jts,jtf do k = kts,ktf do i = its,itf rqcshten(i,k,j)=0. enddo enddo enddo endif ! if (p_qi .ge. p_first_scalar) then do j = jts,jtf do k = kts,ktf do i = its,itf rqishten(i,k,j)=0. enddo enddo enddo endif endif ! end subroutine nscvinit !------------------------------------------------------------------------------- ! END MODULE module_shcu_nscv !