!WRF:MODEL_LAYER:PHYSICS ! MODULE module_sf_sfcdiags_ruclsm CONTAINS SUBROUTINE SFCDIAGS_RUCLSM(HFX,QFX,TSK,QSFC,CQS,CQS2,CHS,CHS2,T2,TH2,Q2, & T3D,QV3D,RHO3D,P3D,PSFC2D,SNOW, & CP,R_d,ROVCP, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(IN) :: HFX, & QFX, & SNOW, & TSK, & QSFC REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(INOUT) :: Q2, & TH2, & T2 REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(IN) :: & PSFC2D, & CHS, & CQS, & CHS2, & CQS2 REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & INTENT(IN ) :: QV3D, & T3D, & P3D, & rho3D REAL, INTENT(IN ) :: CP,R_d,ROVCP ! LOCAL VARS INTEGER :: I,J REAL :: RHO, x2m, qlev1, tempc, qsat, p2m, qsfcprox, qsfcmr, & psfc, dT, dQ, fh, fac, dz1 LOGICAL :: FLUX ! flux = .true. flux = .false. DO J=jts,jte DO I=its,ite RHO = RHO3D(i,1,j) ! PSFC = P3D(I,kms,J) ! Assume that 2-m pressure also equal to PSFC PSFC = PSFC2D(I,J) ! P2m = PSFC2D(I,J)*EXP(-0.068283/t3d(i,1,j)) if ( flux ) then !!! 2-m Temperature - T2 if(CHS2(I,J).lt.1.E-5) then ! may be to small treshold? ! if(CHS2(I,J).lt.3.E-3 .AND. HFX(I,J).lt.0.) then ! when stable - let 2-m temperature be equal the first atm. level temp. ! TH2(I,J) = TSK(I,J)*(1.E5/PSFC(I,J))**ROVCP TH2(I,J) = t3d(i,1,j)*(1.E5/PSFC)**ROVCP else TH2(I,J) = TSK(I,J)*(1.E5/PSFC)**ROVCP - HFX(I,J)/(RHO*CP*CHS2(I,J)) ! T2(I,J) = TSK(I,J) - HFX(I,J)/(RHO*CP*CHS2(I,J)) endif ! TH2(I,J) = T2(I,J)*(1.E5/PSFC(I,J))**ROVCP T2(I,J) = TH2(I,J)*(1.E-5*PSFC)**ROVCP ! check that T2 values lie in the range between TSK and T at the 1st level x2m = MAX(MIN(tsk(i,j),t3d(i,1,j)) , t2(i,j)) t2(i,j) = MIN(MAX(tsk(i,j),t3d(i,1,j)) , x2m) TH2(I,J) = T2(I,J)*(1.E5/PSFC)**ROVCP else fac=(1.E5/PSFC)**ROVCP TH2(I,J) = tsk(i,j)*fac - CHS(I,J)/CHS2(I,J)*(tsk(i,j) - t3d(i,1,j))*fac T2(I,J) = TH2(I,J)*(1.E-5*PSFC)**ROVCP endif ! flux method !!! 2-m Water vapor mixing ratio - Q2 qlev1 = qv3d(i,1,j) ! saturation check tempc=t3d(i,1,j)-273.15 if (tempc .le. 0.0) then ! over ice qsat = rsif(p3d(i,1,j), t3d(i,1,j)) else qsat = rslf(p3d(i,1,j), t3d(i,1,j)) endif !remove oversaturation at level 1 qlev1 = min(qsat, qlev1) ! Compute QSFC proxy from QFX, qlev1 and CQS ! Use of QSFCprox is more accurate diagnostics for densely vegetated areas, ! like cropland in summer qsfcprox=qlev1+QFX(I,J)/(RHO*CQS(I,J)) qsfcmr = qsfc(i,j)/(1.-qsfc(i,j)) ! if(i.eq.426.and.j.eq.250) then !! RAP cropland point ! print *,'qsfc,qsfcmr,qsfcprox,qlev1',qsfc(i,j),qsfcmr,qsfcprox,qlev1 ! print *,'(qsfcprox-qsfcmr)/qsfcmr =', (qsfcprox-qsfcmr)/qsfcmr ! endif if ( flux ) then if(CQS2(I,J).lt.1.E-5) then ! - under very stable conditions use first level for 2-m mixing ratio Q2(I,J)=qlev1 else ! x2m = QSFCmr - QFX(I,J)/(RHO*CQS2(I,J)) x2m = QSFCprox - QFX(I,J)/(RHO*CQS2(I,J)) q2(i,j) = x2m endif else ! QFX is not used Q2(I,J) = qsfcmr - CQS(I,J)/CQS2(I,J)*(qsfcmr - qlev1) endif ! flux ! Check that Q2 values lie between QSFCmr and qlev1 x2m = MAX(MIN(qsfcmr,qlev1) , q2(i,j)) q2(i,j) = MIN(MAX(qsfcmr,qlev1) , x2m) ! saturation check tempc=t2(i,j)-273.15 if (tempc .le. 0.0) then ! ice and supercooled water qsat = rsif(psfc, t2(i,j)) else ! water qsat = rslf(psfc, t2(i,j)) endif q2(i,j) = min(qsat, q2(i,j)) ! if(i.eq.426.and.j.eq.250) then !! cropland point ! print *,'FINAL - qsfc,qsfcmr,qsfcprox,q2(i,j),qlev1', & ! qsfc(i,j),qsfcmr,qsfcprox,q2(i,j),qlev1 ! print *,'(q2-qlev1)/qlev1 =', (q2(i,j)-qlev1)/qlev1 ! endif ENDDO ENDDO END SUBROUTINE SFCDIAGS_RUCLSM !tgs - saturation functions are from Thompson microphysics scheme REAL FUNCTION RSLF(P,T) IMPLICIT NONE REAL, INTENT(IN):: P, T REAL:: ESL,X REAL, PARAMETER:: C0= .611583699E03 REAL, PARAMETER:: C1= .444606896E02 REAL, PARAMETER:: C2= .143177157E01 REAL, PARAMETER:: C3= .264224321E-1 REAL, PARAMETER:: C4= .299291081E-3 REAL, PARAMETER:: C5= .203154182E-5 REAL, PARAMETER:: C6= .702620698E-8 REAL, PARAMETER:: C7= .379534310E-11 REAL, PARAMETER:: C8=-.321582393E-13 X=MAX(-80.,T-273.16) ! ESL=612.2*EXP(17.67*X/(T-29.65)) ESL=C0+X*(C1+X*(C2+X*(C3+X*(C4+X*(C5+X*(C6+X*(C7+X*C8))))))) RSLF=.622*ESL/(P-ESL) END FUNCTION RSLF ! ! ALTERNATIVE ! ; Source: Murphy and Koop, Review of the vapour pressure of ice and ! supercooled water for atmospheric applications, Q. J. R. ! Meteorol. Soc (2005), 131, pp. 1539-1565. ! Psat = EXP(54.842763 - 6763.22 / T - 4.210 * ALOG(T) + 0.000367 * T ! + TANH(0.0415 * (T - 218.8)) * (53.878 - 1331.22 ! / T - 9.44523 * ALOG(T) + 0.014025 * T)) ! !+---+-----------------------------------------------------------------+ ! THIS FUNCTION CALCULATES THE ICE SATURATION VAPOR MIXING RATIO AS A ! FUNCTION OF TEMPERATURE AND PRESSURE ! REAL FUNCTION RSIF(P,T) IMPLICIT NONE REAL, INTENT(IN):: P, T REAL:: ESI,X REAL, PARAMETER:: C0= .609868993E03 REAL, PARAMETER:: C1= .499320233E02 REAL, PARAMETER:: C2= .184672631E01 REAL, PARAMETER:: C3= .402737184E-1 REAL, PARAMETER:: C4= .565392987E-3 REAL, PARAMETER:: C5= .521693933E-5 REAL, PARAMETER:: C6= .307839583E-7 REAL, PARAMETER:: C7= .105785160E-9 REAL, PARAMETER:: C8= .161444444E-12 X=MAX(-80.,T-273.16) ESI=C0+X*(C1+X*(C2+X*(C3+X*(C4+X*(C5+X*(C6+X*(C7+X*C8))))))) RSIF=.622*ESI/(P-ESI) END FUNCTION RSIF END MODULE module_sf_sfcdiags_ruclsm