#if( BUILD_RRTMK != 1) MODULE module_ra_rrtmg_lwk CONTAINS SUBROUTINE rrtmg_lw REAL :: dummy dummy = 1 END SUBROUTINE rrtmg_lw END MODULE module_ra_rrtmg_lwk #else ! ! module module_ra_rrtmg_lw ! !------------------------------------------------------------------------------- module parkind_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg kinds ! Define integer and real kinds for various types. ! ! Initial version: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! !------------------------------------------------------------------------------- ! ! implicit none ! save ! ! integer kinds ! integer, parameter :: kind_ib = selected_int_kind(13) ! 8 byte integer integer, parameter :: kind_im = selected_int_kind(6) ! 4 byte integer integer, parameter :: kind_in = kind(1) ! native integer ! ! real kinds ! ! integer, parameter :: kind_rb = selected_real_kind(12) ! 8 byte real ! integer, parameter :: kind_rm = selected_real_kind(6) ! 4 byte real ! integer, parameter :: kind_rn = kind(1.0) ! native real ! integer, parameter :: kind_rb = kind(1.0) ! native real ! !------------------------------------------------------------------------------- end module parkind_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module parrrtm_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw main parameters ! ! Initial version: JJMorcrette, ECMWF, Jul 1998 ! Revised: MJIacono, AER, Jun 2006 ! Revised: MJIacono, AER, Aug 2007 ! Revised: MJIacono, AER, Aug 2008 ! ! name type purpose ! ----- : ---- : ---------------------------------------------- ! mxlay : integer: maximum number of layers ! mg : integer: number of original g-intervals per spectral band ! nbndlw : integer: number of spectral bands ! maxxsec: integer: maximum number of cross-section molecules ! (e.g. cfcs) ! maxinpx: integer: ! ngptlw : integer: total number of reduced g-intervals for rrtmg_lw ! ngNN : integer: number of reduced g-intervals per spectral band ! ngsNN : integer: cumulative number of g-intervals per band ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im ! ! implicit none ! save ! integer(kind=im), parameter :: mxlay = 203 integer(kind=im), parameter :: mg = 16 integer(kind=im), parameter :: nbndlw = 16 integer(kind=im), parameter :: maxxsec= 4 integer(kind=im), parameter :: mxmol = 38 integer(kind=im), parameter :: maxinpx= 38 integer(kind=im), parameter :: nmol = 7 ! ! Use for 140 g-point model ! integer(kind=im), parameter :: ngptlw = 140 ! ! Use for 256 g-point model ! integer(kind=im), parameter :: ngptlw = 256 ! ! Use for 140 g-point model ! integer(kind=im), parameter :: ng1 = 10 integer(kind=im), parameter :: ng2 = 12 integer(kind=im), parameter :: ng3 = 16 integer(kind=im), parameter :: ng4 = 14 integer(kind=im), parameter :: ng5 = 16 integer(kind=im), parameter :: ng6 = 8 integer(kind=im), parameter :: ng7 = 12 integer(kind=im), parameter :: ng8 = 8 integer(kind=im), parameter :: ng9 = 12 integer(kind=im), parameter :: ng10 = 6 integer(kind=im), parameter :: ng11 = 8 integer(kind=im), parameter :: ng12 = 8 integer(kind=im), parameter :: ng13 = 4 integer(kind=im), parameter :: ng14 = 2 integer(kind=im), parameter :: ng15 = 2 integer(kind=im), parameter :: ng16 = 2 ! integer(kind=im), parameter :: ngs1 = 10 integer(kind=im), parameter :: ngs2 = 22 integer(kind=im), parameter :: ngs3 = 38 integer(kind=im), parameter :: ngs4 = 52 integer(kind=im), parameter :: ngs5 = 68 integer(kind=im), parameter :: ngs6 = 76 integer(kind=im), parameter :: ngs7 = 88 integer(kind=im), parameter :: ngs8 = 96 integer(kind=im), parameter :: ngs9 = 108 integer(kind=im), parameter :: ngs10 = 114 integer(kind=im), parameter :: ngs11 = 122 integer(kind=im), parameter :: ngs12 = 130 integer(kind=im), parameter :: ngs13 = 134 integer(kind=im), parameter :: ngs14 = 136 integer(kind=im), parameter :: ngs15 = 138 ! ! Use for 256 g-point model ! integer(kind=im), parameter :: ng1 = 16 ! integer(kind=im), parameter :: ng2 = 16 ! integer(kind=im), parameter :: ng3 = 16 ! integer(kind=im), parameter :: ng4 = 16 ! integer(kind=im), parameter :: ng5 = 16 ! integer(kind=im), parameter :: ng6 = 16 ! integer(kind=im), parameter :: ng7 = 16 ! integer(kind=im), parameter :: ng8 = 16 ! integer(kind=im), parameter :: ng9 = 16 ! integer(kind=im), parameter :: ng10 = 16 ! integer(kind=im), parameter :: ng11 = 16 ! integer(kind=im), parameter :: ng12 = 16 ! integer(kind=im), parameter :: ng13 = 16 ! integer(kind=im), parameter :: ng14 = 16 ! integer(kind=im), parameter :: ng15 = 16 ! integer(kind=im), parameter :: ng16 = 16 ! integer(kind=im), parameter :: ngs1 = 16 ! integer(kind=im), parameter :: ngs2 = 32 ! integer(kind=im), parameter :: ngs3 = 48 ! integer(kind=im), parameter :: ngs4 = 64 ! integer(kind=im), parameter :: ngs5 = 80 ! integer(kind=im), parameter :: ngs6 = 96 ! integer(kind=im), parameter :: ngs7 = 112 ! integer(kind=im), parameter :: ngs8 = 128 ! integer(kind=im), parameter :: ngs9 = 144 ! integer(kind=im), parameter :: ngs10 = 160 ! integer(kind=im), parameter :: ngs11 = 176 ! integer(kind=im), parameter :: ngs12 = 192 ! integer(kind=im), parameter :: ngs13 = 208 ! integer(kind=im), parameter :: ngs14 = 224 ! integer(kind=im), parameter :: ngs15 = 240 ! integer(kind=im), parameter :: ngs16 = 256 ! !------------------------------------------------------------------------------- end module parrrtm_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_cld_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw cloud property coefficients ! ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! name type purpose ! ----- : ---- : ---------------------------------------------- ! abscld1: real : ! absice0: real : ! absice1: real : ! absice2: real : ! absice3: real : ! absliq0: real : ! absliq1: real : ! !------------------------------------------------------------------------------- use parkind_k, only : rb => kind_rb ! ! implicit none ! save ! real(kind=rb) :: abscld1 real(kind=rb), dimension(2) :: absice0 real(kind=rb), dimension(2,5) :: absice1 real(kind=rb), dimension(43,16) :: absice2 real(kind=rb), dimension(46,16) :: absice3 real(kind=rb) :: absliq0 real(kind=rb), dimension(58,16) :: absliq1 ! !------------------------------------------------------------------------------- end module rrlw_cld_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_con_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw constants ! ! Initial version: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! name type purpose ! ----- : ---- : ---------------------------------------------- ! fluxfac : real : radiance to flux conversion factor ! heatfac : real : flux to heating rate conversion factor ! oneminus: real : 1.-1.e-6 ! pi : real : pi ! grav : real : acceleration of gravity ! planck : real : planck constant ! boltz : real : boltzmann constant ! clight : real : speed of light ! avogad : real : avogadro constant ! alosmt : real : loschmidt constant ! gascon : real : molar gas constant ! radcn1 : real : first radiation constant ! radcn2 : real : second radiation constant ! sbcnst : real : stefan-boltzmann constant ! secdy : real : seconds per day ! !------------------------------------------------------------------------------- use parkind_k, only : rb => kind_rb ! ! implicit none ! save ! real(kind=rb) :: fluxfac, heatfac real(kind=rb) :: oneminus, pi, grav real(kind=rb) :: planck, boltz, clight real(kind=rb) :: avogad, alosmt, gascon real(kind=rb) :: radcn1, radcn2 real(kind=rb) :: sbcnst, secdy ! !------------------------------------------------------------------------------- end module rrlw_con_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg01_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 1 ! band 1: 10-250 cm-1 (low - h2o; high - h2o) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! fracrefbo: real ! kao : real ! kbo : real ! kao_mn2 : real ! kbo_mn2 : real ! selfrefo : real ! forrefo : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefa : real ! fracrefb : real ! ka : real ! kb : real ! absa : real ! absb : real ! ka_mn2 : real ! kb_mn2 : real ! selfref : real ! forref : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no1 = 16 ! real(kind=rb), dimension(no1) :: fracrefao, fracrefbo real(kind=rb), dimension(5,13,no1) :: kao real(kind=rb), dimension(5,13:59,no1) :: kbo real(kind=rb), dimension(19,no1) :: kao_mn2, kbo_mn2 real(kind=rb), dimension(10,no1) :: selfrefo real(kind=rb), dimension(4,no1) :: forrefo ! integer(kind=im), parameter :: ng1 = 10 ! real(kind=rb), dimension(ng1) :: fracrefa, fracrefb real(kind=rb), dimension(5,13,ng1) :: ka real(kind=rb), dimension(65,ng1) :: absa real(kind=rb), dimension(5,13:59,ng1) :: kb real(kind=rb), dimension(235,ng1) :: absb real(kind=rb), dimension(19,ng1) :: ka_mn2, kb_mn2 real(kind=rb), dimension(10,ng1) :: selfref(10,ng1) real(kind=rb), dimension(4,ng1) :: forref(4,ng1) ! equivalence (ka(1,1,1),absa(1,1)), (kb(1,13,1),absb(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg01_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg02_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 2 ! band 2: 250-500 cm-1 (low - h2o; high - h2o) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! fracrefbo: real ! kao : real ! kbo : real ! selfrefo : real ! forrefo : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefa : real ! fracrefb : real ! ka : real ! kb : real ! absa : real ! absb : real ! selfref : real ! forref : real ! ! refparam : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no2 = 16 ! real(kind=rb), dimension(no2) :: fracrefao, fracrefbo real(kind=rb), dimension(5,13,no2) :: kao real(kind=rb), dimension(5,13:59,no2) :: kbo real(kind=rb), dimension(10,no2) :: selfrefo(10,no2) real(kind=rb), dimension(4,no2) :: forrefo(4,no2) ! integer(kind=im), parameter :: ng2 = 12 ! real(kind=rb), dimension(ng2) :: fracrefa, fracrefb real(kind=rb), dimension(5,13,ng2) :: ka(5,13,ng2) real(kind=rb), dimension(65,ng2) :: absa real(kind=rb), dimension(5,13:59,ng2) :: kb real(kind=rb), dimension(235,ng2) :: absb real(kind=rb), dimension(10,ng2) :: selfref(10,ng2) real(kind=rb), dimension(4,ng2) :: forref(4,ng2) ! real(kind=rb), dimension(13) :: refparam ! equivalence (ka(1,1,1),absa(1,1)),(kb(1,13,1),absb(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg02_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg03_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 3 ! band 3: 500-630 cm-1 (low - h2o,co2; high - h2o,co2) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! fracrefbo: real ! kao : real ! kbo : real ! kao_mn2o : real ! kbo_mn2o : real ! selfrefo : real ! forrefo : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefa : real ! fracrefb : real ! ka : real ! kb : real ! ka_mn2o : real ! kb_mn2o : real ! selfref : real ! forref : real ! ! absa : real ! absb : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no3 = 16 ! real(kind=rb), dimension(no3,9) :: fracrefao real(kind=rb), dimension(no3,5) :: fracrefbo(no3,5) real(kind=rb), dimension(9,5,13,no3) :: kao real(kind=rb), dimension(5,5,13:59,no3) :: kbo real(kind=rb), dimension(9,19,no3) :: kao_mn2o real(kind=rb), dimension(5,19,no3) :: kbo_mn2o real(kind=rb), dimension(10,no3) :: selfrefo real(kind=rb), dimension(4,no3) :: forrefo ! integer(kind=im), parameter :: ng3 = 16 ! real(kind=rb), dimension(ng3,9) :: fracrefa real(kind=rb), dimension(ng3,5) :: fracrefb real(kind=rb), dimension(9,5,13,ng3) :: ka real(kind=rb), dimension(585,ng3) :: absa real(kind=rb), dimension(5,5,13:59,ng3) :: kb real(kind=rb), dimension(1175,ng3) :: absb real(kind=rb), dimension(9,19,ng3) :: ka_mn2o real(kind=rb), dimension(5,19,ng3) :: kb_mn2o real(kind=rb), dimension(10,ng3) :: selfref real(kind=rb), dimension(4,ng3) :: forref ! equivalence (ka(1,1,1,1),absa(1,1)),(kb(1,1,13,1),absb(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg03_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg04_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 4 ! band 4: 630-700 cm-1 (low - h2o,co2; high - o3,co2) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! fracrefbo: real ! kao : real ! kbo : real ! selfrefo : real ! forrefo : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! absa : real ! absb : real ! fracrefa : real ! fracrefb : real ! ka : real ! kb : real ! selfref : real ! forref : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no4 = 16 ! real(kind=rb), dimension(no4,9) :: fracrefao real(kind=rb), dimension(no4,5) :: fracrefbo real(kind=rb), dimension(9,5,13,no4) :: kao real(kind=rb), dimension(5,5,13:59,no4) :: kbo real(kind=rb), dimension(10,no4) :: selfrefo real(kind=rb), dimension(4,no4) :: forrefo ! integer(kind=im), parameter :: ng4 = 14 ! real(kind=rb), dimension(ng4,9) :: fracrefa real(kind=rb), dimension(ng4,5) :: fracrefb real(kind=rb), dimension(9,5,13,ng4) :: ka real(kind=rb), dimension(585,ng4) :: absa real(kind=rb), dimension(5,5,13:59,ng4) :: kb real(kind=rb), dimension(1175,ng4) :: absb real(kind=rb), dimension(10,ng4) :: selfref real(kind=rb), dimension(4,ng4) :: forref ! equivalence (ka(1,1,1,1),absa(1,1)),(kb(1,1,13,1),absb(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg04_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg05_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 5 ! band 5: 700-820 cm-1 (low - h2o,co2; high - o3,co2) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! fracrefbo: real ! kao : real ! kbo : real ! kao_mo3 : real ! selfrefo : real ! forrefo : real ! ccl4o : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefa : real ! fracrefb : real ! ka : real ! kb : real ! ka_mo3 : real ! selfref : real ! forref : real ! ccl4 : real ! ! absa : real ! absb : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no5 = 16 ! real(kind=rb), dimension(no5,9) :: fracrefao real(kind=rb), dimension(no5,5) :: fracrefbo real(kind=rb), dimension(9,5,13,no5) :: kao real(kind=rb), dimension(5,5,13:59,no5) :: kbo real(kind=rb), dimension(9,19,no5) :: kao_mo3 real(kind=rb), dimension(10,no5) :: selfrefo real(kind=rb), dimension(4,no5) :: forrefo real(kind=rb), dimension(no5) :: ccl4o ! integer(kind=im), parameter :: ng5 = 16 ! real(kind=rb), dimension(ng5,9) :: fracrefa real(kind=rb), dimension(ng5,5) :: fracrefb real(kind=rb), dimension(9,5,13,ng5) :: ka real(kind=rb), dimension(585,ng5) :: absa real(kind=rb), dimension(5,5,13:59,ng5) :: kb real(kind=rb), dimension(1175,ng5) :: absb real(kind=rb), dimension(9,19,ng5) :: ka_mo3 real(kind=rb), dimension(10,ng5) :: selfref real(kind=rb), dimension(4,ng5) :: forref real(kind=rb), dimension(ng5) :: ccl4 ! equivalence (ka(1,1,1,1),absa(1,1)),(kb(1,1,13,1),absb(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg05_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg06_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 6 ! band 6: 820-980 cm-1 (low - h2o; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! kao : real ! kao_mco2 : real ! selfrefo : real ! forrefo : real ! cfc11adjo: real ! cfc12o : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefa : real ! ka : real ! ka_mco2 : real ! selfref : real ! forref : real ! cfc11adj : real ! cfc12 : real ! ! absa : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no6 = 16 ! real(kind=rb), dimension(no6) :: fracrefao real(kind=rb), dimension(5,13,no6) :: kao real(kind=rb), dimension(19,no6) :: kao_mco2 real(kind=rb), dimension(10,no6) :: selfrefo real(kind=rb), dimension(4,no6) :: forrefo ! real(kind=rb) , dimension(no6) :: cfc11adjo, cfc12o ! integer(kind=im), parameter :: ng6 = 8 ! real(kind=rb), dimension(ng6) :: fracrefa real(kind=rb), dimension(5,13,ng6) :: ka real(kind=rb), dimension(65,ng6) :: absa real(kind=rb), dimension(19,ng6) :: ka_mco2 real(kind=rb), dimension(10,ng6) :: selfref real(kind=rb), dimension(4,ng6) :: forref ! real(kind=rb) , dimension(ng6) :: cfc11adj, cfc12 ! equivalence (ka(1,1,1),absa(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg06_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg07_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 7 ! band 7: 980-1080 cm-1 (low - h2o,o3; high - o3) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! fracrefbo: real ! kao : real ! kbo : real ! kao_mco2 : real ! kbo_mco2 : real ! selfrefo : real ! forrefo : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefa : real ! fracrefb : real ! ka : real ! kb : real ! ka_mco2 : real ! kb_mco2 : real ! selfref : real ! forref : real ! ! absa : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no7 = 16 ! real(kind=rb), dimension(no7) :: fracrefbo real(kind=rb), dimension(no7,9) :: fracrefao real(kind=rb), dimension(9,5,13,no7) :: kao real(kind=rb), dimension(5,13:59,no7) :: kbo real(kind=rb), dimension(9,19,no7) :: kao_mco2 real(kind=rb), dimension(19,no7) :: kbo_mco2 real(kind=rb), dimension(10,no7) :: selfrefo real(kind=rb), dimension(4,no7) :: forrefo ! integer(kind=im), parameter :: ng7 = 12 ! real(kind=rb), dimension(ng7) :: fracrefb real(kind=rb), dimension(ng7,9) :: fracrefa real(kind=rb), dimension(9,5,13,ng7) :: ka real(kind=rb), dimension(585,ng7) :: absa real(kind=rb), dimension(5,13:59,ng7) :: kb real(kind=rb), dimension(235,ng7) :: absb real(kind=rb), dimension(9,19,ng7) :: ka_mco2 real(kind=rb), dimension(19,ng7) :: kb_mco2 real(kind=rb), dimension(10,ng7) :: selfref real(kind=rb), dimension(4,ng7) :: forref ! equivalence (ka(1,1,1,1),absa(1,1)),(kb(1,13,1),absb(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg07_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg08_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 8 ! band 8: 1080-1180 cm-1 (low (i.e.>~300mb) - h2o; high - o3) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! fracrefbo: real ! kao : real ! kbo : real ! kao_mco2 : real ! kbo_mco2 : real ! kao_mn2o : real ! kbo_mn2o : real ! kao_mo3 : real ! selfrefo : real ! forrefo : real ! cfc12o : real ! cfc22adjo: real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefa : real ! fracrefb : real ! ka : real ! kb : real ! ka_mco2 : real ! kb_mco2 : real ! ka_mn2o : real ! kb_mn2o : real ! ka_mo3 : real ! selfref : real ! forref : real ! cfc12 : real ! cfc22adj : real ! ! absa : real ! absb : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no8 = 16 ! real(kind=rb), dimension(no8) :: fracrefao, fracrefbo, cfc12o, cfc22adjo ! real(kind=rb), dimension(5,13,no8) :: kao(5,13,no8) real(kind=rb), dimension(19,no8) :: kao_mco2, kao_mn2o, kao_mo3 real(kind=rb), dimension(5,13:59,no8) :: kbo real(kind=rb), dimension(19,no8) :: kbo_mco2, kbo_mn2o real(kind=rb), dimension(10,no8) :: selfrefo real(kind=rb), dimension(4,no8) :: forrefo ! integer(kind=im), parameter :: ng8 = 8 ! real(kind=rb) , dimension(ng8) :: fracrefa, fracrefb, cfc12, cfc22adj ! real(kind=rb), dimension(5,13,ng8) :: ka real(kind=rb), dimension(65,ng8) :: absa real(kind=rb), dimension(5,13:59,ng8) :: kb real(kind=rb), dimension(235,ng8) :: absb real(kind=rb), dimension(19,ng8) :: ka_mco2, ka_mn2o, ka_mo3, & kb_mco2, kb_mn2o real(kind=rb), dimension(10,ng8) :: selfref real(kind=rb), dimension(4,ng8) :: forref ! equivalence (ka(1,1,1),absa(1,1)),(kb(1,13,1),absb(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg08_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg09_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 9 ! band 9: 1180-1390 cm-1 (low - h2o,ch4; high - ch4) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! fracrefbo: real ! kao : real ! kbo : real ! kao_mn2o : real ! kbo_mn2o : real ! selfrefo : real ! forrefo : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefa : real ! fracrefb : real ! ka : real ! kb : real ! ka_mn2o : real ! kb_mn2o : real ! selfref : real ! forref : real ! ! absa : real ! absb : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no9 = 16 ! real(kind=rb), dimension(no9) :: fracrefbo ! real(kind=rb), dimension(no9,9) :: fracrefao real(kind=rb), dimension(9,5,13,no9) :: kao real(kind=rb), dimension(5,13:59,no9) :: kbo real(kind=rb), dimension(9,19,no9) :: kao_mn2o real(kind=rb), dimension(19,no9) :: kbo_mn2o real(kind=rb), dimension(10,no9) :: selfrefo real(kind=rb), dimension(4,no9) :: forrefo ! integer(kind=im), parameter :: ng9 = 12 ! real(kind=rb), dimension(ng9) :: fracrefb real(kind=rb), dimension(ng9,9) :: fracrefa real(kind=rb), dimension(9,5,13,ng9) :: ka real(kind=rb), dimension(585,ng9) :: absa real(kind=rb), dimension(5,13:59,ng9) :: kb real(kind=rb), dimension(235,ng9) :: absb real(kind=rb), dimension(9,19,ng9) :: ka_mn2o real(kind=rb), dimension(19,ng9) :: kb_mn2o real(kind=rb), dimension(10,ng9) :: selfref real(kind=rb), dimension(4,ng9) :: forref ! equivalence (ka(1,1,1,1),absa(1,1)),(kb(1,13,1),absb(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg09_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg10_k !------------------------------------------------------------------------------- ! ! abstarct : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 10 ! band 10: 1390-1480 cm-1 (low - h2o; high - h2o) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! fracrefbo: real ! kao : real ! kbo : real ! selfrefo : real ! forrefo : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! fracrefbo: real ! kao : real ! kbo : real ! selfref : real ! forref : real ! ! absa : real ! absb : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no10 = 16 ! real(kind=rb), dimension(no10) :: fracrefao, fracrefbo ! real(kind=rb), dimension(5,13,no10) :: kao real(kind=rb), dimension(5,13:59,no10) :: kbo real(kind=rb), dimension(10,no10) :: selfrefo real(kind=rb), dimension(4,no10) :: forrefo ! integer(kind=im), parameter :: ng10 = 6 ! real(kind=rb), dimension(ng10) :: fracrefa, fracrefb real(kind=rb), dimension(5,13,ng10) :: ka real(kind=rb), dimension(65,ng10) :: absa real(kind=rb), dimension(5,13:59,ng10) :: kb real(kind=rb), dimension(235,ng10) :: absb real(kind=rb), dimension(10,ng10) :: selfref real(kind=rb), dimension(4,ng10) :: forref ! equivalence (ka(1,1,1),absa(1,1)),(kb(1,13,1),absb(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg10_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg11_k !------------------------------------------------------------------------------- ! ! abtract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 11 ! band 11: 1480-1800 cm-1 (low - h2o; high - h2o) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! fracrefbo: real ! kao : real ! kbo : real ! kao_mo2 : real ! kbo_mo2 : real ! selfrefo : real ! forrefo : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefa : real ! fracrefb : real ! ka : real ! kb : real ! ka_mo2 : real ! kb_mo2 : real ! selfref : real ! forref : real ! ! absa : real ! absb : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no11 = 16 ! real(kind=rb), dimension(no11) :: fracrefao, fracrefbo ! real(kind=rb), dimension(5,13,no11) :: kao real(kind=rb), dimension(5,13:59,no11) :: kbo real(kind=rb), dimension(19,no11) :: kao_mo2, kbo_mo2 real(kind=rb), dimension(10,no11) :: selfrefo real(kind=rb), dimension(4,no11) :: forrefo ! integer(kind=im), parameter :: ng11 = 8 ! real(kind=rb) , dimension(ng11) :: fracrefa, fracrefb ! real(kind=rb), dimension(5,13,ng11) :: ka real(kind=rb), dimension(65,ng11) :: absa real(kind=rb), dimension(5,13:59,ng11) :: kb real(kind=rb), dimension(235,ng11) :: absb real(kind=rb), dimension(19,ng11) :: ka_mo2, kb_mo2 real(kind=rb), dimension(10,ng11) :: selfref real(kind=rb), dimension(4,ng11) :: forref ! equivalence (ka(1,1,1),absa(1,1)),(kb(1,13,1),absb(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg11_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg12_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 12 ! band 12: 1800-2080 cm-1 (low - h2o,co2; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! kao : real ! selfrefo : real ! forrefo : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefa : real ! ka : real ! selfref : real ! forref : real ! ! absa : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no12 = 16 ! real(kind=rb),dimension(no12,9) :: fracrefao real(kind=rb),dimension(9,5,13,no12) :: kao real(kind=rb),dimension(10,no12) :: selfrefo real(kind=rb),dimension(4,no12) :: forrefo ! integer(kind=im), parameter :: ng12 = 8 ! real(kind=rb),dimension(ng12,9) :: fracrefa real(kind=rb),dimension(9,5,13,ng12) :: ka real(kind=rb),dimension(585,ng12) :: absa real(kind=rb),dimension(10,ng12) :: selfref real(kind=rb),dimension(4,ng12) :: forref ! equivalence (ka(1,1,1,1),absa(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg12_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg13_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 13 ! band 13: 2080-2250 cm-1 (low - h2o,n2o; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! kao : real ! kao_mco2 : real ! kao_mco : real ! kbo_mo3 : real ! selfrefo : real ! forrefo : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefa : real ! ka : real ! ka_mco2 : real ! ka_mco : real ! kb_mo3 : real ! selfref : real ! forref : real ! ! absa : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no13 = 16 ! real(kind=rb), dimension(no13) :: fracrefbo ! real(kind=rb), dimension(no13,9) :: fracrefao real(kind=rb), dimension(9,5,13,no13) :: kao real(kind=rb), dimension(9,19,no13) :: kao_mco2, kao_mco real(kind=rb), dimension(19,no13) :: kbo_mo3 real(kind=rb), dimension(10,no13) :: selfrefo real(kind=rb), dimension(4,no13) :: forrefo ! ! integer(kind=im), parameter :: ng13 = 4 ! real(kind=rb) , dimension(ng13) :: fracrefb ! real(kind=rb), dimension(ng13,9) :: fracrefa real(kind=rb), dimension(9,5,13,ng13) :: ka real(kind=rb), dimension(585,ng13) :: absa real(kind=rb), dimension(9,19,ng13) :: ka_mco2, ka_mco real(kind=rb), dimension(19,ng13) :: kb_mo3 real(kind=rb), dimension(10,ng13) :: selfref real(kind=rb), dimension(4,ng13) :: forref ! equivalence (ka(1,1,1,1),absa(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg13_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg14_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 14 ! band 14: 2250-2380 cm-1 (low - co2; high - co2) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! fracrefbo: real ! kao : real ! kbo : real ! selfrefo : real ! forrefo : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefa : real ! fracrefb : real ! ka : real ! kb : real ! selfref : real ! forref : real ! ! absa : real ! absb : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no14 = 16 ! real(kind=rb), dimension(no14) :: fracrefao, fracrefbo ! real(kind=rb), dimension(5,13,no14) :: kao real(kind=rb), dimension(5,13:59,no14) :: kbo real(kind=rb), dimension(10,no14) :: selfrefo real(kind=rb), dimension(4,no14) :: forrefo ! integer(kind=im), parameter :: ng14 = 2 ! real(kind=rb) , dimension(ng14) :: fracrefa, fracrefb ! real(kind=rb), dimension(5,13,ng14) :: ka real(kind=rb), dimension(65,ng14) :: absa real(kind=rb), dimension(5,13:59,ng14) :: kb real(kind=rb), dimension(235,ng14) :: absb real(kind=rb), dimension(10,ng14) :: selfref real(kind=rb), dimension(4,ng14) :: forref ! equivalence (ka(1,1,1),absa(1,1)), (kb(1,13,1),absb(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg14_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg15_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 15 ! band 15: 2380-2600 cm-1 (low - n2o,co2; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! kao : real ! kao_mn2 : real ! selfrefo : real ! forrefo : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefa : real ! ka : real ! ka_mn2 : real ! selfref : real ! forref : real ! ! absa : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no15 = 16 ! real(kind=rb), dimension(no15,9) :: fracrefao real(kind=rb), dimension(9,5,13,no15) :: kao real(kind=rb), dimension(9,19,no15) :: kao_mn2 real(kind=rb), dimension(10,no15) :: selfrefo real(kind=rb), dimension(4,no15) :: forrefo ! integer(kind=im), parameter :: ng15 = 2 ! real(kind=rb), dimension(ng15,9) :: fracrefa real(kind=rb), dimension(9,5,13,ng15) :: ka real(kind=rb), dimension(585,ng15) :: absa real(kind=rb), dimension(9,19,ng15) :: ka_mn2 real(kind=rb), dimension(10,ng15) :: selfref real(kind=rb), dimension(4,ng15) :: forref ! equivalence (ka(1,1,1,1),absa(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg15_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_kg16_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw ORIGINAL/COMBINED abs. coefficients for interval 16 ! band 16: 2600-3000 cm-1 (low - h2o,ch4; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! ORIGINAL ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefao: real ! kao : real ! kbo : real ! selfrefo : real ! forrefo : real ! ! COMBINED ! name type purpose ! ---- : ---- : --------------------------------------------- ! fracrefa : real ! ka : real ! kb : real ! selfref : real ! forref : real ! ! absa : real ! absb : real ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: no16 = 16 ! real(kind=rb), dimension(no16) :: fracrefbo ! real(kind=rb), dimension(no16,9) :: fracrefao real(kind=rb), dimension(9,5,13,no16) :: kao real(kind=rb), dimension(5,13:59,no16) :: kbo real(kind=rb), dimension(10,no16) :: selfrefo real(kind=rb), dimension(4,no16) :: forrefo ! ! integer(kind=im), parameter :: ng16 = 2 ! real(kind=rb) , dimension(ng16) :: fracrefb ! real(kind=rb), dimension(ng16,9) :: fracrefa real(kind=rb), dimension(9,5,13,ng16) :: ka real(kind=rb), dimension(585,ng16) :: absa real(kind=rb), dimension(5,13:59,ng16) :: kb real(kind=rb), dimension(235,ng16) :: absb real(kind=rb), dimension(10,ng16) :: selfref real(kind=rb), dimension(4,ng16) :: forref ! equivalence (ka(1,1,1,1),absa(1,1)), (kb(1,13,1),absb(1,1)) ! !------------------------------------------------------------------------------- end module rrlw_kg16_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_ref_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw reference atmosphere ! Based on standard mid-latitude summer profile ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! name type purpose ! ----- : ---- : ---------------------------------------------- ! pref : real : Reference pressure levels ! preflog: real : Reference pressure levels, ln(pref) ! tref : real : Reference temperature levels for MLS profile ! chi_mls: real : ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! real(kind=rb), dimension(59) :: pref real(kind=rb), dimension(59) :: preflog real(kind=rb), dimension(59) :: tref real(kind=rb), dimension(7,59) :: chi_mls ! !------------------------------------------------------------------------------- end module rrlw_ref_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_tbl_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw exponential lookup table arrays ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, Jun 2006 ! Revised: MJIacono, AER, Aug 2007 ! Revised: MJIacono, AER, Aug 2008 ! ! name type purpose ! ----- : ---- : ---------------------------------------------- ! ntbl : integer: Lookup table dimension ! tblint : real : Lookup table conversion factor ! tau_tbl: real : Clear-sky optical depth (used in cloudy radiative ! transfer) ! exp_tbl: real : Transmittance lookup table ! tfn_tbl: real : Tau transition function; i.e. the transition of ! the Planck function from that for the mean layer ! temperature to that for the layer boundary ! temperature as a function of optical depth. ! The "linear in tau" method is used to make ! the table. ! pade : real : Pade constant ! bpade : real : Inverse of Pade constant ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! ! implicit none ! save ! integer(kind=im), parameter :: ntbl = 10000 ! real(kind=rb), parameter :: tblint = 10000.0_rb ! real(kind=rb), dimension(0:ntbl) :: tau_tbl real(kind=rb), dimension(0:ntbl) :: exp_tbl real(kind=rb), dimension(0:ntbl) :: tfn_tbl ! real(kind=rb), parameter :: pade = 0.278_rb real(kind=rb) :: bpade ! !------------------------------------------------------------------------------- end module rrlw_tbl_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_vsn_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw version information ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! name type purpose ! ----- : ---- : ---------------------------------------------- ! hnamrtm :character: ! hnamini :character: ! hnamcld :character: ! hnamclc :character: ! hnamrtr :character: ! hnamrtx :character: ! hnamrtc :character: ! hnamset :character: ! hnamtau :character: ! hnamatm :character: ! hnamutl :character: ! hnamext :character: ! hnamkg :character: ! ! hvrrtm :character: ! hvrini :character: ! hvrcld :character: ! hvrclc :character: ! hvrrtr :character: ! hvrrtx :character: ! hvrrtc :character: ! hvrset :character: ! hvrtau :character: ! hvratm :character: ! hvrutl :character: ! hvrext :character: ! hvrkg :character: ! !------------------------------------------------------------------------------- ! ! implicit none ! save ! character*18 hvrrtm,hvrini,hvrcld,hvrclc,hvrrtr,hvrrtx, & hvrrtc,hvrset,hvrtau,hvratm,hvrutl,hvrext character*20 hnamrtm,hnamini,hnamcld,hnamclc,hnamrtr,hnamrtx, & hnamrtc,hnamset,hnamtau,hnamatm,hnamutl,hnamext ! character*18 hvrkg character*20 hnamkg ! !------------------------------------------------------------------------------- end module rrlw_vsn_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrlw_wvn_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw spectral information ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 ! ! name type purpose ! ----- : ---- : ---------------------------------------------- ! ng : integer: number of original g-intervals in each spectral band ! nspa : integer: For the lower atmosphere, the number of reference ! atmospheres that are stored for each spectral band ! per pressure level and temperature. Each of these ! atmospheres has different relative amounts of the ! key species for the band (i.e. different binary ! species parameters). ! nspb : integer: Same as nspa for the upper atmosphere ! wavenum1: real : Spectral band lower boundary in wavenumbers ! wavenum2: real : Spectral band upper boundary in wavenumbers ! delwave : real : Spectral band width in wavenumbers ! totplnk : real : integrated Planck value for each band; (band 16 ! includes total from 2600 cm-1 to infinity) ! Used for calculation across total spectrum ! totplk16: real : integrated Planck value for band 16 (2600-3250 cm-1) ! Used for calculation in band 16 only if ! individual band output requested ! ! ngc : integer: The number of new g-intervals in each band ! ngs : integer: The cumulative sum of new g-intervals for each band ! ngm : integer: The index of each new g-interval relative to the ! original 16 g-intervals in each band ! ngn : integer: The number of original g-intervals that are ! combined to make each new g-intervals in each band ! ngb : integer: The band index for each new g-interval ! wt : real : RRTM weights for the original 16 g-intervals ! rwgt : real : Weights for combining original 16 g-intervals ! (256 total) into reduced set of g-intervals ! (140 total) ! nxmol : integer: number of cross-section molecules ! ixindx : integer: Flag for active cross-sections in calculation ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb use parrrtm_k, only : nbndlw, mg, ngptlw, maxinpx ! ! implicit none ! save ! integer(kind=im), dimension(nbndlw) :: ng integer(kind=im), dimension(nbndlw) :: nspa integer(kind=im), dimension(nbndlw) :: nspb ! real(kind=rb), dimension(nbndlw) :: wavenum1 real(kind=rb), dimension(nbndlw) :: wavenum2 real(kind=rb), dimension(nbndlw) :: delwave ! real(kind=rb), dimension(181,nbndlw) :: totplnk real(kind=rb), dimension(181) :: totplk16 ! integer(kind=im), dimension(nbndlw) :: ngc integer(kind=im), dimension(nbndlw) :: ngs integer(kind=im), dimension(ngptlw) :: ngn integer(kind=im), dimension(ngptlw) :: ngb integer(kind=im), dimension(nbndlw*mg) :: ngm ! real(kind=rb), dimension(mg) :: wt real(kind=rb), dimension(nbndlw*mg) :: rwgt ! integer(kind=im) :: nxmol integer(kind=im), dimension(maxinpx) :: ixindx ! !------------------------------------------------------------------------------- end module rrlw_wvn_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module mersennetwister_k !------------------------------------------------------------------------------- ! ! abstract : ! path: $Source: /cvsroot/NWP/WRFV3/phys/module_ra_rrtmg_lw.F,v $ ! author: $Author: trn $ ! revision: $Revision: 1.3 $ ! created: $Date: 2009/04/16 19:54:22 $ ! ! Fortran-95 implementation of the Mersenne Twister 19937, following ! the C implementation described below (code mt19937ar-cok.c, dated 2002/2/10), ! adapted cosmetically by making the names more general. ! Users must declare one or more variables of type randomnumbersequence ! in the calling ! procedure which are then initialized using a required seed. If the ! variable is not initialized the random numbers will all be 0. ! For example: ! program testrandoms ! use randomnumbers ! type(randomnumbersequence) :: randomnumbers ! integer :: i ! ! randomnumbers = new_randomnumbersequence(seed = 100) ! do i = 1, 10 ! print ('(f12.10, 2x)'), getrandomreal(randomnumbers) ! end do ! end program testrandoms ! ! Fortran-95 implementation by ! Robert Pincus ! NOAA-CIRES Climate Diagnostics Center ! Boulder, CO 80305 ! email: Robert.Pincus@colorado.edu ! ! This documentation in the original C program reads: ! -------------------------------------------------------------- ! A C-program for MT19937, with initialization improved 2002/2/10. ! Coded by Takuji Nishimura and Makoto Matsumoto. ! This is a faster version by taking Shawn Cokus's optimization, ! Matthe Bellew's simplification, Isaku Wada's real version. ! ! Before using, initialize the state by using init_genrand(seed) ! or init_by_array(init_key, key_length). ! ! Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, ! All rights reserved. ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions ! are met: ! ! 1. Redistributions of source code must retain the above copyright ! notice, this list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright ! notice, this list of conditions and the following disclaimer in the ! documentation and/or other materials provided with the distribution. ! ! 3. The names of its contributors may not be used to endorse or promote ! products derived from this software without specific prior written ! permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ! "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ! LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ! A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR ! CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ! EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ! PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF use, data, OR ! PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAuseD AND ON ANY THEORY OF ! LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ! NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY out OF THE use OF THIS ! SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ! Any feedback is very welcome. ! http://www.math.keio.ac.jp/matumoto/emt.html ! email: matumoto@math.keio.ac.jp ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb ! implicit none ! private ! ! Algorithm parameters ! ------- ! Period parameters ! integer(kind=im), parameter :: blocksize = 624, & m = 397, & ! constant vector a (0x9908b0dfUL) matrix_a = -1727483681, & ! most significant w-r bits (0x80000000UL) umask = -2147483647-1, & ! least significant r bits (0x7fffffffUL) lmask = 2147483647 ! ! Tempering parameters ! ! (0x9d2c5680UL) integer(kind=im), parameter :: tmaskb = -1658038656, & ! (0xefc60000UL) tmaskc = -272236544 ! ! The type containing the state variable ! type randomnumbersequence integer(kind=im) :: currentelement ! = blocksize integer(kind=im), dimension(0:blocksize -1) :: state ! = 0 end type randomnumbersequence !------------------------------------------------------------------------------- ! interface new_randomnumbersequence module procedure initialize_scalar, initialize_vector end interface new_randomnumbersequence ! public :: randomnumbersequence public :: new_randomnumbersequence, finalize_randomnumbersequence, & getrandomint, getrandompositiveint, getrandomreal ! contains !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- function mixbits(u, v) !------------------------------------------------------------------------------- integer(kind=im), intent(in ) :: u, v integer(kind=im) :: mixbits !------------------------------------------------------------------------------- mixbits = ior(iand(u, umask), iand(v, lmask)) ! end function mixbits !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- function twist(u, v) !------------------------------------------------------------------------------- integer(kind=im), intent(in ) :: u, v integer(kind=im) :: twist ! ! Local variable ! integer(kind=im), parameter, dimension(0:1) :: t_matrix = (/0_im, matrix_a/) !------------------------------------------------------------------------------- twist = ieor(ishft(mixbits(u, v), -1_im), t_matrix(iand(v, 1_im))) twist = ieor(ishft(mixbits(u, v), -1_im), t_matrix(iand(v, 1_im))) ! end function twist !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine nextstate(twister) !------------------------------------------------------------------------------- type(randomnumbersequence), intent(inout) :: twister ! ! Local variables ! integer(kind=im) :: k !------------------------------------------------------------------------------- ! do k = 0,blocksize-m-1 twister%state(k) = ieor(twister%state(k+m), & twist(twister%state(k),twister%state(k+1_im))) enddo ! do k = blocksize-m,blocksize-2 twister%state(k) = ieor(twister%state(k+m-blocksize), & twist(twister%state(k),twister%state(k+1_im))) enddo ! twister%state(blocksize-1_im) = ieor(twister%state(m-1_im), & twist(twister%state(blocksize-1_im), & twister%state(0_im))) twister%currentelement = 0_im ! end subroutine nextstate !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- elemental function temper(y) !------------------------------------------------------------------------------- integer(kind=im), intent(in ) :: y integer(kind=im) :: temper ! integer(kind=im) :: x !------------------------------------------------------------------------------- ! ! Tempering ! x = ieor(y, ishft(y, -11)) x = ieor(x, iand(ishft(x, 7), tmaskb)) x = ieor(x, iand(ishft(x, 15), tmaskc)) temper = ieor(x, ishft(x, -18)) ! end function temper !------------------------------------------------------------------------------- ! ! public (but hidden) functions ! !------------------------------------------------------------------------------- function initialize_scalar(seed) result(twister) !------------------------------------------------------------------------------- integer(kind=im), intent(in ) :: seed type(randomnumbersequence) :: twister ! integer(kind=im) :: i !------------------------------------------------------------------------------- ! ! See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. In the previous versions, ! MSBs of the seed affect only MSBs of the array state[]. ! 2002/01/09 modified by Makoto Matsumoto ! twister%state(0) = iand(seed,-1_im) ! do i = 1,blocksize-1 ! ubound(twister%state) twister%state(i) = 1812433253_im*ieor(twister%state(i-1), & ishft(twister%state(i-1),-30_im))+i twister%state(i) = iand(twister%state(i),-1_im) ! for >32 bit machines enddo ! twister%currentelement = blocksize ! end function initialize_scalar !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- function initialize_vector(seed) result(twister) !------------------------------------------------------------------------------- integer(kind=im), dimension(0:), intent(in ) :: seed type(randomnumbersequence) :: twister ! integer(kind=im) :: i, j, k, nfirstloop, nwraps !------------------------------------------------------------------------------- nwraps = 0 twister = initialize_scalar(19650218_im) ! nfirstloop = max(blocksize,size(seed)) ! do k = 1,nfirstloop i = mod(k+nwraps,blocksize) j = mod(k-1, size(seed)) if (i == 0) then twister%state(i) = twister%state(blocksize-1) twister%state(1) = ieor(twister%state(1), & ieor(twister%state(1-1), & ishft(twister%state(1-1),-30_im)) & *1664525_im)+seed(j)+j ! Non-linear twister%state(i) = iand(twister%state(i), -1_im) ! for >32 bit machines nwraps = nwraps+1 else twister%state(i) = ieor(twister%state(i), & ieor(twister%state(i-1), & ishft(twister%state(i-1),-30_im)) & *1664525_im)+seed(j)+j ! Non-linear twister%state(i) = iand(twister%state(i), -1_im) ! for >32 bit machines endif enddo ! ! Walk through the state array, beginning where we left off in the block above ! do i = mod(nfirstloop,blocksize)+nwraps+1,blocksize-1 twister%state(i) = ieor(twister%state(i), & ieor(twister%state(i-1), & ishft(twister%state(i-1),-30_im)) & *1566083941_im)-i ! Non-linear twister%state(i) = iand(twister%state(i), -1_im) ! for >32 bit machines enddo ! twister%state(0) = twister%state(blocksize-1) ! do i = 1,mod(nfirstloop,blocksize)+nwraps twister%state(i) = ieor(twister%state(i), & ieor(twister%state(i-1), & ishft(twister%state(i-1),-30_im)) & *1566083941_im)-i ! Non-linear twister%state(i) = iand(twister%state(i), -1_im) ! for >32 bit machines enddo ! twister%state(0) = umask twister%currentelement = blocksize ! end function initialize_vector !------------------------------------------------------------------------------- ! ! public functions ! !------------------------------------------------------------------------------- function getrandomint(twister) !------------------------------------------------------------------------------- ! ! abstract : Generate a random integer on the interval [0,0xffffffff] ! Equivalent to genrand_int32 in the C code. ! Fortran doesn't have a type that's unsigned like C does, ! so this is integers in the range -2**31 - 2**31 ! All functions for getting random numbers call this one, ! then manipulate the result ! !------------------------------------------------------------------------------- type(randomnumbersequence), intent(inout) :: twister integer(kind=im) :: getrandomint !------------------------------------------------------------------------------- ! if (twister%currentelement >= blocksize) call nextstate(twister) ! getrandomint = temper(twister%state(twister%currentelement)) twister%currentelement = twister%currentelement + 1 end function getrandomint !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- function getrandompositiveint(twister) !------------------------------------------------------------------------------- ! ! abstact : Generate a random integer on the interval [0,0x7fffffff] ! or [0,2**31] ! Equivalent to genrand_int31 in the C code. ! !------------------------------------------------------------------------------- type(randomnumbersequence), intent(inout) :: twister integer(kind=im) :: getrandompositiveint ! ! Local integers ! integer(kind=im) :: localint !------------------------------------------------------------------------------- localint = getrandomint(twister) getrandompositiveint = ishft(localint, -1) ! end function getrandompositiveint !------------------------------------------------------------------------------- ! ! mji - modified Jan 2007, double converted to rrtmg real kind type ! !------------------------------------------------------------------------------- function getrandomreal(twister) !------------------------------------------------------------------------------- ! ! abstract : Generate a random number on [0,1] ! Equivalent to genrand_real1 in the C code ! The result is stored as double precision but has 32 bit resolution ! !------------------------------------------------------------------------------- type(randomnumbersequence), intent(inout) :: twister ! double precision :: getrandomreal real(kind=rb) :: getrandomreal ! integer(kind=im) :: localint !------------------------------------------------------------------------------- localint = getrandomint(twister) if (localint < 0) then ! getrandomreal = real(localint + 2.0**32)/(2.0**32 - 1.0) getrandomreal = (localint+2.0**32_rb)/(2.0**32_rb-1.0_rb) else ! getrandomreal = real(localint )/(2.0**32 - 1.0) getrandomreal = (localint )/(2.0**32_rb-1.0_rb) endif ! end function getrandomreal !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine finalize_randomnumbersequence(twister) !------------------------------------------------------------------------------- type(randomnumbersequence), intent(inout) :: twister ! twister%currentelement = blocksize twister%state(:) = 0_im ! end subroutine finalize_randomnumbersequence !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- end module mersennetwister_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module mcica_random_numbers_k !------------------------------------------------------------------------------- ! ! abstract : Generic module to wrap random number generators. ! The module defines a type that identifies the particular stream of random ! numbers, and has procedures for initializing it and getting real numbers ! in the range 0 to 1. ! This version uses the Mersenne Twister to generate random numbers on [0, 1]. ! !------------------------------------------------------------------------------- ! The random number engine. use mersennetwister_k, only : randomnumbersequence, & new_randomnumbersequence, getrandomreal ! mji ! use time_manager_mod, only : time_type, get_date ! use parkind_k, only : im => kind_im, rb => kind_rb ! implicit none ! private ! type randomnumberstream type(randomnumbersequence) :: thenumbers end type randomnumberstream !------------------------------------------------------------------------------- ! interface getrandomnumbers module procedure getrandomnumber_scalar, getrandomnumber_1d, & getrandomnumber_2d end interface getrandomnumbers ! interface initializerandomnumberstream module procedure initializerandomnumberstream_s, & initializerandomnumberstream_v end interface initializerandomnumberstream ! public :: randomnumberstream, & initializerandomnumberstream, getrandomnumbers !! mji !! initializerandomnumberstream, getrandomnumbers, & !! constructSeed ! contains !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- function initializerandomnumberstream_s(seed) result(new) !------------------------------------------------------------------------------- integer(kind=im), intent(in ) :: seed type(randomnumberstream) :: new !------------------------------------------------------------------------------- new%thenumbers = new_randomnumbersequence(seed) ! end function initializerandomnumberstream_s !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- function initializerandomnumberstream_v(seed) result(new) !------------------------------------------------------------------------------- integer(kind=im), dimension(:), intent(in ) :: seed type(randomnumberstream) :: new !------------------------------------------------------------------------------- new%thenumbers = new_randomnumbersequence(seed) ! end function initializerandomnumberstream_v !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine getrandomnumber_scalar(stream, number) !------------------------------------------------------------------------------- ! ! abstract : Procedures for drawing random numbers ! !------------------------------------------------------------------------------- type(randomnumberstream), intent(inout) :: stream real(kind=rb) , intent( out) :: number !------------------------------------------------------------------------------- number = getrandomreal(stream%thenumbers) ! end subroutine getrandomnumber_scalar !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine getrandomnumber_1d(stream, numbers) !------------------------------------------------------------------------------- type(randomnumberstream) , intent(inout) :: stream real(kind=rb), dimension(:), intent( out) :: numbers ! ! Local variables ! integer(kind=im) :: i !------------------------------------------------------------------------------- ! do i = 1,size(numbers) numbers(i) = getrandomreal(stream%thenumbers) enddo ! end subroutine getrandomnumber_1d !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine getrandomnumber_2d(stream, numbers) !------------------------------------------------------------------------------- type(randomnumberstream) , intent(inout) :: stream real(kind=rb), dimension(:,:), intent( out) :: numbers ! ! Local variables ! integer(kind=im) :: i !------------------------------------------------------------------------------- ! do i = 1,size(numbers,2) call getrandomnumber_1d(stream, numbers(:, i)) enddo ! end subroutine getrandomnumber_2d !------------------------------------------------------------------------------- ! mji ! ! --------------------------------------------------------------------------- ! ! Constructing a unique seed from grid cell index and model date/time ! ! Once we have the GFDL stuff we'll add the year, month, day, hour, minute ! ! --------------------------------------------------------------------------- ! function constructSeed(i, j, time) result(seed) ! integer(kind=im), intent(in ) :: i, j ! type(time_type), intent(in ) :: time ! integer(kind=im), dimension(8) :: seed ! ! ! Local variables ! integer(kind=im) :: year, month, day, hour, minute, second ! ! ! call get_date(time, year, month, day, hour, minute, second) ! seed = (/ i, j, year, month, day, hour, minute, second /) ! end function constructSeed ! !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- end module mcica_random_numbers_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module mcica_subcol_gen_k !------------------------------------------------------------------------------- ! -------------------------------------------------------------------------- ! | | ! | Copyright 2006-2008, Atmospheric & Environmental Research, Inc. (AER). | ! | This software may be used, copied, or redistributed as long as it is | ! | not sold and this copyright notice is reproduced on each copy made. | ! | This model is provided as is without any express or implied warranties. | ! | (http://www.rtweb.aer.com/) | ! | | ! -------------------------------------------------------------------------- ! ! Purpose: Create McICA stochastic arrays for cloud physical or optical ! properties. ! Two options are possible: ! 1) Input cloud physical properties: cloud fraction, ice and liquid water ! paths, ice fraction, and particle sizes. Output will be stochastic ! arrays of these variables. (inflag = 1) ! 2) Input cloud optical properties directly: cloud optical depth, single ! scattering albedo and asymmetry parameter. Output will be stochastic ! arrays of these variables. (inflag = 0; longwave scattering is not ! yet available, ssac and asmc are for future expansion) ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb use parrrtm_k, only : nbndlw, ngptlw use rrlw_con_k, only : grav use rrlw_wvn_k, only : ngb use rrlw_vsn_k ! implicit none ! ! public interfaces/functions/subroutines ! public :: mcica_subcol, generate_stochastic_redu ! contains !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine mcica_subcol (iplon, ncol, nlay, icld, permuteseed, irng, play, & cldfrac, ciwp, clwp, ciwpmcl, clwpmcl, & cswp, cswpmcl, & cldfmcl) !------------------------------------------------------------------------------- ! ! abstract : REDUCED SUBCOLUMN FOR MCICA ! Sunghye Baek 2016.5.17 ! ! input : ! iplon - column/longitude index ! ncol - number of columns ! nlay - number of model layers ! icld - clear/cloud, cloud overlap flag ! permuteseed - if the cloud generator is called multiple times, permute ! the seed between each call. ! recommended ! permuteseed differes by 'ngpt' ! irng - flag for random number generator ! 0 = kissvec ! 1 = Mersenne Twister ! play(:,:) - layer pressures (mb) ! Dimensions: (ncol,nlay) ! cldfrac(:,:) - layer cloud fraction ! Dimensions: (ncol,nlay) ! ciwp(:,:) - in-cloud ice water path ! Dimensions: (ncol,nlay) ! clwp(:,:) - in-cloud liquid water path ! Dimensions: (ncol,nlay) ! cswp(:,:) - in-cloud snow path ! Dimensions: (ncol,nlay) ! ! output : ! cldfmcl(:,:,:) - cloud fraction [mcica] ! Dimensions: (ngptlw,ncol,nlay) ! ciwpmcl(:,:,:) - in-cloud ice water path [mcica] ! Dimensions: (ngptlw,ncol,nlay) ! clwpmcl(:,:,:) - in-cloud liquid water path [mcica] ! Dimensions: (ngptlw,ncol,nlay) ! cswpmcl(:,:,:) - in-cloud snow path [mcica] ! Dimensions: (ngptlw,ncol,nlay) ! ! local variables : ! nsubclw - number of sub-columns (g-point intervals) ! ilev - loop index ! pmid(ncol, nlay) - layer pressures (Pa) ! !------------------------------------------------------------------------------- ! ----- Input ----- ! Control ! integer(kind=im), intent(in ) :: iplon integer(kind=im), intent(in ) :: ncol integer(kind=im), intent(in ) :: nlay integer(kind=im), intent(in ) :: icld integer(kind=im), intent(in ) :: permuteseed integer(kind=im), intent(inout) :: irng ! ! Atmosphere ! real(kind=rb), dimension(:,:), intent(in ) :: play ! ! Atmosphere/clouds - cldprop ! real(kind=rb), dimension(:,:), intent(in ) :: cldfrac real(kind=rb), dimension(:,:), intent(in ) :: ciwp real(kind=rb), dimension(:,:), intent(in ) :: clwp real(kind=rb), dimension(:,:), intent(in ) :: cswp ! ! ----- Output ----- ! ! Atmosphere/clouds - cldprmc [mcica] ! real(kind=rb), dimension(:,:,:), intent( out) :: cldfmcl real(kind=rb), dimension(:,:,:), intent( out) :: ciwpmcl real(kind=rb), dimension(:,:,:), intent( out) :: clwpmcl real(kind=rb), dimension(:,:,:), intent( out) :: cswpmcl ! ! ----- Local ----- ! ! Stochastic cloud generator variables [mcica] ! integer(kind=im), parameter :: nsubclw = ngptlw integer(kind=im) :: ilev ! real(kind=rb), dimension(ncol, nlay) :: pmid !------------------------------------------------------------------------------- ! ! Return if clear sky; or stop if icld out of range ! if (icld.eq.0) return if (icld.lt.0.or.icld.gt.3) then stop 'MCICA_sUBCOL: INVALID ICLD' endif ! pmid(:ncol,:nlay) = play(:ncol,:nlay)*1.e2_rb ! call generate_stochastic_redu(ncol, nlay, nsubclw, icld, irng, pmid, & cldfrac, clwp, ciwp, & cldfmcl, clwpmcl, ciwpmcl, & cswp, cswpmcl, & permuteseed ) ! end subroutine mcica_subcol !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine generate_stochastic_redu (ncol, nlay, nsubcol, icld, irng, pmid, & cld, clwp, ciwp, & cld_stoch, clwp_stoch, ciwp_stoch, & cswp, cswp_stoch, & changeSeed ) !------------------------------------------------------------------------------- ! ! input : ! ncol - number of columns ! nlay - number of layers ! icld - clear/cloud, cloud overlap flag ! irng - flag for random number generator ! 0 = kissvec ! 1 = Mersenne Twister ! nsubcol - number of sub-columns (g-point intervals) ! changeSeed - allows permuting seed ! pmid(:,:) - layer pressure (Pa) ! Dimensions: (ncol,nlay) ! cld(:,:) - cloud fraction ! Dimensions: (ncol,nlay) ! clwp(:,:) - in-cloud liquid water path ! Dimensions: (ncol,nlay) ! ciwp(:,:) - in-cloud ice water path ! Dimensions: (ncol,nlay) ! cswp(:,:) - in-cloud snow path ! Dimensions: (ncol,nlay) ! output : ! cld_stoch(:,:,:) - subcolumn cloud fraction ! Dimensions: (ngptlw,ncol,nlay) ! clwp_stoch(:,:,:) - subcolumn in-cloud liquid water path ! Dimensions: (ngptlw,ncol,nlay) ! ciwp_stoch(:,:,:) - subcolumn in-cloud ice water path ! Dimensions: (ngptlw,ncol,nlay) ! cswp_stoch(:,:,:) - subcolumn in-cloud snow path ! Dimensions: (ngptlw,ncol,nlay) ! cswp_stoch(:,:,:) - subcolumn in-cloud snow path ! Dimensions: (ngptlw,ncol,nlay) ! ! local variables : ! cldf(ncol,nlay) ! cloud fraction ! overlap ! 1 = random overlap, ! 2 = maximum/random, ! 3 = maximum overlap, ! cldmin ! min cloud fraction ! cdf, cdf2 ! random numbers ! seed1, seed2, seed3, seed4 ! seed to create random number (kissvec) ! rand_num ! random number (kissvec) ! iseed ! seed to create random number(Mersenne Teister) ! rand_num_mt ! random number (Mersenne Twister) ! iscloudy ! flag that says whether a gridbox is cloudy ! ilev, isubcol, i, n ! indices ! nsub28 ! REDUCED SUBCOL ! !------------------------------------------------------------------------------- use mcica_random_numbers_k ! ! The Mersenne Twister random number engine ! use mersennetwister_k, only : randomnumbersequence, & new_randomnumbersequence, getrandomreal ! type(randomnumbersequence) :: randomnumbers ! ! Arguments ! integer(kind=im), intent(in ) :: ncol integer(kind=im), intent(in ) :: nlay integer(kind=im), intent(in ) :: icld integer(kind=im), intent(inout) :: irng integer(kind=im), intent(in ) :: nsubcol integer(kind=im), optional, intent(in ) :: changeSeed ! ! Column state (cloud fraction, cloud water, cloud ice) + ! variables needed to read physics state ! real(kind=rb), intent(in ) :: pmid(:,:) real(kind=rb), intent(in ) :: cld(:,:) real(kind=rb), intent(in ) :: clwp(:,:) real(kind=rb), intent(in ) :: ciwp(:,:) real(kind=rb), intent(in ) :: cswp(:,:) real(kind=rb), intent( out) :: cld_stoch(:,:,:) real(kind=rb), intent( out) :: clwp_stoch(:,:,:) real(kind=rb), intent( out) :: ciwp_stoch(:,:,:) real(kind=rb), intent( out) :: cswp_stoch(:,:,:) ! ! Local variables ! real(kind=rb), dimension(ncol,nlay) :: cldf ! ! Set overlap ! integer(kind=im) :: overlap ! ! Constants (min value for cloud fraction and cloud water and ice) ! real(kind=rb), parameter :: cldmin = 1.0e-20_rb ! ! Variables related to random number and seed ! real(kind=rb), dimension(nsubcol,ncol,nlay) :: cdf, cdf2 integer(kind=im), dimension(ncol) :: seed1, seed2, seed3, seed4 real(kind=rb), dimension(ncol) :: rand_num integer(kind=im) :: iseed real(kind=rb) :: rand_num_mt ! ! Flag to identify cloud fraction in subcolumns ! logical, dimension(nsubcol,ncol,nlay) :: iscloudy ! ! Indices ! integer(kind=im) :: ilev, isubcol, i, n ! ! REDUCED SUBCOL integer(kind=im) :: nsub28 = 28 !------------------------------------------------------------------------------- ! ! Check that irng is in bounds; if not, set to default ! if (irng.ne.0) irng = 1 ! ! Pass input cloud overlap setting to local variable ! overlap = icld ! ! Ensure that cloud fractions are in bounds ! do ilev = 1,nlay do i = 1,ncol cldf(i,ilev) = cld(i,ilev) if (cldf(i,ilev) < cldmin) then cldf(i,ilev) = 0._rb endif enddo enddo ! ! ----- Create seed -------- ! ! Advance randum number generator by changeseed values ! if (irng.eq.0) then ! ! For kissvec, create a seed that depends on the state of the columns. ! Maybe not the best way, but it works. ! Must use pmid from bottom four layers. ! do i = 1,ncol if (pmid(i,1).lt.pmid(i,2)) then stop 'MCICA_sUBCOL: KISSVEC SEED GENERATOR REQUIRES PMID FROM '// & 'BOTTOM FOUR LAYERS.' endif seed1(i) = (pmid(i,1) - int(pmid(i,1))) * 1000000000_im seed2(i) = (pmid(i,2) - int(pmid(i,2))) * 1000000000_im seed3(i) = (pmid(i,3) - int(pmid(i,3))) * 1000000000_im seed4(i) = (pmid(i,4) - int(pmid(i,4))) * 1000000000_im enddo ! do i = 1,changeSeed call kissvec(seed1, seed2, seed3, seed4, rand_num) enddo else if (irng.eq.1) then randomnumbers = new_randomnumbersequence(seed = changeSeed) endif ! ! ------ Apply overlap assumption -------- ! ! generate the random numbers ! select case (overlap) case(2) ! ! Maximum-random overlap ! i) pick a random number for top layer. ! ii) walk down the column: ! - if the layer above is cloudy, we use the same random number than ! in the layer above ! - if the layer above is clear, we use a new random number ! if (irng.eq.0) then ! do isubcol = 1,nsubcol do isubcol = 1, nsub28 do ilev = 1,nlay call kissvec(seed1, seed2, seed3, seed4, rand_num) cdf(isubcol,:,ilev) = rand_num enddo enddo else if (irng.eq.1) then ! do isubcol = 1,nsubcol do isubcol = 1, nsub28 do i = 1,ncol do ilev = 1,nlay rand_num_mt = getrandomreal(randomnumbers) cdf(isubcol,i,ilev) = rand_num_mt enddo enddo enddo endif ! ! do ilev = 2,nlay do ilev = nlay-1,1,-1 do i = 1,ncol ! do isubcol = 1,nsubcol do isubcol = 1, nsub28 ! if (cdf(isubcol, i, ilev-1)>1._rb-cldf(i,ilev-1) ) then ! cdf(isubcol,i,ilev) = cdf(isubcol,i,ilev-1) if (cdf(isubcol, i, ilev+1) > 1._rb - cldf(i,ilev+1) ) then cdf(isubcol,i,ilev) = cdf(isubcol,i,ilev+1) else ! cdf(isubcol,i,ilev) = cdf(isubcol,i,ilev)*(1._rb-cldf(i,ilev-1)) cdf(isubcol,i,ilev) = cdf(isubcol,i,ilev)*(1._rb-cldf(i,ilev+1)) endif enddo enddo enddo end select ! ! !!!!! COPY !!!!!!!!! ! cdf(nsub28+1:nsub28*2,:,:) = cdf(1:nsub28,:,:) cdf(nsub28*2+1:nsub28*3,:,:) = cdf(1:nsub28,:,:) cdf(nsub28*3+1:nsub28*4,:,:) = cdf(1:nsub28,:,:) cdf(nsub28*4+1:nsub28*5,:,:) = cdf(1:nsub28,:,:) ! ! -- generate subcolumns for homogeneous clouds ----- ! do ilev = 1,nlay iscloudy(:,:,ilev) = (cdf(:,:,ilev)>= & 1._rb-spread(cldf(:,ilev), dim=1, nCopies=nsubcol)) enddo ! ! where the subcolumn is cloudy, the subcolumn cloud fraction is 1; ! where the subcolumn is not cloudy, the subcolumn cloud fraction is 0; ! where there is a cloud, define the subcolumn cloud properties, ! otherwise set these to zero ! do ilev = 1,nlay do i = 1,ncol do isubcol = 1,nsubcol if (iscloudy(isubcol,i,ilev) ) then cld_stoch(isubcol,i,ilev) = 1._rb clwp_stoch(isubcol,i,ilev) = clwp(i,ilev) ciwp_stoch(isubcol,i,ilev) = ciwp(i,ilev) cswp_stoch(isubcol,i,ilev) = cswp(i,ilev) else cld_stoch(isubcol,i,ilev) = 0._rb clwp_stoch(isubcol,i,ilev) = 0._rb ciwp_stoch(isubcol,i,ilev) = 0._rb cswp_stoch(isubcol,i,ilev) = 0._rb endif enddo enddo enddo ! end subroutine generate_stochastic_redu !------------------------------------------------------------------------------- ! ! Private subroutines ! !------------------------------------------------------------------------------- subroutine kissvec(seed1,seed2,seed3,seed4,ran_arr) !------------------------------------------------------------------------------- ! ! public domain code ! made available from http://www.fortran.com/ ! downloaded by pjr on 03/16/04 for NCAR CAM ! converted to vector form, functions inlined by pjr,mvr on 05/10/2004 ! ! The KISS (Keep It Simple Stupid) random number generator. Combines: ! (1) The congruential generator x(n)=69069*x(n-1)+1327217885, period 2^32. ! (2) A 3-shift shift-register generator, period 2^32-1, ! (3) Two 16-bit multiply-with-carry generators, period 597273182964842497>2^59 ! Overall period>2^123; ! !------------------------------------------------------------------------------- real(kind=rb), dimension(:), intent(inout) :: ran_arr integer(kind=im), dimension(:), intent(inout) :: seed1,seed2,seed3,seed4 integer(kind=im) :: i,sz,kiss integer(kind=im) :: m, k, n !------------------------------------------------------------------------------- ! ! inline function ! m(k, n) = ieor (k, ishft (k, n) ) ! sz = size(ran_arr) ! do i = 1,sz seed1(i) = 69069_im*seed1(i)+1327217885_im seed2(i) = m (m (m (seed2(i), 13_im), - 17_im), 5_im) seed3(i) = 18000_im*iand(seed3(i),65535_im)+ishft(seed3(i),- 16_im) seed4(i) = 30903_im*iand(seed4(i),65535_im)+ishft(seed4(i),- 16_im) kiss = seed1(i)+seed2(i)+ishft(seed3(i),16_im)+seed4(i) ran_arr(i) = kiss*2.328306e-10_rb+0.5_rb enddo ! end subroutine kissvec !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- end module mcica_subcol_gen_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrtmg_lw_cldprmc_k !------------------------------------------------------------------------------- ! -------------------------------------------------------------------------- ! | | ! | Copyright 2002-2009, Atmospheric & Environmental Research, Inc. (AER). | ! | This software may be used, copied, or redistributed as long as it is | ! | not sold and this copyright notice is reproduced on each copy made. | ! | This model is provided as is without any express or implied warranties. | ! | (http://www.rtweb.aer.com/) | ! | | ! -------------------------------------------------------------------------- !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb use parrrtm_k, only : ngptlw, nbndlw use rrlw_cld_k, only : abscld1, absliq0, absliq1, & absice0, absice1, absice2, absice3 use rrlw_wvn_k, only : ngb use rrlw_vsn_k, only : hvrclc, hnamclc ! implicit none ! contains !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cldprmc(nlayers, inflag, iceflag, liqflag, cldfmc, & ciwpmc, clwpmc, reicmc, relqmc, & cswpmc, resnmc, & ncbands, taucmc) !------------------------------------------------------------------------------- ! ! Purpose: Compute the cloud optical depth(s) for each cloudy layer. ! ! input : ! nlayers - total number of layers ! nflag - see definitions ! ceflag - see definitions ! iqflag - see definitions ! cldfmc(:,:) - cloud fraction [mcica] ! Dimensions: (ngptlw,nlayers) ! ciwpmc(:,:) - cloud ice water path [mcica] ! Dimensions: (ngptlw,nlayers) ! clwpmc(:,:) - cloud liquid water path [mcica] ! Dimensions: (ngptlw,nlayers) ! cswpmc(:,:) - cloud snow path [mcica] ! Dimensions: (ngptlw,nlayers) ! relqmc(:) - liquid particle effective radius (microns) ! Dimensions: (nlayers) ! reicmc(:) - ice particle effective radius (microns) ! Dimensions: (nlayers) ! resnmc(:) - snow particle effective radius (microns) ! Dimensions: (nlayers) ! output : ! ncbands - number of cloud spectral bands ! taucmc(:,:) - cloud optical depth [mcica] ! Dimensions: (ngptlw,nlayers) ! ! local variables : ! lay - Layer index ! ib - spectral band index ! ig - g-point interval index ! index ! icb(nbndlw) ! abscoice(ngptlw) - ice absorption coefficients ! abscoliq(ngptlw) - liquid absorption coefficients ! abscosno(ngptlw) - snow absorption coefficients ! cwp - cloud water path ! radice - cloud ice effective size (microns) ! factor - ! fint - ! radliq - cloud liquid droplet radius (microns) ! radsno - cloud snow effective size (microns) ! eps - epsilon ! cldmin - minimum value for cloud quantities ! !------------------------------------------------------------------------------- ! ! Input ! integer(kind=im), intent(in ) :: nlayers integer(kind=im), intent(in ) :: inflag integer(kind=im), intent(in ) :: iceflag integer(kind=im), intent(in ) :: liqflag ! real(kind=rb), dimension(:,:), intent(in ) :: cldfmc real(kind=rb), dimension(:,:), intent(in ) :: ciwpmc real(kind=rb), dimension(:,:), intent(in ) :: clwpmc real(kind=rb), dimension(:,:), intent(in ) :: cswpmc real(kind=rb), dimension(:) , intent(in ) :: relqmc real(kind=rb), dimension(:) , intent(in ) :: reicmc real(kind=rb), dimension(:) , intent(in ) :: resnmc ! ! specific definition of reicmc depends on setting of iceflag: ! iceflag = 0: ice effective radius, r_ec, (Ebert and Curry, 1992), ! r_ec must be >= 10.0 microns ! iceflag = 1: ice effective radius, r_ec, (Ebert and Curry, 1992), ! r_ec range is limited to 13.0 to 130.0 microns ! iceflag = 2: ice effective radius, r_k, (Key, streamer Ref. Manual, 1996) ! r_k range is limited to 5.0 to 131.0 microns ! iceflag = 3: generalized effective size, dge, (Fu, 1996), ! dge range is limited to 5.0 to 140.0 microns ! [dge = 1.0315 * r_ec] ! ! Output ! integer(kind=im) , intent( out) :: ncbands real(kind=rb), dimension(:,:), intent(inout) :: taucmc ! ! Local ! integer(kind=im) :: lay integer(kind=im) :: ib integer(kind=im) :: ig integer(kind=im) :: index integer(kind=im), dimension(nbndlw) :: icb ! real(kind=rb), dimension(ngptlw) :: abscoice real(kind=rb), dimension(ngptlw) :: abscoliq real(kind=rb), dimension(ngptlw) :: abscosno real(kind=rb) :: cwp real(kind=rb) :: radice real(kind=rb) :: factor real(kind=rb) :: fint real(kind=rb) :: radliq real(kind=rb) :: radsno real(kind=rb), parameter :: eps = 1.e-6_rb real(kind=rb), parameter :: cldmin = 1.e-20_rb ! ! Definitions ! ! Explanation of the method for each value of INFLAG. Values of ! 0 or 1 for INFLAG do not distingish being liquid and ice clouds. ! INFLAG = 2 does distinguish between liquid and ice clouds, and ! requires further user input to specify the method to be used to ! compute the aborption due to each. ! INFLAG = 0: For each cloudy layer, the cloud fraction and (gray) ! optical depth are input. ! INFLAG = 1: For each cloudy layer, the cloud fraction and cloud ! water path (g/m2) are input. The (gray) cloud optical ! depth is computed as in CCM2. ! INFLAG = 2: For each cloudy layer, the cloud fraction, cloud ! water path (g/m2), and cloud ice fraction are input. ! ICEFLAG = 0: The ice effective radius (microns) is input and the ! optical depths due to ice clouds are computed as in CCM3. ! ICEFLAG = 1: The ice effective radius (microns) is input and the ! optical depths due to ice clouds are computed as in ! Ebert and Curry, JGR, 97, 3831-3836 (1992). The ! spectral regions in this work have been matched with ! the spectral bands in RRTM to as great an extent ! as possible: ! E&C 1 IB = 5 RRTM bands 9-16 ! E&C 2 IB = 4 RRTM bands 6-8 ! E&C 3 IB = 3 RRTM bands 3-5 ! E&C 4 IB = 2 RRTM band 2 ! E&C 5 IB = 1 RRTM band 1 ! ICEFLAG = 2: The ice effective radius (microns) is input and the ! optical properties due to ice clouds are computed from ! the optical properties stored in the RT code, ! STREAMER v3.0 (Reference: Key. J., streamer ! User's Guide, Cooperative Institute for ! Meteorological Satellite Studies, 2001, 96 pp.). ! Valid range of values for re are between 5.0 and ! 131.0 micron. ! ICEFLAG = 3: The ice generalized effective size (dge) is input ! and the optical properties, are calculated as in ! Q. Fu, J. Climate, (1998). Q. Fu provided high resolution ! tables which were appropriately averaged for the ! bands in RRTM_LW. Linear interpolation is used to ! get the coefficients from the stored tables. ! Valid range of values for dge are between 5.0 and ! 140.0 micron. ! LIQFLAG = 0: The optical depths due to water clouds are computed as ! in CCM3. ! LIQFLAG = 1: The water droplet effective radius (microns) is input ! and the optical depths due to water clouds are computed ! as in Hu and Stamnes, J., Clim., 6, 728-742, (1993). ! The values for absorption coefficients appropriate for ! the spectral bands in RRTM have been obtained for a ! range of effective radii by an averaging procedure ! based on the work of J. Pinto (private communication). ! Linear interpolation is used to get the absorption ! coefficients for the input effective radius. !------------------------------------------------------------------------------- data icb /1,2,3,3,3,4,4,4,5, 5, 5, 5, 5, 5, 5, 5/ ! hvrclc = '$Revision: 1.8 $' ! ncbands = 1 ! ! This initialization is done in rrtmg_lw_subcol.F90. ! do lay = 1, nlayers ! do ig = 1, ngptlw ! taucmc(ig,lay) = 0.0_rb ! enddo ! enddo ! ! Main layer loop ! do lay = 1,nlayers ! do ig = 1,ngptlw cwp = ciwpmc(ig,lay)+clwpmc(ig,lay)+cswpmc(ig,lay) if (cldfmc(ig,lay).ge.cldmin .and. & (cwp.ge.cldmin .or. taucmc(ig,lay).ge.cldmin)) then ! ! Ice clouds and water clouds combined. ! if (inflag.eq.0) then ! ! Cloud optical depth already defined in taucmc, return to main program ! return ! else if (inflag.eq.1) then stop 'INFLAG = 1 OPTION NOT AVAILABLE WITH MCICA' ! cwp = ciwpmc(ig,lay) + clwpmc(ig,lay) ! taucmc(ig,lay) = abscld1 * cwp ! ! Separate treatement of ice clouds and water clouds. ! else if (inflag.ge.2) then radice = reicmc(lay) ! ! Calculation of absorption coefficients due to ice clouds. ! if ((ciwpmc(ig,lay)+cswpmc(ig,lay)).eq.0.0_rb) then abscoice(ig) = 0.0_rb abscosno(ig) = 0.0_rb else if (iceflag.eq.0) then if (radice.lt.10.0_rb) stop 'ICE RADIUS TOO SMALL' abscoice(ig) = absice0(1) + absice0(2)/radice abscosno(ig) = 0.0_rb else if (iceflag.eq.1) then if (radice.lt.13.0_rb .or. radice.gt.130._rb) stop & 'ICE RADIUS out OF BOUNDS' ncbands = 5 ib = icb(ngb(ig)) abscoice(ig) = absice1(1,ib)+absice1(2,ib)/radice abscosno(ig) = 0.0_rb ! ! For iceflag=2 option, ice particle effective radius is limited ! to 5.0 to 131.0 microns ! else if (iceflag.eq.2) then if (radice.lt.5.0_rb .or. radice.gt.131.0_rb) stop & 'ICE RADIUS out OF BOUNDS' ncbands = 16 factor = (radice-2._rb)/3._rb index = int(factor) if (index.eq.43) index = 42 fint = factor-real(index) ib = ngb(ig) abscoice(ig) = absice2(index,ib)+fint* & (absice2(index+1,ib)-(absice2(index,ib))) abscosno(ig) = 0.0_rb ! ! For iceflag=3 option, ice particle generalized effective size is limited ! to 5.0 to 140.0 microns ! else if (iceflag .ge. 3) then if (radice.lt.5.0_rb .or. radice.gt.140.0_rb) stop & 'ICE GENERALIZED EFFECTIVE SIZE out OF BOUNDS' ncbands = 16 factor = (radice-2._rb)/3._rb index = int(factor) if (index.eq.46) index = 45 fint = factor-real(index) ib = ngb(ig) abscoice(ig) = absice3(index,ib)+fint* & (absice3(index+1,ib)-(absice3(index,ib))) abscosno(ig) = 0.0_rb endif ! ! Incorporate additional effects due to snow. ! if (cswpmc(ig,lay).gt.0.0_rb .and. iceflag.eq.5) then radsno = resnmc(lay) if (radsno.lt.5.0_rb .or. radsno.gt.140.0_rb) stop & 'ERROR: SNOW GENERALIZED EFFECTIVE SIZE out OF BOUNDS' ncbands = 16 factor = (radsno-2._rb)/3._rb index = int(factor) if (index.eq.46) index = 45 fint = factor-real(index) ib = ngb(ig) abscosno(ig) = absice3(index,ib)+fint* & (absice3(index+1,ib) - (absice3(index,ib))) endif ! ! Calculation of absorption coefficients due to water clouds. ! if (clwpmc(ig,lay).eq.0.0_rb) then abscoliq(ig) = 0.0_rb ! else if (liqflag.eq.0) then abscoliq(ig) = absliq0 ! else if (liqflag.eq.1) then radliq = relqmc(lay) if (radliq.lt.2.5_rb .or. radliq.gt.60._rb) stop & 'LIQUID EFFECTIVE RADIUS out OF BOUNDS' index = int(radliq-1.5_rb) if (index.eq.0) index = 1 if (index.eq.58) index = 57 fint = radliq-1.5_rb-real(index) ib = ngb(ig) abscoliq(ig) = absliq1(index,ib)+fint* & (absliq1(index+1,ib)-(absliq1(index,ib))) endif ! taucmc(ig,lay) = ciwpmc(ig,lay)*abscoice(ig) + & clwpmc(ig,lay)*abscoliq(ig) + & cswpmc(ig,lay)*abscosno(ig) endif endif enddo enddo ! end subroutine cldprmc !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- end module rrtmg_lw_cldprmc_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrtmg_lw_rtrnmc_k !------------------------------------------------------------------------------- ! -------------------------------------------------------------------------- ! | | ! | Copyright 2002-2008, Atmospheric & Environmental Research, Inc. (AER). | ! | This software may be used, copied, or redistributed as long as it is | ! | not sold and this copyright notice is reproduced on each copy made. | ! | This model is provided as is without any express or implied warranties. | ! | (http://www.rtweb.aer.com/) | ! | | ! -------------------------------------------------------------------------- !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb use parrrtm_k, only : mg, nbndlw, ngptlw use rrlw_con_k, only : fluxfac, heatfac use rrlw_wvn_k, only : delwave, ngb, ngs use rrlw_tbl_k, only : tblint, bpade, tau_tbl, exp_tbl, tfn_tbl use rrlw_vsn_k, only : hvrrtc, hnamrtc ! implicit none ! real(kind=rb) :: wtdiff, rec_6 ! ! diffusivity angle adjustment coefficients ! real(kind=rb), dimension(nbndlw) :: a0, a1, a2 ! ! This secant and weight corresponds to the standard diffusivity ! angle. This initial value is redefined below for some bands. ! data wtdiff /0.5_rb/ data rec_6 /0.166667_rb/ ! ! Reset diffusivity angle for Bands 2-3 and 5-9 to vary (between 1.50 ! and 1.80) as a function of total column water vapor. The function ! has been defined to minimize flux and cooling rate errors in these bands ! over a wide range of precipitable water values. ! data a0 / 1.66_rb, 1.55_rb, 1.58_rb, 1.66_rb, & 1.54_rb, 1.454_rb, 1.89_rb, 1.33_rb, & 1.668_rb, 1.66_rb, 1.66_rb, 1.66_rb, & 1.66_rb, 1.66_rb, 1.66_rb, 1.66_rb / data a1 / 0.00_rb, 0.25_rb, 0.22_rb, 0.00_rb, & 0.13_rb, 0.446_rb, -0.10_rb, 0.40_rb, & -0.006_rb, 0.00_rb, 0.00_rb, 0.00_rb, & 0.00_rb, 0.00_rb, 0.00_rb, 0.00_rb / data a2 / 0.00_rb, -12.0_rb, -11.7_rb, 0.00_rb, & -0.72_rb, -0.243_rb, 0.19_rb, -0.062_rb, & 0.414_rb, 0.00_rb, 0.00_rb, 0.00_rb, & 0.00_rb, 0.00_rb, 0.00_rb, 0.00_rb / ! contains !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine rtrnmc(nlayers, istart, iend, iout, pz, semiss, ncbands, & cldfmc, taucmc, planklay, planklev, plankbnd, & pwvcm, fracs, taut, & totuflux, totdflux, fnet, htr, & totuclfl, totdclfl, fnetc, htrc ) !------------------------------------------------------------------------------- ! ! Original version: E. J. Mlawer, et al. RRTM_v3.0 ! Revision for GCMs: Michael J. Iacono; October, 2002 ! Revision for F90: Michael J. Iacono; June, 2006 ! ! This program calculates the upward fluxes, downward fluxes, and ! heating rates for an arbitrary clear or cloudy atmosphere. The input ! to this program is the atmospheric profile, all Planck function ! information, and the cloud fraction by layer. A variable diffusivity ! angle (SECDIFF) is used for the angle integration. Bands 2-3 and 5-9 ! use a value for SECDIFF that varies from 1.50 to 1.80 as a function of ! the column water vapor, and other bands use a value of 1.66. The Gaussian ! weight appropriate to this angle (WTDIFF=0.5) is applied here. Note that ! use of the emissivity angle for the flux integration can cause errors of ! 1 to 4 W/m2 within cloudy layers. ! Clouds are treated with the McICA stochastic approach and maximum-random ! cloud overlap. ! ! input : ! nlayers - total number of layers ! istart - beginning band of calculation ! iend - ending band of calculation ! iout - output option flag ! pz(0:) - level (interface) pressures (hPa, mb) ! Dimensions: (0:nlayers) ! pwvcm - precipitable water vapor (cm) ! semiss(:) - lw surface emissivity ! Dimensions: (nbndlw) ! planklay(:,:) ! Dimensions: (nlayers,nbndlw) ! planklev(0:,:) ! Dimensions: (0:nlayers,nbndlw) ! plankbnd(:) ! Dimensions: (nbndlw) ! fracs(:,:) ! Dimensions: (nlayers,ngptw) ! taut(:,:) - gaseous + aerosol optical depths ! Dimensions: (nlayers,ngptlw) ! ncbands - number of cloud spectral bands ! cldfmc(:,:) - layer cloud fraction [mcica] ! Dimensions: (ngptlw,nlayers) ! taucmc(:,:) - layer cloud optical depth [mcica] ! Dimensions: (ngptlw,nlayers) ! output : ! totuflux(0:) - upward longwave flux (w/m2) ! Dimensions: (0:nlayers) ! totdflux(0:) - downward longwave flux (w/m2) ! Dimensions: (0:nlayers) ! fnet(0:) - net longwave flux (w/m2) ! Dimensions: (0:nlayers) ! htr(0:) - longwave heating rate (k/day) ! Dimensions: (0:nlayers) ! totuclfl(0:) - clear sky upward longwave flux (w/m2) ! Dimensions: (0:nlayers) ! totdclfl(0:) - clear sky downward longwave flux (w/m2) ! Dimensions: (0:nlayers) ! fnetc(0:) - clear sky net longwave flux (w/m2) ! Dimensions: (0:nlayers) ! htrc(0:) - clear sky longwave heating rate (k/day) ! Dimensions: (0:nlayers) ! ! local variables : ! secdiff(nbndlw) - secant of diffusivity angle ! icldlyr(nlayers) - flag for cloud in layer ! ibnd, ib, iband, lay, lev, l, ig - loop indices ! igc - g-point interval counter ! iclddn - flag for cloud in down path ! ittot, itgas, itr - lookup table indices ! ! ------- Definitions ------- ! input ! nlayers ! number of model layers ! ngptlw ! total number of g-point subintervals ! nbndlw ! number of longwave spectral bands ! ncbands ! number of spectral bands for clouds ! secdiff ! diffusivity angle ! wtdiff ! weight for radiance to flux conversion ! pavel ! layer pressures (mb) ! pz ! level (interface) pressures (mb) ! tavel ! layer temperatures (k) ! tz ! level (interface) temperatures(mb) ! tbound ! surface temperature (k) ! cldfrac ! layer cloud fraction ! taucloud ! layer cloud optical depth ! itr ! integer look-up table index ! icldlyr ! flag for cloudy layers ! iclddn ! flag for cloud in column at any layer ! semiss ! surface emissivities for each band ! reflect ! surface reflectance ! bpade ! 1/(pade constant) ! tau_tbl ! clear sky optical depth look-up table ! exp_tbl ! exponential look-up table for transmittance ! tfn_tbl ! tau transition function look-up table ! ! local ! atrans ! gaseous absorptivity ! abscld ! cloud absorptivity ! atot ! combined gaseous and cloud absorptivity ! odclr ! clear sky (gaseous) optical depth ! odcld ! cloud optical depth ! odtot ! optical depth of gas and cloud ! tfacgas ! gas-only pade factor, used for planck fn ! tfactot ! gas and cloud pade factor, used for planck fn ! bbdgas ! gas-only planck function for downward rt ! bbugas ! gas-only planck function for upward rt ! bbdtot ! gas and cloud planck function for downward rt ! bbutot ! gas and cloud planck function for upward calc. ! gassrc ! source radiance due to gas only ! efclfrac ! effective cloud fraction ! radlu ! spectrally summed upward radiance ! radclru ! spectrally summed clear sky upward radiance ! urad ! upward radiance by layer ! clrurad ! clear sky upward radiance by layer ! radld ! spectrally summed downward radiance ! radclrd ! spectrally summed clear sky downward radiance ! drad ! downward radiance by layer ! clrdrad ! clear sky downward radiance by layer ! ! output ! totuflux ! upward longwave flux (w/m2) ! totdflux ! downward longwave flux (w/m2) ! fnet ! net longwave flux (w/m2) ! htr ! longwave heating rate (k/day) ! totuclfl ! clear sky upward longwave flux (w/m2) ! totdclfl ! clear sky downward longwave flux (w/m2) ! fnetc ! clear sky net longwave flux (w/m2) ! htrc ! clear sky longwave heating rate (k/day) ! !------------------------------------------------------------------------------- ! ! Declarations ! ! Input ! integer(kind=im), intent(in ) :: nlayers integer(kind=im), intent(in ) :: istart integer(kind=im), intent(in ) :: iend integer(kind=im), intent(in ) :: iout ! ! Atmosphere ! real(kind=rb), dimension(0:) , intent(in ) :: pz real(kind=rb) , intent(in ) :: pwvcm real(kind=rb), dimension(:) , intent(in ) :: semiss real(kind=rb), dimension(:,:) , intent(in ) :: planklay real(kind=rb), dimension(0:,:), intent(in ) :: planklev real(kind=rb), dimension(:) , intent(in ) :: plankbnd real(kind=rb), dimension(:,:) , intent(in ) :: fracs real(kind=rb), dimension(:,:) , intent(in ) :: taut ! ! Clouds ! integer(kind=im) , intent(in ) :: ncbands real(kind=rb), dimension(:,:), intent(in ) :: cldfmc real(kind=rb), dimension(:,:), intent(in ) :: taucmc ! ! Output ! real(kind=rb), dimension(0:), intent( out) :: totuflux real(kind=rb), dimension(0:), intent( out) :: totdflux real(kind=rb), dimension(0:), intent( out) :: fnet real(kind=rb), dimension(0:), intent( out) :: htr real(kind=rb), dimension(0:), intent( out) :: totuclfl real(kind=rb), dimension(0:), intent( out) :: totdclfl real(kind=rb), dimension(0:), intent( out) :: fnetc real(kind=rb), dimension(0:), intent( out) :: htrc ! ! Local ! ! Declarations for radiative transfer ! real(kind=rb), dimension(nlayers,ngptlw) :: abscld real(kind=rb), dimension(nlayers) :: atot real(kind=rb), dimension(nlayers) :: atrans real(kind=rb), dimension(nlayers) :: bbugas real(kind=rb), dimension(nlayers) :: bbutot real(kind=rb), dimension(0:nlayers) :: clrurad real(kind=rb), dimension(0:nlayers) :: clrdrad real(kind=rb), dimension(nlayers,ngptlw) :: efclfrac real(kind=rb), dimension(0:nlayers) :: uflux real(kind=rb), dimension(0:nlayers) :: dflux real(kind=rb), dimension(0:nlayers) :: urad real(kind=rb), dimension(0:nlayers) :: drad real(kind=rb), dimension(0:nlayers) :: uclfl real(kind=rb), dimension(0:nlayers) :: dclfl real(kind=rb), dimension(nlayers,ngptlw) :: odcld ! real(kind=rb), dimension(nbndlw) :: secdiff ! real(kind=rb) :: transcld, radld, radclrd, plfrac, blay, dplankup, dplankdn real(kind=rb) :: odepth, odtot, odepth_rec, odtot_rec, gassrc real(kind=rb) :: tblind, tfactot, bbd, bbdtot, tfacgas, transc, tausfac real(kind=rb) :: rad0, reflect, radlu, radclru ! integer(kind=im), dimension(nlayers) :: icldlyr integer(kind=im) :: ibnd, ib, iband, lay, lev, l, ig integer(kind=im) :: igc integer(kind=im) :: iclddn integer(kind=im) :: ittot, itgas, itr !------------------------------------------------------------------------------- ! hvrrtc = '$Revision: 1.3 $' ! do ibnd = 1,nbndlw if (ibnd.eq.1 .or. ibnd.eq.4 .or. ibnd.ge.10) then secdiff(ibnd) = 1.66_rb else secdiff(ibnd) = a0(ibnd)+a1(ibnd)*exp(a2(ibnd)*pwvcm) if (secdiff(ibnd).gt.1.80_rb) secdiff(ibnd) = 1.80_rb if (secdiff(ibnd).lt.1.50_rb) secdiff(ibnd) = 1.50_rb endif enddo ! urad = 0.0_rb drad = 0.0_rb totuflux = 0.0_rb totdflux = 0.0_rb clrurad = 0.0_rb clrdrad = 0.0_rb totuclfl = 0.0_rb totdclfl = 0.0_rb icldlyr = 0 ! do lay = 1,nlayers ! ! Change to band loop? ! do ig = 1,ngptlw if (cldfmc(ig,lay).eq.1._rb) then ib = ngb(ig) odcld(lay,ig) = secdiff(ib)*taucmc(ig,lay) transcld = exp(-odcld(lay,ig)) abscld(lay,ig) = 1._rb-transcld efclfrac(lay,ig) = abscld(lay,ig)*cldfmc(ig,lay) icldlyr(lay) = 1 else odcld(lay,ig) = 0.0_rb abscld(lay,ig) = 0.0_rb efclfrac(lay,ig) = 0.0_rb endif enddo enddo ! igc = 1 ! ! Loop over frequency bands. ! do iband = istart,iend ! ! Reinitialize g-point counter for each band if output for each band ! is requested. ! if (iout.gt.0 .and. iband.ge.2) igc = ngs(iband-1)+1 ! ! Loop over g-channels. ! 1000 continue ! ! Radiative transfer starts here. ! radld = 0._rb radclrd = 0._rb iclddn = 0 ! ! Downward radiative transfer loop. ! do lev = nlayers,1,-1 plfrac = fracs(lev,igc) blay = planklay(lev,iband) dplankup = planklev(lev,iband)-blay dplankdn = planklev(lev-1,iband)-blay odepth = secdiff(iband)*taut(lev,igc) if (odepth.lt.0.0_rb) odepth = 0.0_rb ! ! Cloudy layer ! if (icldlyr(lev).eq.1) then iclddn = 1 odtot = odepth+odcld(lev,igc) if (odtot.lt.0.06_rb) then atrans(lev) = odepth-0.5_rb*odepth*odepth odepth_rec = rec_6*odepth gassrc = plfrac*(blay+dplankdn*odepth_rec)*atrans(lev) ! atot(lev) = odtot - 0.5_rb*odtot*odtot odtot_rec = rec_6*odtot bbdtot = plfrac * (blay+dplankdn*odtot_rec) bbd = plfrac*(blay+dplankdn*odepth_rec) radld = radld-radld*(atrans(lev)+efclfrac(lev,igc)* & (1.-atrans(lev)))+& gassrc + cldfmc(igc,lev)*(bbdtot*atot(lev)-gassrc) drad(lev-1) = drad(lev-1)+radld ! bbugas(lev) = plfrac*(blay+dplankup*odepth_rec) bbutot(lev) = plfrac*(blay+dplankup*odtot_rec) ! else if (odepth.le.0.06_rb) then atrans(lev) = odepth-0.5_rb*odepth*odepth odepth_rec = rec_6*odepth gassrc = plfrac*(blay+dplankdn*odepth_rec)*atrans(lev) ! odtot = odepth+odcld(lev,igc) tblind = odtot/(bpade+odtot) ittot = tblint*tblind+0.5_rb tfactot = tfn_tbl(ittot) bbdtot = plfrac*(blay+tfactot*dplankdn) bbd = plfrac*(blay+dplankdn*odepth_rec) atot(lev) = 1.-exp_tbl(ittot) ! radld = radld-radld*(atrans(lev)+ & efclfrac(lev,igc)*(1._rb-atrans(lev)))+ & gassrc+cldfmc(igc,lev)*(bbdtot*atot(lev)-gassrc) drad(lev-1) = drad(lev-1)+radld ! bbugas(lev) = plfrac*(blay+dplankup*odepth_rec) bbutot(lev) = plfrac*(blay+tfactot*dplankup) ! else ! tblind = odepth/(bpade+odepth) itgas = tblint*tblind+0.5_rb odepth = tau_tbl(itgas) atrans(lev) = 1._rb-exp_tbl(itgas) tfacgas = tfn_tbl(itgas) gassrc = atrans(lev)*plfrac*(blay+tfacgas*dplankdn) ! odtot = odepth+odcld(lev,igc) tblind = odtot/(bpade+odtot) ittot = tblint*tblind+0.5_rb tfactot = tfn_tbl(ittot) bbdtot = plfrac*(blay+tfactot*dplankdn) bbd = plfrac*(blay+tfacgas*dplankdn) atot(lev) = 1._rb-exp_tbl(ittot) ! radld = radld-radld*(atrans(lev)+ & efclfrac(lev,igc)*(1._rb-atrans(lev)))+ & gassrc + cldfmc(igc,lev)*(bbdtot*atot(lev)-gassrc) drad(lev-1) = drad(lev-1) + radld bbugas(lev) = plfrac*(blay+tfacgas*dplankup) bbutot(lev) = plfrac*(blay+tfactot*dplankup) endif ! ! Clear layer ! else if (odepth.le.0.06_rb) then atrans(lev) = odepth-0.5_rb*odepth*odepth odepth = rec_6*odepth bbd = plfrac*(blay+dplankdn*odepth) bbugas(lev) = plfrac*(blay+dplankup*odepth) else tblind = odepth/(bpade+odepth) itr = tblint*tblind+0.5_rb transc = exp_tbl(itr) atrans(lev) = 1._rb-transc tausfac = tfn_tbl(itr) bbd = plfrac*(blay+tausfac*dplankdn) bbugas(lev) = plfrac*(blay+tausfac*dplankup) endif radld = radld + (bbd-radld)*atrans(lev) drad(lev-1) = drad(lev-1)+radld endif ! ! Set clear sky stream to total sky stream as long as layers ! remain clear. streams diverge when a cloud is reached (iclddn=1), ! and clear sky stream must be computed separately from that point. ! if (iclddn.eq.1) then radclrd = radclrd+(bbd-radclrd)*atrans(lev) clrdrad(lev-1) = clrdrad(lev-1)+radclrd else radclrd = radld clrdrad(lev-1) = drad(lev-1) endif enddo ! ! Spectral emissivity & reflectance ! Include the contribution of spectrally varying longwave emissivity ! and reflection from the surface to the upward radiative transfer. ! Note: Spectral and Lambertian reflection are identical for the ! diffusivity angle flux integration used here. ! rad0 = fracs(1,igc)*plankbnd(iband) ! ! Add in specular reflection of surface downward radiance. ! reflect = 1._rb-semiss(iband) radlu = rad0+reflect*radld radclru = rad0+reflect*radclrd ! ! Upward radiative transfer loop. ! urad(0) = urad(0)+radlu clrurad(0) = clrurad(0)+radclru ! do lev = 1,nlayers ! ! Cloudy layer ! if (icldlyr(lev).eq.1) then gassrc = bbugas(lev)*atrans(lev) radlu = radlu-radlu*(atrans(lev)+ & efclfrac(lev,igc)*(1._rb-atrans(lev)))+ & gassrc+cldfmc(igc,lev)*(bbutot(lev)*atot(lev)-gassrc) urad(lev) = urad(lev)+radlu ! ! Clear layer ! else radlu = radlu+(bbugas(lev)-radlu)*atrans(lev) urad(lev) = urad(lev)+radlu endif ! ! Set clear sky stream to total sky stream as long as all layers ! are clear (iclddn=0). streams must be calculated separately at ! all layers when a cloud is present (ICLDDN=1), because surface ! reflectance is different for each stream. ! if (iclddn.eq.1) then radclru = radclru+(bbugas(lev)-radclru)*atrans(lev) clrurad(lev) = clrurad(lev)+radclru else radclru = radlu clrurad(lev) = urad(lev) endif enddo ! ! Increment g-point counter ! igc = igc + 1 ! ! Return to continue radiative transfer for all g-channels in present band ! if (igc.le.ngs(iband)) go to 1000 ! ! Process longwave output from band for total and clear streams. ! Calculate upward, downward, and net flux. ! do lev = nlayers,0,-1 uflux(lev) = urad(lev)*wtdiff dflux(lev) = drad(lev)*wtdiff urad(lev) = 0.0_rb drad(lev) = 0.0_rb totuflux(lev) = totuflux(lev)+uflux(lev)*delwave(iband) totdflux(lev) = totdflux(lev)+dflux(lev)*delwave(iband) uclfl(lev) = clrurad(lev)*wtdiff dclfl(lev) = clrdrad(lev)*wtdiff clrurad(lev) = 0.0_rb clrdrad(lev) = 0.0_rb totuclfl(lev) = totuclfl(lev)+uclfl(lev)*delwave(iband) totdclfl(lev) = totdclfl(lev)+dclfl(lev)*delwave(iband) enddo ! ! End spectral band loop ! enddo ! ! Calculate fluxes at surface ! totuflux(0) = totuflux(0)*fluxfac totdflux(0) = totdflux(0)*fluxfac fnet(0) = totuflux(0)-totdflux(0) totuclfl(0) = totuclfl(0)*fluxfac totdclfl(0) = totdclfl(0)*fluxfac fnetc(0) = totuclfl(0)-totdclfl(0) ! ! Calculate fluxes at model levels ! do lev = 1,nlayers totuflux(lev) = totuflux(lev)*fluxfac totdflux(lev) = totdflux(lev)*fluxfac fnet(lev) = totuflux(lev)-totdflux(lev) totuclfl(lev) = totuclfl(lev)*fluxfac totdclfl(lev) = totdclfl(lev)*fluxfac fnetc(lev) = totuclfl(lev)-totdclfl(lev) l = lev-1 ! ! Calculate heating rates at model layers ! htr(l)=heatfac*(fnet(l)-fnet(lev))/(pz(l)-pz(lev)) htrc(l)=heatfac*(fnetc(l)-fnetc(lev))/(pz(l)-pz(lev)) enddo ! ! Set heating rate to zero in top layer ! htr(nlayers) = 0.0_rb htrc(nlayers) = 0.0_rb ! end subroutine rtrnmc !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- end module rrtmg_lw_rtrnmc_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrtmg_lw_setcoef_k !------------------------------------------------------------------------------- ! -------------------------------------------------------------------------- ! | | ! | Copyright 2002-2008, Atmospheric & Environmental Research, Inc. (AER). | ! | This software may be used, copied, or redistributed as long as it is | ! | not sold and this copyright notice is reproduced on each copy made. | ! | This model is provided as is without any express or implied warranties. | ! | (http://www.rtweb.aer.com/) | ! | | ! -------------------------------------------------------------------------- !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb use parrrtm_k, only : nbndlw, mg, maxxsec, mxmol use rrlw_wvn_k, only : totplnk, totplk16 use rrlw_ref_k use rrlw_vsn_k, only : hvrset, hnamset ! implicit none ! contains !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine setcoef(nlayers, istart, pavel, tavel, tz, tbound, semiss, & coldry, wkl, wbroad, & laytrop, jp, jt, jt1, planklay, planklev, plankbnd, & colh2o, colco2, colo3, coln2o, colco, colch4, colo2, & colbrd, fac00, fac01, fac10, fac11, & rat_h2oco2, rat_h2oco2_1, rat_h2oo3, rat_h2oo3_1, & rat_h2on2o, rat_h2on2o_1, rat_h2och4, rat_h2och4_1, & rat_n2oco2, rat_n2oco2_1, rat_o3co2, rat_o3co2_1, & selffac, selffrac, indself, forfac, forfrac, indfor, & minorfrac, scaleminor, scaleminorn2, indminor) !------------------------------------------------------------------------------- ! ! Purpose: For a given atmosphere, calculate the indices and ! fractions related to the pressure and temperature interpolations. ! Also calculate the values of the integrated Planck functions ! for each band at the level and layer temperatures. ! ! input : ! nlayers - total number of layers ! istart - beginning band of calculation ! pavel(:) - layer pressures (mb) ! Dimensions: (nlayers) ! tavel(:) - layer temperatures (K) ! Dimensions: (nlayers) ! tz(0:) - level (interface) temperatures (K) ! Dimensions: (0:nlayers) ! tbound - surface temperature (K) ! coldry(:) - dry air column density (mol/cm2) ! Dimensions: (nlayers) ! wbroad(:) - broadening gas column density (mol/cm2) ! Dimensions: (nlayers) ! wkl(:,:) - molecular amounts (mol/cm-2) ! Dimensions: (mxmol,nlayers) ! semiss(:) - lw surface emissivity ! Dimensions: (nbndlw) ! output : ! laytrop - tropopause layer index ! jp(nlayers) - ! jt(nlayers) ! jt1(nlayers) ! planklay(nlayers,nbndlw) ! planklev(0:nlayers,nbndlw) ! plankbnd(nbndlw) ! colh2o(nlayers) - column amount (h2o) ! colco2(nlayers) - column amount (co2) ! colo3(nlayers) - column amount (o3) ! coln2o(nlayers) - column amount (n2o) ! colco(nlayers) - column amount (co) ! colch4(nlayers) - column amount (ch4) ! colo2(nlayers) - column amount (o2) ! colbrd(nlayers) - column amount (broadening gases) ! ! indself(nlayers) ! indfor(nlayers) ! selffac(nlayers) ! selffrac(nlayers) ! forfac(nlayers) ! forfrac(nlayers) ! indminor(nlayers) ! minorfrac(nlayers) ! scaleminor(nlayers) ! scaleminorn2(nlayers) ! minorfrac(nlayers) ! scaleminor(nlayers) ! scaleminorn2(nlayers) ! fac00(nlayers), fac01(nlayers), fac10(nlayers), fac11(nlayers) ! rat_h2oco2(nlayers),rat_h2oco2_1(nlayers) ! rat_h2oo3(nlayers),rat_h2oo3_1(nlayers) ! rat_h2on2o(nlayers),rat_h2on2o_1(nlayers) ! rat_h2och4(nlayers),rat_h2och4_1(nlayers) ! rat_n2oco2(nlayers),rat_n2oco2_1(nlayers) ! rat_o3co2(nlayers),rat_o3co2_1(nlayers) ! ! local varialbles : !------------------------------------------------------------------------------- ! ! Input ! integer(kind=im), intent(in ) :: nlayers integer(kind=im), intent(in ) :: istart ! real(kind=rb), dimension(:) , intent(in ) :: pavel real(kind=rb), dimension(:) , intent(in ) :: tavel real(kind=rb), dimension(0:) , intent(in ) :: tz real(kind=rb) , intent(in ) :: tbound real(kind=rb), dimension(:) , intent(in ) :: coldry real(kind=rb), dimension(:) , intent(in ) :: wbroad real(kind=rb), dimension(:,:) , intent(in ) :: wkl real(kind=rb), dimension(:) , intent(in ) :: semiss ! ! Output ! integer(kind=im) , intent( out) :: laytrop integer(kind=im), dimension(:), intent( out) :: jp integer(kind=im), dimension(:), intent( out) :: jt integer(kind=im), dimension(:), intent( out) :: jt1 real(kind=rb), dimension(:,:) , intent( out) :: planklay real(kind=rb), dimension(0:,:), intent( out) :: planklev real(kind=rb), dimension(:) , intent( out) :: plankbnd ! real(kind=rb), dimension(:), intent( out) :: colh2o real(kind=rb), dimension(:), intent( out) :: colco2 real(kind=rb), dimension(:), intent( out) :: colo3 real(kind=rb), dimension(:), intent( out) :: coln2o real(kind=rb), dimension(:), intent( out) :: colco real(kind=rb), dimension(:), intent( out) :: colch4 real(kind=rb), dimension(:), intent( out) :: colo2 real(kind=rb), dimension(:), intent( out) :: colbrd ! integer(kind=im), dimension(:), intent( out) :: indself integer(kind=im), dimension(:), intent( out) :: indfor real(kind=rb), dimension(:) , intent( out) :: selffac real(kind=rb), dimension(:) , intent( out) :: selffrac real(kind=rb), dimension(:) , intent( out) :: forfac real(kind=rb), dimension(:) , intent( out) :: forfrac ! integer(kind=im), dimension(:), intent( out) :: indminor real(kind=rb), dimension(:) , intent( out) :: minorfrac real(kind=rb), dimension(:) , intent( out) :: scaleminor real(kind=rb), dimension(:) , intent( out) :: scaleminorn2 ! real(kind=rb), dimension(:) , intent( out) :: fac00, fac01, fac10, fac11 real(kind=rb), dimension(:) , intent( out) :: rat_h2oco2, rat_h2oco2_1, & rat_h2oo3, rat_h2oo3_1, & rat_h2on2o,rat_h2on2o_1, & rat_h2och4,rat_h2och4_1, & rat_n2oco2,rat_n2oco2_1, & rat_o3co2,rat_o3co2_1 ! ! Local ! integer(kind=im) :: indbound, indlev0 integer(kind=im) :: lay, indlay, indlev, iband integer(kind=im) :: jp1 real(kind=rb) :: stpfac, tbndfrac, t0frac, tlayfrac, tlevfrac real(kind=rb) :: dbdtlev, dbdtlay real(kind=rb) :: plog, fp, ft, ft1, water, scalefac, factor, compfp !------------------------------------------------------------------------------- ! hvrset = '$Revision: 1.3 $' ! stpfac = 296._rb/1013._rb ! indbound = tbound-159._rb ! if (indbound.lt.1) then indbound = 1 else if (indbound.gt.180) then indbound = 180 endif ! tbndfrac = tbound-159._rb-real(indbound) indlev0 = tz(0)-159._rb ! if (indlev0.lt.1) then indlev0 = 1 else if (indlev0.gt.180) then indlev0 = 180 endif ! t0frac = tz(0)-159._rb-real(indlev0) laytrop = 0 ! ! Begin layer loop ! Calculate the integrated Planck functions for each band at the ! surface, level, and layer temperatures. ! do lay = 1,nlayers indlay = tavel(lay)-159._rb if (indlay.lt.1) then indlay = 1 else if (indlay.gt.180) then indlay = 180 endif ! tlayfrac = tavel(lay)-159._rb-real(indlay) indlev = tz(lay)-159._rb if (indlev.lt.1) then indlev = 1 else if (indlev.gt.180) then indlev = 180 endif tlevfrac = tz(lay)-159._rb-real(indlev) ! ! Begin spectral band loop ! do iband = 1,15 if (lay.eq.1) then dbdtlev = totplnk(indbound+1,iband)-totplnk(indbound,iband) plankbnd(iband) = semiss(iband)* & (totplnk(indbound,iband)+tbndfrac*dbdtlev) dbdtlev = totplnk(indlev0+1,iband)-totplnk(indlev0,iband) planklev(0,iband) = totplnk(indlev0,iband)+t0frac*dbdtlev endif dbdtlev = totplnk(indlev+1,iband)-totplnk(indlev,iband) dbdtlay = totplnk(indlay+1,iband)-totplnk(indlay,iband) planklay(lay,iband) = totplnk(indlay,iband)+tlayfrac*dbdtlay planklev(lay,iband) = totplnk(indlev,iband)+tlevfrac*dbdtlev enddo ! ! For band 16, if radiative transfer will be performed on just ! this band, use integrated Planck values up to 3250 cm-1. ! If radiative transfer will be performed across all 16 bands, ! then include in the integrated Planck values for this band ! contributions from 2600 cm-1 to infinity. ! iband = 16 if (istart.eq.16) then if (lay.eq.1) then dbdtlev = totplk16(indbound+1)-totplk16(indbound) plankbnd(iband) = semiss(iband)* & (totplk16(indbound)+tbndfrac*dbdtlev) dbdtlev = totplnk(indlev0+1,iband)-totplnk(indlev0,iband) planklev(0,iband) = totplk16(indlev0)+t0frac*dbdtlev endif dbdtlev = totplk16(indlev+1)-totplk16(indlev) dbdtlay = totplk16(indlay+1)-totplk16(indlay) planklay(lay,iband) = totplk16(indlay)+tlayfrac*dbdtlay planklev(lay,iband) = totplk16(indlev)+tlevfrac*dbdtlev else if (lay.eq.1) then dbdtlev = totplnk(indbound+1,iband)-totplnk(indbound,iband) plankbnd(iband) = semiss(iband)* & (totplnk(indbound,iband)+tbndfrac*dbdtlev) dbdtlev = totplnk(indlev0+1,iband)-totplnk(indlev0,iband) planklev(0,iband) = totplnk(indlev0,iband)+t0frac*dbdtlev endif dbdtlev = totplnk(indlev+1,iband)-totplnk(indlev,iband) dbdtlay = totplnk(indlay+1,iband)-totplnk(indlay,iband) planklay(lay,iband) = totplnk(indlay,iband)+tlayfrac*dbdtlay planklev(lay,iband) = totplnk(indlev,iband)+tlevfrac*dbdtlev endif ! ! Find the two reference pressures on either side of the ! layer pressure. Store them in JP and JP1. Store in FP the ! fraction of the difference (in ln(pressure)) between these ! two values that the layer pressure lies. ! plog = log(pavel(lay)) ! plog = dlog(pavel(lay)) jp(lay) = int(36._rb - 5*(plog+0.04_rb)) ! if (jp(lay).lt.1) then jp(lay) = 1 else if (jp(lay).gt.58) then jp(lay) = 58 endif ! jp1 = jp(lay)+1 fp = 5._rb*(preflog(jp(lay))-plog) ! ! Determine, for each reference pressure (JP and JP1), which ! reference temperature (these are different for each ! reference pressure) is nearest the layer temperature but does ! not exceed it. Store these indices in JT and JT1, resp. ! Store in FT (resp. FT1) the fraction of the way between JT ! (JT1) and the next highest reference temperature that the ! layer temperature falls. ! jt(lay) = int(3._rb+(tavel(lay)-tref(jp(lay)))/15._rb) ! if (jt(lay).lt.1) then jt(lay) = 1 else if (jt(lay).gt.4) then jt(lay) = 4 endif ! ft = ((tavel(lay)-tref(jp(lay)))/15._rb)-real(jt(lay)-3) jt1(lay) = int(3._rb+(tavel(lay)-tref(jp1))/15._rb) ! if (jt1(lay).lt.1) then jt1(lay) = 1 else if (jt1(lay).gt.4) then jt1(lay) = 4 endif ! ft1 = ((tavel(lay)-tref(jp1))/15._rb)-real(jt1(lay)-3) water = wkl(1,lay)/coldry(lay) scalefac = pavel(lay)*stpfac /tavel(lay) ! ! If the pressure is less than ~100mb, perform a different ! set of species interpolations. ! if (plog.le.4.56_rb) go to 5300 laytrop = laytrop+1 ! forfac(lay) = scalefac/(1.+water) factor = (332.0_rb-tavel(lay))/36.0_rb indfor(lay) = min(2, max(1,int(factor))) forfrac(lay) = factor-real(indfor(lay)) ! ! Set up factors needed to separately include the water vapor ! self-continuum in the calculation of absorption coefficient. ! selffac(lay) = water*forfac(lay) factor = (tavel(lay)-188.0_rb)/7.2_rb indself(lay) = min(9, max(1,int(factor)-7)) selffrac(lay) = factor-real(indself(lay)+ 7) ! ! Set up factors needed to separately include the minor gases ! in the calculation of absorption coefficient ! scaleminor(lay) = pavel(lay)/tavel(lay) scaleminorn2(lay) = (pavel(lay)/tavel(lay)) & *(wbroad(lay)/(coldry(lay)+wkl(1,lay))) factor = (tavel(lay)-180.8_rb)/7.2_rb indminor(lay) = min(18,max(1,int(factor))) minorfrac(lay) = factor-real(indminor(lay)) ! ! Setup reference ratio to be used in calculation of binary ! species parameter in lower atmosphere. ! rat_h2oco2(lay)=chi_mls(1,jp(lay))/chi_mls(2,jp(lay)) rat_h2oco2_1(lay)=chi_mls(1,jp(lay)+1)/chi_mls(2,jp(lay)+1) ! rat_h2oo3(lay)=chi_mls(1,jp(lay))/chi_mls(3,jp(lay)) rat_h2oo3_1(lay)=chi_mls(1,jp(lay)+1)/chi_mls(3,jp(lay)+1) ! rat_h2on2o(lay)=chi_mls(1,jp(lay))/chi_mls(4,jp(lay)) rat_h2on2o_1(lay)=chi_mls(1,jp(lay)+1)/chi_mls(4,jp(lay)+1) ! rat_h2och4(lay)=chi_mls(1,jp(lay))/chi_mls(6,jp(lay)) rat_h2och4_1(lay)=chi_mls(1,jp(lay)+1)/chi_mls(6,jp(lay)+1) ! rat_n2oco2(lay)=chi_mls(4,jp(lay))/chi_mls(2,jp(lay)) rat_n2oco2_1(lay)=chi_mls(4,jp(lay)+1)/chi_mls(2,jp(lay)+1) ! ! Calculate needed column amounts. ! colh2o(lay) = 1.e-20_rb*wkl(1,lay) colco2(lay) = 1.e-20_rb*wkl(2,lay) colo3(lay) = 1.e-20_rb*wkl(3,lay) coln2o(lay) = 1.e-20_rb*wkl(4,lay) colco(lay) = 1.e-20_rb*wkl(5,lay) colch4(lay) = 1.e-20_rb*wkl(6,lay) colo2(lay) = 1.e-20_rb*wkl(7,lay) if (colco2(lay).eq.0._rb) colco2(lay) = 1.e-32_rb*coldry(lay) if (colo3(lay).eq.0._rb) colo3(lay) = 1.e-32_rb*coldry(lay) if (coln2o(lay).eq.0._rb) coln2o(lay) = 1.e-32_rb*coldry(lay) if (colco(lay).eq.0._rb) colco(lay) = 1.e-32_rb*coldry(lay) if (colch4(lay).eq.0._rb) colch4(lay) = 1.e-32_rb*coldry(lay) colbrd(lay) = 1.e-20_rb*wbroad(lay) go to 5400 ! ! Above laytrop. ! 5300 continue ! forfac(lay) = scalefac/(1.+water) factor = (tavel(lay)-188.0_rb)/36.0_rb indfor(lay) = 3 forfrac(lay) = factor-1.0_rb ! ! Set up factors needed to separately include the water vapor ! self-continuum in the calculation of absorption coefficient. ! selffac(lay) = water*forfac(lay) ! ! Set up factors needed to separately include the minor gases ! in the calculation of absorption coefficient ! scaleminor(lay) = pavel(lay)/tavel(lay) scaleminorn2(lay) = (pavel(lay)/tavel(lay)) & *(wbroad(lay)/(coldry(lay)+wkl(1,lay))) factor = (tavel(lay)-180.8_rb)/7.2_rb indminor(lay) = min(18,max(1,int(factor))) minorfrac(lay) = factor-real(indminor(lay)) ! ! Setup reference ratio to be used in calculation of binary ! species parameter in upper atmosphere. ! rat_h2oco2(lay)=chi_mls(1,jp(lay))/chi_mls(2,jp(lay)) rat_h2oco2_1(lay)=chi_mls(1,jp(lay)+1)/chi_mls(2,jp(lay)+1) ! rat_o3co2(lay)=chi_mls(3,jp(lay))/chi_mls(2,jp(lay)) rat_o3co2_1(lay)=chi_mls(3,jp(lay)+1)/chi_mls(2,jp(lay)+1) ! ! Calculate needed column amounts. ! colh2o(lay) = 1.e-20_rb*wkl(1,lay) colco2(lay) = 1.e-20_rb*wkl(2,lay) colo3(lay) = 1.e-20_rb*wkl(3,lay) coln2o(lay) = 1.e-20_rb*wkl(4,lay) colco(lay) = 1.e-20_rb*wkl(5,lay) colch4(lay) = 1.e-20_rb*wkl(6,lay) colo2(lay) = 1.e-20_rb*wkl(7,lay) if (colco2(lay).eq.0._rb) colco2(lay) = 1.e-32_rb*coldry(lay) if (colo3(lay).eq.0._rb) colo3(lay) = 1.e-32_rb*coldry(lay) if (coln2o(lay).eq.0._rb) coln2o(lay) = 1.e-32_rb*coldry(lay) if (colco(lay).eq.0._rb) colco(lay) = 1.e-32_rb*coldry(lay) if (colch4(lay).eq.0._rb) colch4(lay) = 1.e-32_rb*coldry(lay) colbrd(lay) = 1.e-20_rb*wbroad(lay) 5400 continue ! ! We have now isolated the layer ln pressure and temperature, ! between two reference pressures and two reference temperatures ! (for each reference pressure). We multiply the pressure ! fraction FP with the appropriate temperature fractions to get ! the factors that will be needed for the interpolation that yields ! the optical depths (performed in routines TAUGBn for band n).` ! compfp = 1.-fp fac10(lay) = compfp*ft fac00(lay) = compfp*(1._rb-ft) fac11(lay) = fp*ft1 fac01(lay) = fp*(1._rb-ft1) ! ! Rescale selffac and forfac for use in taumol ! selffac(lay) = colh2o(lay)*selffac(lay) forfac(lay) = colh2o(lay)*forfac(lay) ! ! End layer loop ! enddo ! end subroutine setcoef !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lwatmref !------------------------------------------------------------------------------- ! ! These pressures are chosen such that the ln of the first pressure ! has only a few non-zero digits (i.e. ln(PREF(1)) = 6.96000) and ! each subsequent ln(pressure) differs from the previous one by 0.2. ! !------------------------------------------------------------------------------- ! save ! pref(:) = (/ & 1.05363e+03_rb,8.62642e+02_rb,7.06272e+02_rb,5.78246e+02_rb,4.73428e+02_rb,& 3.87610e+02_rb,3.17348e+02_rb,2.59823e+02_rb,2.12725e+02_rb,1.74164e+02_rb,& 1.42594e+02_rb,1.16746e+02_rb,9.55835e+01_rb,7.82571e+01_rb,6.40715e+01_rb,& 5.24573e+01_rb,4.29484e+01_rb,3.51632e+01_rb,2.87892e+01_rb,2.35706e+01_rb,& 1.92980e+01_rb,1.57998e+01_rb,1.29358e+01_rb,1.05910e+01_rb,8.67114e+00_rb,& 7.09933e+00_rb,5.81244e+00_rb,4.75882e+00_rb,3.89619e+00_rb,3.18993e+00_rb,& 2.61170e+00_rb,2.13828e+00_rb,1.75067e+00_rb,1.43333e+00_rb,1.17351e+00_rb,& 9.60789e-01_rb,7.86628e-01_rb,6.44036e-01_rb,5.27292e-01_rb,4.31710e-01_rb,& 3.53455e-01_rb,2.89384e-01_rb,2.36928e-01_rb,1.93980e-01_rb,1.58817e-01_rb,& 1.30029e-01_rb,1.06458e-01_rb,8.71608e-02_rb,7.13612e-02_rb,5.84256e-02_rb,& 4.78349e-02_rb,3.91639e-02_rb,3.20647e-02_rb,2.62523e-02_rb,2.14936e-02_rb,& 1.75975e-02_rb,1.44076e-02_rb,1.17959e-02_rb,9.65769e-03_rb/) preflog(:) = (/ & 6.9600e+00_rb, 6.7600e+00_rb, 6.5600e+00_rb, 6.3600e+00_rb, 6.1600e+00_rb, & 5.9600e+00_rb, 5.7600e+00_rb, 5.5600e+00_rb, 5.3600e+00_rb, 5.1600e+00_rb, & 4.9600e+00_rb, 4.7600e+00_rb, 4.5600e+00_rb, 4.3600e+00_rb, 4.1600e+00_rb, & 3.9600e+00_rb, 3.7600e+00_rb, 3.5600e+00_rb, 3.3600e+00_rb, 3.1600e+00_rb, & 2.9600e+00_rb, 2.7600e+00_rb, 2.5600e+00_rb, 2.3600e+00_rb, 2.1600e+00_rb, & 1.9600e+00_rb, 1.7600e+00_rb, 1.5600e+00_rb, 1.3600e+00_rb, 1.1600e+00_rb, & 9.6000e-01_rb, 7.6000e-01_rb, 5.6000e-01_rb, 3.6000e-01_rb, 1.6000e-01_rb, & -4.0000e-02_rb,-2.4000e-01_rb,-4.4000e-01_rb,-6.4000e-01_rb,-8.4000e-01_rb, & -1.0400e+00_rb,-1.2400e+00_rb,-1.4400e+00_rb,-1.6400e+00_rb,-1.8400e+00_rb, & -2.0400e+00_rb,-2.2400e+00_rb,-2.4400e+00_rb,-2.6400e+00_rb,-2.8400e+00_rb, & -3.0400e+00_rb,-3.2400e+00_rb,-3.4400e+00_rb,-3.6400e+00_rb,-3.8400e+00_rb, & -4.0400e+00_rb,-4.2400e+00_rb,-4.4400e+00_rb,-4.6400e+00_rb/) ! ! These are the temperatures associated with the respective ! pressures for the mls standard atmosphere. ! tref(:) = (/ & 2.9420e+02_rb, 2.8799e+02_rb, 2.7894e+02_rb, 2.6925e+02_rb, 2.5983e+02_rb, & 2.5017e+02_rb, 2.4077e+02_rb, 2.3179e+02_rb, 2.2306e+02_rb, 2.1578e+02_rb, & 2.1570e+02_rb, 2.1570e+02_rb, 2.1570e+02_rb, 2.1706e+02_rb, 2.1858e+02_rb, & 2.2018e+02_rb, 2.2174e+02_rb, 2.2328e+02_rb, 2.2479e+02_rb, 2.2655e+02_rb, & 2.2834e+02_rb, 2.3113e+02_rb, 2.3401e+02_rb, 2.3703e+02_rb, 2.4022e+02_rb, & 2.4371e+02_rb, 2.4726e+02_rb, 2.5085e+02_rb, 2.5457e+02_rb, 2.5832e+02_rb, & 2.6216e+02_rb, 2.6606e+02_rb, 2.6999e+02_rb, 2.7340e+02_rb, 2.7536e+02_rb, & 2.7568e+02_rb, 2.7372e+02_rb, 2.7163e+02_rb, 2.6955e+02_rb, 2.6593e+02_rb, & 2.6211e+02_rb, 2.5828e+02_rb, 2.5360e+02_rb, 2.4854e+02_rb, 2.4348e+02_rb, & 2.3809e+02_rb, 2.3206e+02_rb, 2.2603e+02_rb, 2.2000e+02_rb, 2.1435e+02_rb, & 2.0887e+02_rb, 2.0340e+02_rb, 1.9792e+02_rb, 1.9290e+02_rb, 1.8809e+02_rb, & 1.8329e+02_rb, 1.7849e+02_rb, 1.7394e+02_rb, 1.7212e+02_rb/) ! chi_mls(1,1:12) = (/ & 1.8760e-02_rb, 1.2223e-02_rb, 5.8909e-03_rb, 2.7675e-03_rb, 1.4065e-03_rb, & 7.5970e-04_rb, 3.8876e-04_rb, 1.6542e-04_rb, 3.7190e-05_rb, 7.4765e-06_rb, & 4.3082e-06_rb, 3.3319e-06_rb/) chi_mls(1,13:59) = (/ & 3.2039e-06_rb, 3.1619e-06_rb, 3.2524e-06_rb, 3.4226e-06_rb, 3.6288e-06_rb, & 3.9148e-06_rb, 4.1488e-06_rb, 4.3081e-06_rb, 4.4420e-06_rb, 4.5778e-06_rb, & 4.7087e-06_rb, 4.7943e-06_rb, 4.8697e-06_rb, 4.9260e-06_rb, 4.9669e-06_rb, & 4.9963e-06_rb, 5.0527e-06_rb, 5.1266e-06_rb, 5.2503e-06_rb, 5.3571e-06_rb, & 5.4509e-06_rb, 5.4830e-06_rb, 5.5000e-06_rb, 5.5000e-06_rb, 5.4536e-06_rb, & 5.4047e-06_rb, 5.3558e-06_rb, 5.2533e-06_rb, 5.1436e-06_rb, 5.0340e-06_rb, & 4.8766e-06_rb, 4.6979e-06_rb, 4.5191e-06_rb, 4.3360e-06_rb, 4.1442e-06_rb, & 3.9523e-06_rb, 3.7605e-06_rb, 3.5722e-06_rb, 3.3855e-06_rb, 3.1988e-06_rb, & 3.0121e-06_rb, 2.8262e-06_rb, 2.6407e-06_rb, 2.4552e-06_rb, 2.2696e-06_rb, & 4.3360e-06_rb, 4.1442e-06_rb/) chi_mls(2,1:12) = (/ & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb/) chi_mls(2,13:59) = (/ & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5471e-04_rb, 3.5427e-04_rb, 3.5384e-04_rb, 3.5340e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb/) chi_mls(3,1:12) = (/ & 3.0170e-08_rb, 3.4725e-08_rb, 4.2477e-08_rb, 5.2759e-08_rb, 6.6944e-08_rb, & 8.7130e-08_rb, 1.1391e-07_rb, 1.5677e-07_rb, 2.1788e-07_rb, 3.2443e-07_rb, & 4.6594e-07_rb, 5.6806e-07_rb/) chi_mls(3,13:59) = (/ & 6.9607e-07_rb, 1.1186e-06_rb, 1.7618e-06_rb, 2.3269e-06_rb, 2.9577e-06_rb, & 3.6593e-06_rb, 4.5950e-06_rb, 5.3189e-06_rb, 5.9618e-06_rb, 6.5113e-06_rb, & 7.0635e-06_rb, 7.6917e-06_rb, 8.2577e-06_rb, 8.7082e-06_rb, 8.8325e-06_rb, & 8.7149e-06_rb, 8.0943e-06_rb, 7.3307e-06_rb, 6.3101e-06_rb, 5.3672e-06_rb, & 4.4829e-06_rb, 3.8391e-06_rb, 3.2827e-06_rb, 2.8235e-06_rb, 2.4906e-06_rb, & 2.1645e-06_rb, 1.8385e-06_rb, 1.6618e-06_rb, 1.5052e-06_rb, 1.3485e-06_rb, & 1.1972e-06_rb, 1.0482e-06_rb, 8.9926e-07_rb, 7.6343e-07_rb, 6.5381e-07_rb, & 5.4419e-07_rb, 4.3456e-07_rb, 3.6421e-07_rb, 3.1194e-07_rb, 2.5967e-07_rb, & 2.0740e-07_rb, 1.9146e-07_rb, 1.9364e-07_rb, 1.9582e-07_rb, 1.9800e-07_rb, & 7.6343e-07_rb, 6.5381e-07_rb/) chi_mls(4,1:12) = (/ & 3.2000e-07_rb, 3.2000e-07_rb, 3.2000e-07_rb, 3.2000e-07_rb, 3.2000e-07_rb, & 3.1965e-07_rb, 3.1532e-07_rb, 3.0383e-07_rb, 2.9422e-07_rb, 2.8495e-07_rb, & 2.7671e-07_rb, 2.6471e-07_rb/) chi_mls(4,13:59) = (/ & 2.4285e-07_rb, 2.0955e-07_rb, 1.7195e-07_rb, 1.3749e-07_rb, 1.1332e-07_rb, & 1.0035e-07_rb, 9.1281e-08_rb, 8.5463e-08_rb, 8.0363e-08_rb, 7.3372e-08_rb, & 6.5975e-08_rb, 5.6039e-08_rb, 4.7090e-08_rb, 3.9977e-08_rb, 3.2979e-08_rb, & 2.6064e-08_rb, 2.1066e-08_rb, 1.6592e-08_rb, 1.3017e-08_rb, 1.0090e-08_rb, & 7.6249e-09_rb, 6.1159e-09_rb, 4.6672e-09_rb, 3.2857e-09_rb, 2.8484e-09_rb, & 2.4620e-09_rb, 2.0756e-09_rb, 1.8551e-09_rb, 1.6568e-09_rb, 1.4584e-09_rb, & 1.3195e-09_rb, 1.2072e-09_rb, 1.0948e-09_rb, 9.9780e-10_rb, 9.3126e-10_rb, & 8.6472e-10_rb, 7.9818e-10_rb, 7.5138e-10_rb, 7.1367e-10_rb, 6.7596e-10_rb, & 6.3825e-10_rb, 6.0981e-10_rb, 5.8600e-10_rb, 5.6218e-10_rb, 5.3837e-10_rb, & 9.9780e-10_rb, 9.3126e-10_rb/) chi_mls(5,1:12) = (/ & 1.5000e-07_rb, 1.4306e-07_rb, 1.3474e-07_rb, 1.3061e-07_rb, 1.2793e-07_rb, & 1.2038e-07_rb, 1.0798e-07_rb, 9.4238e-08_rb, 7.9488e-08_rb, 6.1386e-08_rb, & 4.5563e-08_rb, 3.3475e-08_rb/) chi_mls(5,13:59) = (/ & 2.5118e-08_rb, 1.8671e-08_rb, 1.4349e-08_rb, 1.2501e-08_rb, 1.2407e-08_rb, & 1.3472e-08_rb, 1.4900e-08_rb, 1.6079e-08_rb, 1.7156e-08_rb, 1.8616e-08_rb, & 2.0106e-08_rb, 2.1654e-08_rb, 2.3096e-08_rb, 2.4340e-08_rb, 2.5643e-08_rb, & 2.6990e-08_rb, 2.8456e-08_rb, 2.9854e-08_rb, 3.0943e-08_rb, 3.2023e-08_rb, & 3.3101e-08_rb, 3.4260e-08_rb, 3.5360e-08_rb, 3.6397e-08_rb, 3.7310e-08_rb, & 3.8217e-08_rb, 3.9123e-08_rb, 4.1303e-08_rb, 4.3652e-08_rb, 4.6002e-08_rb, & 5.0289e-08_rb, 5.5446e-08_rb, 6.0603e-08_rb, 6.8946e-08_rb, 8.3652e-08_rb, & 9.8357e-08_rb, 1.1306e-07_rb, 1.4766e-07_rb, 1.9142e-07_rb, 2.3518e-07_rb, & 2.7894e-07_rb, 3.5001e-07_rb, 4.3469e-07_rb, 5.1938e-07_rb, 6.0407e-07_rb, & 6.8946e-08_rb, 8.3652e-08_rb/) chi_mls(6,1:12) = (/ & 1.7000e-06_rb, 1.7000e-06_rb, 1.6999e-06_rb, 1.6904e-06_rb, 1.6671e-06_rb, & 1.6351e-06_rb, 1.6098e-06_rb, 1.5590e-06_rb, 1.5120e-06_rb, 1.4741e-06_rb, & 1.4385e-06_rb, 1.4002e-06_rb/) chi_mls(6,13:59) = (/ & 1.3573e-06_rb, 1.3130e-06_rb, 1.2512e-06_rb, 1.1668e-06_rb, 1.0553e-06_rb, & 9.3281e-07_rb, 8.1217e-07_rb, 7.5239e-07_rb, 7.0728e-07_rb, 6.6722e-07_rb, & 6.2733e-07_rb, 5.8604e-07_rb, 5.4769e-07_rb, 5.1480e-07_rb, 4.8206e-07_rb, & 4.4943e-07_rb, 4.1702e-07_rb, 3.8460e-07_rb, 3.5200e-07_rb, 3.1926e-07_rb, & 2.8646e-07_rb, 2.5498e-07_rb, 2.2474e-07_rb, 1.9588e-07_rb, 1.8295e-07_rb, & 1.7089e-07_rb, 1.5882e-07_rb, 1.5536e-07_rb, 1.5304e-07_rb, 1.5072e-07_rb, & 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, & 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, & 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, & 1.5000e-07_rb, 1.5000e-07_rb/) chi_mls(7,1:12) = (/ & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb/) chi_mls(7,13:59) = (/ & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb/) ! end subroutine lwatmref !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lwavplank !------------------------------------------------------------------------------- ! save ! totplnk(1:50, 1) = (/ & 0.14783e-05_rb,0.15006e-05_rb,0.15230e-05_rb,0.15455e-05_rb,0.15681e-05_rb, & 0.15908e-05_rb,0.16136e-05_rb,0.16365e-05_rb,0.16595e-05_rb,0.16826e-05_rb, & 0.17059e-05_rb,0.17292e-05_rb,0.17526e-05_rb,0.17762e-05_rb,0.17998e-05_rb, & 0.18235e-05_rb,0.18473e-05_rb,0.18712e-05_rb,0.18953e-05_rb,0.19194e-05_rb, & 0.19435e-05_rb,0.19678e-05_rb,0.19922e-05_rb,0.20166e-05_rb,0.20412e-05_rb, & 0.20658e-05_rb,0.20905e-05_rb,0.21153e-05_rb,0.21402e-05_rb,0.21652e-05_rb, & 0.21902e-05_rb,0.22154e-05_rb,0.22406e-05_rb,0.22659e-05_rb,0.22912e-05_rb, & 0.23167e-05_rb,0.23422e-05_rb,0.23678e-05_rb,0.23934e-05_rb,0.24192e-05_rb, & 0.24450e-05_rb,0.24709e-05_rb,0.24968e-05_rb,0.25229e-05_rb,0.25490e-05_rb, & 0.25751e-05_rb,0.26014e-05_rb,0.26277e-05_rb,0.26540e-05_rb,0.26805e-05_rb/) totplnk(51:100, 1) = (/ & 0.27070e-05_rb,0.27335e-05_rb,0.27602e-05_rb,0.27869e-05_rb,0.28136e-05_rb, & 0.28404e-05_rb,0.28673e-05_rb,0.28943e-05_rb,0.29213e-05_rb,0.29483e-05_rb, & 0.29754e-05_rb,0.30026e-05_rb,0.30298e-05_rb,0.30571e-05_rb,0.30845e-05_rb, & 0.31119e-05_rb,0.31393e-05_rb,0.31669e-05_rb,0.31944e-05_rb,0.32220e-05_rb, & 0.32497e-05_rb,0.32774e-05_rb,0.33052e-05_rb,0.33330e-05_rb,0.33609e-05_rb, & 0.33888e-05_rb,0.34168e-05_rb,0.34448e-05_rb,0.34729e-05_rb,0.35010e-05_rb, & 0.35292e-05_rb,0.35574e-05_rb,0.35857e-05_rb,0.36140e-05_rb,0.36424e-05_rb, & 0.36708e-05_rb,0.36992e-05_rb,0.37277e-05_rb,0.37563e-05_rb,0.37848e-05_rb, & 0.38135e-05_rb,0.38421e-05_rb,0.38708e-05_rb,0.38996e-05_rb,0.39284e-05_rb, & 0.39572e-05_rb,0.39861e-05_rb,0.40150e-05_rb,0.40440e-05_rb,0.40730e-05_rb/) totplnk(101:150, 1) = (/ & 0.41020e-05_rb,0.41311e-05_rb,0.41602e-05_rb,0.41893e-05_rb,0.42185e-05_rb, & 0.42477e-05_rb,0.42770e-05_rb,0.43063e-05_rb,0.43356e-05_rb,0.43650e-05_rb, & 0.43944e-05_rb,0.44238e-05_rb,0.44533e-05_rb,0.44828e-05_rb,0.45124e-05_rb, & 0.45419e-05_rb,0.45715e-05_rb,0.46012e-05_rb,0.46309e-05_rb,0.46606e-05_rb, & 0.46903e-05_rb,0.47201e-05_rb,0.47499e-05_rb,0.47797e-05_rb,0.48096e-05_rb, & 0.48395e-05_rb,0.48695e-05_rb,0.48994e-05_rb,0.49294e-05_rb,0.49594e-05_rb, & 0.49895e-05_rb,0.50196e-05_rb,0.50497e-05_rb,0.50798e-05_rb,0.51100e-05_rb, & 0.51402e-05_rb,0.51704e-05_rb,0.52007e-05_rb,0.52309e-05_rb,0.52612e-05_rb, & 0.52916e-05_rb,0.53219e-05_rb,0.53523e-05_rb,0.53827e-05_rb,0.54132e-05_rb, & 0.54436e-05_rb,0.54741e-05_rb,0.55047e-05_rb,0.55352e-05_rb,0.55658e-05_rb/) totplnk(151:181, 1) = (/ & 0.55964e-05_rb,0.56270e-05_rb,0.56576e-05_rb,0.56883e-05_rb,0.57190e-05_rb, & 0.57497e-05_rb,0.57804e-05_rb,0.58112e-05_rb,0.58420e-05_rb,0.58728e-05_rb, & 0.59036e-05_rb,0.59345e-05_rb,0.59653e-05_rb,0.59962e-05_rb,0.60272e-05_rb, & 0.60581e-05_rb,0.60891e-05_rb,0.61201e-05_rb,0.61511e-05_rb,0.61821e-05_rb, & 0.62131e-05_rb,0.62442e-05_rb,0.62753e-05_rb,0.63064e-05_rb,0.63376e-05_rb, & 0.63687e-05_rb,0.63998e-05_rb,0.64310e-05_rb,0.64622e-05_rb,0.64935e-05_rb, & 0.65247e-05_rb/) totplnk(1:50, 2) = (/ & 0.20262e-05_rb,0.20757e-05_rb,0.21257e-05_rb,0.21763e-05_rb,0.22276e-05_rb, & 0.22794e-05_rb,0.23319e-05_rb,0.23849e-05_rb,0.24386e-05_rb,0.24928e-05_rb, & 0.25477e-05_rb,0.26031e-05_rb,0.26591e-05_rb,0.27157e-05_rb,0.27728e-05_rb, & 0.28306e-05_rb,0.28889e-05_rb,0.29478e-05_rb,0.30073e-05_rb,0.30673e-05_rb, & 0.31279e-05_rb,0.31890e-05_rb,0.32507e-05_rb,0.33129e-05_rb,0.33757e-05_rb, & 0.34391e-05_rb,0.35029e-05_rb,0.35674e-05_rb,0.36323e-05_rb,0.36978e-05_rb, & 0.37638e-05_rb,0.38304e-05_rb,0.38974e-05_rb,0.39650e-05_rb,0.40331e-05_rb, & 0.41017e-05_rb,0.41708e-05_rb,0.42405e-05_rb,0.43106e-05_rb,0.43812e-05_rb, & 0.44524e-05_rb,0.45240e-05_rb,0.45961e-05_rb,0.46687e-05_rb,0.47418e-05_rb, & 0.48153e-05_rb,0.48894e-05_rb,0.49639e-05_rb,0.50389e-05_rb,0.51143e-05_rb/) totplnk(51:100, 2) = (/ & 0.51902e-05_rb,0.52666e-05_rb,0.53434e-05_rb,0.54207e-05_rb,0.54985e-05_rb, & 0.55767e-05_rb,0.56553e-05_rb,0.57343e-05_rb,0.58139e-05_rb,0.58938e-05_rb, & 0.59742e-05_rb,0.60550e-05_rb,0.61362e-05_rb,0.62179e-05_rb,0.63000e-05_rb, & 0.63825e-05_rb,0.64654e-05_rb,0.65487e-05_rb,0.66324e-05_rb,0.67166e-05_rb, & 0.68011e-05_rb,0.68860e-05_rb,0.69714e-05_rb,0.70571e-05_rb,0.71432e-05_rb, & 0.72297e-05_rb,0.73166e-05_rb,0.74039e-05_rb,0.74915e-05_rb,0.75796e-05_rb, & 0.76680e-05_rb,0.77567e-05_rb,0.78459e-05_rb,0.79354e-05_rb,0.80252e-05_rb, & 0.81155e-05_rb,0.82061e-05_rb,0.82970e-05_rb,0.83883e-05_rb,0.84799e-05_rb, & 0.85719e-05_rb,0.86643e-05_rb,0.87569e-05_rb,0.88499e-05_rb,0.89433e-05_rb, & 0.90370e-05_rb,0.91310e-05_rb,0.92254e-05_rb,0.93200e-05_rb,0.94150e-05_rb/) totplnk(101:150, 2) = (/ & 0.95104e-05_rb,0.96060e-05_rb,0.97020e-05_rb,0.97982e-05_rb,0.98948e-05_rb, & 0.99917e-05_rb,0.10089e-04_rb,0.10186e-04_rb,0.10284e-04_rb,0.10382e-04_rb, & 0.10481e-04_rb,0.10580e-04_rb,0.10679e-04_rb,0.10778e-04_rb,0.10877e-04_rb, & 0.10977e-04_rb,0.11077e-04_rb,0.11178e-04_rb,0.11279e-04_rb,0.11380e-04_rb, & 0.11481e-04_rb,0.11583e-04_rb,0.11684e-04_rb,0.11786e-04_rb,0.11889e-04_rb, & 0.11992e-04_rb,0.12094e-04_rb,0.12198e-04_rb,0.12301e-04_rb,0.12405e-04_rb, & 0.12509e-04_rb,0.12613e-04_rb,0.12717e-04_rb,0.12822e-04_rb,0.12927e-04_rb, & 0.13032e-04_rb,0.13138e-04_rb,0.13244e-04_rb,0.13349e-04_rb,0.13456e-04_rb, & 0.13562e-04_rb,0.13669e-04_rb,0.13776e-04_rb,0.13883e-04_rb,0.13990e-04_rb, & 0.14098e-04_rb,0.14206e-04_rb,0.14314e-04_rb,0.14422e-04_rb,0.14531e-04_rb/) totplnk(151:181, 2) = (/ & 0.14639e-04_rb,0.14748e-04_rb,0.14857e-04_rb,0.14967e-04_rb,0.15076e-04_rb, & 0.15186e-04_rb,0.15296e-04_rb,0.15407e-04_rb,0.15517e-04_rb,0.15628e-04_rb, & 0.15739e-04_rb,0.15850e-04_rb,0.15961e-04_rb,0.16072e-04_rb,0.16184e-04_rb, & 0.16296e-04_rb,0.16408e-04_rb,0.16521e-04_rb,0.16633e-04_rb,0.16746e-04_rb, & 0.16859e-04_rb,0.16972e-04_rb,0.17085e-04_rb,0.17198e-04_rb,0.17312e-04_rb, & 0.17426e-04_rb,0.17540e-04_rb,0.17654e-04_rb,0.17769e-04_rb,0.17883e-04_rb, & 0.17998e-04_rb/) totplnk(1:50, 3) = (/ & 1.34822e-06_rb,1.39134e-06_rb,1.43530e-06_rb,1.48010e-06_rb,1.52574e-06_rb, & 1.57222e-06_rb,1.61956e-06_rb,1.66774e-06_rb,1.71678e-06_rb,1.76666e-06_rb, & 1.81741e-06_rb,1.86901e-06_rb,1.92147e-06_rb,1.97479e-06_rb,2.02898e-06_rb, & 2.08402e-06_rb,2.13993e-06_rb,2.19671e-06_rb,2.25435e-06_rb,2.31285e-06_rb, & 2.37222e-06_rb,2.43246e-06_rb,2.49356e-06_rb,2.55553e-06_rb,2.61837e-06_rb, & 2.68207e-06_rb,2.74664e-06_rb,2.81207e-06_rb,2.87837e-06_rb,2.94554e-06_rb, & 3.01356e-06_rb,3.08245e-06_rb,3.15221e-06_rb,3.22282e-06_rb,3.29429e-06_rb, & 3.36662e-06_rb,3.43982e-06_rb,3.51386e-06_rb,3.58876e-06_rb,3.66451e-06_rb, & 3.74112e-06_rb,3.81857e-06_rb,3.89688e-06_rb,3.97602e-06_rb,4.05601e-06_rb, & 4.13685e-06_rb,4.21852e-06_rb,4.30104e-06_rb,4.38438e-06_rb,4.46857e-06_rb/) totplnk(51:100, 3) = (/ & 4.55358e-06_rb,4.63943e-06_rb,4.72610e-06_rb,4.81359e-06_rb,4.90191e-06_rb, & 4.99105e-06_rb,5.08100e-06_rb,5.17176e-06_rb,5.26335e-06_rb,5.35573e-06_rb, & 5.44892e-06_rb,5.54292e-06_rb,5.63772e-06_rb,5.73331e-06_rb,5.82970e-06_rb, & 5.92688e-06_rb,6.02485e-06_rb,6.12360e-06_rb,6.22314e-06_rb,6.32346e-06_rb, & 6.42455e-06_rb,6.52641e-06_rb,6.62906e-06_rb,6.73247e-06_rb,6.83664e-06_rb, & 6.94156e-06_rb,7.04725e-06_rb,7.15370e-06_rb,7.26089e-06_rb,7.36883e-06_rb, & 7.47752e-06_rb,7.58695e-06_rb,7.69712e-06_rb,7.80801e-06_rb,7.91965e-06_rb, & 8.03201e-06_rb,8.14510e-06_rb,8.25891e-06_rb,8.37343e-06_rb,8.48867e-06_rb, & 8.60463e-06_rb,8.72128e-06_rb,8.83865e-06_rb,8.95672e-06_rb,9.07548e-06_rb, & 9.19495e-06_rb,9.31510e-06_rb,9.43594e-06_rb,9.55745e-06_rb,9.67966e-06_rb/) totplnk(101:150, 3) = (/ & 9.80254e-06_rb,9.92609e-06_rb,1.00503e-05_rb,1.01752e-05_rb,1.03008e-05_rb, & 1.04270e-05_rb,1.05539e-05_rb,1.06814e-05_rb,1.08096e-05_rb,1.09384e-05_rb, & 1.10679e-05_rb,1.11980e-05_rb,1.13288e-05_rb,1.14601e-05_rb,1.15922e-05_rb, & 1.17248e-05_rb,1.18581e-05_rb,1.19920e-05_rb,1.21265e-05_rb,1.22616e-05_rb, & 1.23973e-05_rb,1.25337e-05_rb,1.26706e-05_rb,1.28081e-05_rb,1.29463e-05_rb, & 1.30850e-05_rb,1.32243e-05_rb,1.33642e-05_rb,1.35047e-05_rb,1.36458e-05_rb, & 1.37875e-05_rb,1.39297e-05_rb,1.40725e-05_rb,1.42159e-05_rb,1.43598e-05_rb, & 1.45044e-05_rb,1.46494e-05_rb,1.47950e-05_rb,1.49412e-05_rb,1.50879e-05_rb, & 1.52352e-05_rb,1.53830e-05_rb,1.55314e-05_rb,1.56803e-05_rb,1.58297e-05_rb, & 1.59797e-05_rb,1.61302e-05_rb,1.62812e-05_rb,1.64327e-05_rb,1.65848e-05_rb/) totplnk(151:181, 3) = (/ & 1.67374e-05_rb,1.68904e-05_rb,1.70441e-05_rb,1.71982e-05_rb,1.73528e-05_rb, & 1.75079e-05_rb,1.76635e-05_rb,1.78197e-05_rb,1.79763e-05_rb,1.81334e-05_rb, & 1.82910e-05_rb,1.84491e-05_rb,1.86076e-05_rb,1.87667e-05_rb,1.89262e-05_rb, & 1.90862e-05_rb,1.92467e-05_rb,1.94076e-05_rb,1.95690e-05_rb,1.97309e-05_rb, & 1.98932e-05_rb,2.00560e-05_rb,2.02193e-05_rb,2.03830e-05_rb,2.05472e-05_rb, & 2.07118e-05_rb,2.08768e-05_rb,2.10423e-05_rb,2.12083e-05_rb,2.13747e-05_rb, & 2.15414e-05_rb/) totplnk(1:50, 4) = (/ & 8.90528e-07_rb,9.24222e-07_rb,9.58757e-07_rb,9.94141e-07_rb,1.03038e-06_rb, & 1.06748e-06_rb,1.10545e-06_rb,1.14430e-06_rb,1.18403e-06_rb,1.22465e-06_rb, & 1.26618e-06_rb,1.30860e-06_rb,1.35193e-06_rb,1.39619e-06_rb,1.44136e-06_rb, & 1.48746e-06_rb,1.53449e-06_rb,1.58246e-06_rb,1.63138e-06_rb,1.68124e-06_rb, & 1.73206e-06_rb,1.78383e-06_rb,1.83657e-06_rb,1.89028e-06_rb,1.94495e-06_rb, & 2.00060e-06_rb,2.05724e-06_rb,2.11485e-06_rb,2.17344e-06_rb,2.23303e-06_rb, & 2.29361e-06_rb,2.35519e-06_rb,2.41777e-06_rb,2.48134e-06_rb,2.54592e-06_rb, & 2.61151e-06_rb,2.67810e-06_rb,2.74571e-06_rb,2.81433e-06_rb,2.88396e-06_rb, & 2.95461e-06_rb,3.02628e-06_rb,3.09896e-06_rb,3.17267e-06_rb,3.24741e-06_rb, & 3.32316e-06_rb,3.39994e-06_rb,3.47774e-06_rb,3.55657e-06_rb,3.63642e-06_rb/) totplnk(51:100, 4) = (/ & 3.71731e-06_rb,3.79922e-06_rb,3.88216e-06_rb,3.96612e-06_rb,4.05112e-06_rb, & 4.13714e-06_rb,4.22419e-06_rb,4.31227e-06_rb,4.40137e-06_rb,4.49151e-06_rb, & 4.58266e-06_rb,4.67485e-06_rb,4.76806e-06_rb,4.86229e-06_rb,4.95754e-06_rb, & 5.05383e-06_rb,5.15113e-06_rb,5.24946e-06_rb,5.34879e-06_rb,5.44916e-06_rb, & 5.55053e-06_rb,5.65292e-06_rb,5.75632e-06_rb,5.86073e-06_rb,5.96616e-06_rb, & 6.07260e-06_rb,6.18003e-06_rb,6.28848e-06_rb,6.39794e-06_rb,6.50838e-06_rb, & 6.61983e-06_rb,6.73229e-06_rb,6.84573e-06_rb,6.96016e-06_rb,7.07559e-06_rb, & 7.19200e-06_rb,7.30940e-06_rb,7.42779e-06_rb,7.54715e-06_rb,7.66749e-06_rb, & 7.78882e-06_rb,7.91110e-06_rb,8.03436e-06_rb,8.15859e-06_rb,8.28379e-06_rb, & 8.40994e-06_rb,8.53706e-06_rb,8.66515e-06_rb,8.79418e-06_rb,8.92416e-06_rb/) totplnk(101:150, 4) = (/ & 9.05510e-06_rb,9.18697e-06_rb,9.31979e-06_rb,9.45356e-06_rb,9.58826e-06_rb, & 9.72389e-06_rb,9.86046e-06_rb,9.99793e-06_rb,1.01364e-05_rb,1.02757e-05_rb, & 1.04159e-05_rb,1.05571e-05_rb,1.06992e-05_rb,1.08422e-05_rb,1.09861e-05_rb, & 1.11309e-05_rb,1.12766e-05_rb,1.14232e-05_rb,1.15707e-05_rb,1.17190e-05_rb, & 1.18683e-05_rb,1.20184e-05_rb,1.21695e-05_rb,1.23214e-05_rb,1.24741e-05_rb, & 1.26277e-05_rb,1.27822e-05_rb,1.29376e-05_rb,1.30939e-05_rb,1.32509e-05_rb, & 1.34088e-05_rb,1.35676e-05_rb,1.37273e-05_rb,1.38877e-05_rb,1.40490e-05_rb, & 1.42112e-05_rb,1.43742e-05_rb,1.45380e-05_rb,1.47026e-05_rb,1.48680e-05_rb, & 1.50343e-05_rb,1.52014e-05_rb,1.53692e-05_rb,1.55379e-05_rb,1.57074e-05_rb, & 1.58778e-05_rb,1.60488e-05_rb,1.62207e-05_rb,1.63934e-05_rb,1.65669e-05_rb/) totplnk(151:181, 4) = (/ & 1.67411e-05_rb,1.69162e-05_rb,1.70920e-05_rb,1.72685e-05_rb,1.74459e-05_rb, & 1.76240e-05_rb,1.78029e-05_rb,1.79825e-05_rb,1.81629e-05_rb,1.83440e-05_rb, & 1.85259e-05_rb,1.87086e-05_rb,1.88919e-05_rb,1.90760e-05_rb,1.92609e-05_rb, & 1.94465e-05_rb,1.96327e-05_rb,1.98199e-05_rb,2.00076e-05_rb,2.01961e-05_rb, & 2.03853e-05_rb,2.05752e-05_rb,2.07658e-05_rb,2.09571e-05_rb,2.11491e-05_rb, & 2.13418e-05_rb,2.15352e-05_rb,2.17294e-05_rb,2.19241e-05_rb,2.21196e-05_rb, & 2.23158e-05_rb/) totplnk(1:50, 5) = (/ & 5.70230e-07_rb,5.94788e-07_rb,6.20085e-07_rb,6.46130e-07_rb,6.72936e-07_rb, & 7.00512e-07_rb,7.28869e-07_rb,7.58019e-07_rb,7.87971e-07_rb,8.18734e-07_rb, & 8.50320e-07_rb,8.82738e-07_rb,9.15999e-07_rb,9.50110e-07_rb,9.85084e-07_rb, & 1.02093e-06_rb,1.05765e-06_rb,1.09527e-06_rb,1.13378e-06_rb,1.17320e-06_rb, & 1.21353e-06_rb,1.25479e-06_rb,1.29698e-06_rb,1.34011e-06_rb,1.38419e-06_rb, & 1.42923e-06_rb,1.47523e-06_rb,1.52221e-06_rb,1.57016e-06_rb,1.61910e-06_rb, & 1.66904e-06_rb,1.71997e-06_rb,1.77192e-06_rb,1.82488e-06_rb,1.87886e-06_rb, & 1.93387e-06_rb,1.98991e-06_rb,2.04699e-06_rb,2.10512e-06_rb,2.16430e-06_rb, & 2.22454e-06_rb,2.28584e-06_rb,2.34821e-06_rb,2.41166e-06_rb,2.47618e-06_rb, & 2.54178e-06_rb,2.60847e-06_rb,2.67626e-06_rb,2.74514e-06_rb,2.81512e-06_rb/) totplnk(51:100, 5) = (/ & 2.88621e-06_rb,2.95841e-06_rb,3.03172e-06_rb,3.10615e-06_rb,3.18170e-06_rb, & 3.25838e-06_rb,3.33618e-06_rb,3.41511e-06_rb,3.49518e-06_rb,3.57639e-06_rb, & 3.65873e-06_rb,3.74221e-06_rb,3.82684e-06_rb,3.91262e-06_rb,3.99955e-06_rb, & 4.08763e-06_rb,4.17686e-06_rb,4.26725e-06_rb,4.35880e-06_rb,4.45150e-06_rb, & 4.54537e-06_rb,4.64039e-06_rb,4.73659e-06_rb,4.83394e-06_rb,4.93246e-06_rb, & 5.03215e-06_rb,5.13301e-06_rb,5.23504e-06_rb,5.33823e-06_rb,5.44260e-06_rb, & 5.54814e-06_rb,5.65484e-06_rb,5.76272e-06_rb,5.87177e-06_rb,5.98199e-06_rb, & 6.09339e-06_rb,6.20596e-06_rb,6.31969e-06_rb,6.43460e-06_rb,6.55068e-06_rb, & 6.66793e-06_rb,6.78636e-06_rb,6.90595e-06_rb,7.02670e-06_rb,7.14863e-06_rb, & 7.27173e-06_rb,7.39599e-06_rb,7.52142e-06_rb,7.64802e-06_rb,7.77577e-06_rb/) totplnk(101:150, 5) = (/ & 7.90469e-06_rb,8.03477e-06_rb,8.16601e-06_rb,8.29841e-06_rb,8.43198e-06_rb, & 8.56669e-06_rb,8.70256e-06_rb,8.83957e-06_rb,8.97775e-06_rb,9.11706e-06_rb, & 9.25753e-06_rb,9.39915e-06_rb,9.54190e-06_rb,9.68580e-06_rb,9.83085e-06_rb, & 9.97704e-06_rb,1.01243e-05_rb,1.02728e-05_rb,1.04224e-05_rb,1.05731e-05_rb, & 1.07249e-05_rb,1.08779e-05_rb,1.10320e-05_rb,1.11872e-05_rb,1.13435e-05_rb, & 1.15009e-05_rb,1.16595e-05_rb,1.18191e-05_rb,1.19799e-05_rb,1.21418e-05_rb, & 1.23048e-05_rb,1.24688e-05_rb,1.26340e-05_rb,1.28003e-05_rb,1.29676e-05_rb, & 1.31361e-05_rb,1.33056e-05_rb,1.34762e-05_rb,1.36479e-05_rb,1.38207e-05_rb, & 1.39945e-05_rb,1.41694e-05_rb,1.43454e-05_rb,1.45225e-05_rb,1.47006e-05_rb, & 1.48797e-05_rb,1.50600e-05_rb,1.52413e-05_rb,1.54236e-05_rb,1.56070e-05_rb/) totplnk(151:181, 5) = (/ & 1.57914e-05_rb,1.59768e-05_rb,1.61633e-05_rb,1.63509e-05_rb,1.65394e-05_rb, & 1.67290e-05_rb,1.69197e-05_rb,1.71113e-05_rb,1.73040e-05_rb,1.74976e-05_rb, & 1.76923e-05_rb,1.78880e-05_rb,1.80847e-05_rb,1.82824e-05_rb,1.84811e-05_rb, & 1.86808e-05_rb,1.88814e-05_rb,1.90831e-05_rb,1.92857e-05_rb,1.94894e-05_rb, & 1.96940e-05_rb,1.98996e-05_rb,2.01061e-05_rb,2.03136e-05_rb,2.05221e-05_rb, & 2.07316e-05_rb,2.09420e-05_rb,2.11533e-05_rb,2.13657e-05_rb,2.15789e-05_rb, & 2.17931e-05_rb/) totplnk(1:50, 6) = (/ & 2.73493e-07_rb,2.87408e-07_rb,3.01848e-07_rb,3.16825e-07_rb,3.32352e-07_rb, & 3.48439e-07_rb,3.65100e-07_rb,3.82346e-07_rb,4.00189e-07_rb,4.18641e-07_rb, & 4.37715e-07_rb,4.57422e-07_rb,4.77774e-07_rb,4.98784e-07_rb,5.20464e-07_rb, & 5.42824e-07_rb,5.65879e-07_rb,5.89638e-07_rb,6.14115e-07_rb,6.39320e-07_rb, & 6.65266e-07_rb,6.91965e-07_rb,7.19427e-07_rb,7.47666e-07_rb,7.76691e-07_rb, & 8.06516e-07_rb,8.37151e-07_rb,8.68607e-07_rb,9.00896e-07_rb,9.34029e-07_rb, & 9.68018e-07_rb,1.00287e-06_rb,1.03860e-06_rb,1.07522e-06_rb,1.11274e-06_rb, & 1.15117e-06_rb,1.19052e-06_rb,1.23079e-06_rb,1.27201e-06_rb,1.31418e-06_rb, & 1.35731e-06_rb,1.40141e-06_rb,1.44650e-06_rb,1.49257e-06_rb,1.53965e-06_rb, & 1.58773e-06_rb,1.63684e-06_rb,1.68697e-06_rb,1.73815e-06_rb,1.79037e-06_rb/) totplnk(51:100, 6) = (/ & 1.84365e-06_rb,1.89799e-06_rb,1.95341e-06_rb,2.00991e-06_rb,2.06750e-06_rb, & 2.12619e-06_rb,2.18599e-06_rb,2.24691e-06_rb,2.30895e-06_rb,2.37212e-06_rb, & 2.43643e-06_rb,2.50189e-06_rb,2.56851e-06_rb,2.63628e-06_rb,2.70523e-06_rb, & 2.77536e-06_rb,2.84666e-06_rb,2.91916e-06_rb,2.99286e-06_rb,3.06776e-06_rb, & 3.14387e-06_rb,3.22120e-06_rb,3.29975e-06_rb,3.37953e-06_rb,3.46054e-06_rb, & 3.54280e-06_rb,3.62630e-06_rb,3.71105e-06_rb,3.79707e-06_rb,3.88434e-06_rb, & 3.97288e-06_rb,4.06270e-06_rb,4.15380e-06_rb,4.24617e-06_rb,4.33984e-06_rb, & 4.43479e-06_rb,4.53104e-06_rb,4.62860e-06_rb,4.72746e-06_rb,4.82763e-06_rb, & 4.92911e-06_rb,5.03191e-06_rb,5.13603e-06_rb,5.24147e-06_rb,5.34824e-06_rb, & 5.45634e-06_rb,5.56578e-06_rb,5.67656e-06_rb,5.78867e-06_rb,5.90213e-06_rb/) totplnk(101:150, 6) = (/ & 6.01694e-06_rb,6.13309e-06_rb,6.25060e-06_rb,6.36947e-06_rb,6.48968e-06_rb, & 6.61126e-06_rb,6.73420e-06_rb,6.85850e-06_rb,6.98417e-06_rb,7.11120e-06_rb, & 7.23961e-06_rb,7.36938e-06_rb,7.50053e-06_rb,7.63305e-06_rb,7.76694e-06_rb, & 7.90221e-06_rb,8.03887e-06_rb,8.17690e-06_rb,8.31632e-06_rb,8.45710e-06_rb, & 8.59928e-06_rb,8.74282e-06_rb,8.88776e-06_rb,9.03409e-06_rb,9.18179e-06_rb, & 9.33088e-06_rb,9.48136e-06_rb,9.63323e-06_rb,9.78648e-06_rb,9.94111e-06_rb, & 1.00971e-05_rb,1.02545e-05_rb,1.04133e-05_rb,1.05735e-05_rb,1.07351e-05_rb, & 1.08980e-05_rb,1.10624e-05_rb,1.12281e-05_rb,1.13952e-05_rb,1.15637e-05_rb, & 1.17335e-05_rb,1.19048e-05_rb,1.20774e-05_rb,1.22514e-05_rb,1.24268e-05_rb, & 1.26036e-05_rb,1.27817e-05_rb,1.29612e-05_rb,1.31421e-05_rb,1.33244e-05_rb/) totplnk(151:181, 6) = (/ & 1.35080e-05_rb,1.36930e-05_rb,1.38794e-05_rb,1.40672e-05_rb,1.42563e-05_rb, & 1.44468e-05_rb,1.46386e-05_rb,1.48318e-05_rb,1.50264e-05_rb,1.52223e-05_rb, & 1.54196e-05_rb,1.56182e-05_rb,1.58182e-05_rb,1.60196e-05_rb,1.62223e-05_rb, & 1.64263e-05_rb,1.66317e-05_rb,1.68384e-05_rb,1.70465e-05_rb,1.72559e-05_rb, & 1.74666e-05_rb,1.76787e-05_rb,1.78921e-05_rb,1.81069e-05_rb,1.83230e-05_rb, & 1.85404e-05_rb,1.87591e-05_rb,1.89791e-05_rb,1.92005e-05_rb,1.94232e-05_rb, & 1.96471e-05_rb/) totplnk(1:50, 7) = (/ & 1.25349e-07_rb,1.32735e-07_rb,1.40458e-07_rb,1.48527e-07_rb,1.56954e-07_rb, & 1.65748e-07_rb,1.74920e-07_rb,1.84481e-07_rb,1.94443e-07_rb,2.04814e-07_rb, & 2.15608e-07_rb,2.26835e-07_rb,2.38507e-07_rb,2.50634e-07_rb,2.63229e-07_rb, & 2.76301e-07_rb,2.89864e-07_rb,3.03930e-07_rb,3.18508e-07_rb,3.33612e-07_rb, & 3.49253e-07_rb,3.65443e-07_rb,3.82195e-07_rb,3.99519e-07_rb,4.17428e-07_rb, & 4.35934e-07_rb,4.55050e-07_rb,4.74785e-07_rb,4.95155e-07_rb,5.16170e-07_rb, & 5.37844e-07_rb,5.60186e-07_rb,5.83211e-07_rb,6.06929e-07_rb,6.31355e-07_rb, & 6.56498e-07_rb,6.82373e-07_rb,7.08990e-07_rb,7.36362e-07_rb,7.64501e-07_rb, & 7.93420e-07_rb,8.23130e-07_rb,8.53643e-07_rb,8.84971e-07_rb,9.17128e-07_rb, & 9.50123e-07_rb,9.83969e-07_rb,1.01868e-06_rb,1.05426e-06_rb,1.09073e-06_rb/) totplnk(51:100, 7) = (/ & 1.12810e-06_rb,1.16638e-06_rb,1.20558e-06_rb,1.24572e-06_rb,1.28680e-06_rb, & 1.32883e-06_rb,1.37183e-06_rb,1.41581e-06_rb,1.46078e-06_rb,1.50675e-06_rb, & 1.55374e-06_rb,1.60174e-06_rb,1.65078e-06_rb,1.70087e-06_rb,1.75200e-06_rb, & 1.80421e-06_rb,1.85749e-06_rb,1.91186e-06_rb,1.96732e-06_rb,2.02389e-06_rb, & 2.08159e-06_rb,2.14040e-06_rb,2.20035e-06_rb,2.26146e-06_rb,2.32372e-06_rb, & 2.38714e-06_rb,2.45174e-06_rb,2.51753e-06_rb,2.58451e-06_rb,2.65270e-06_rb, & 2.72210e-06_rb,2.79272e-06_rb,2.86457e-06_rb,2.93767e-06_rb,3.01201e-06_rb, & 3.08761e-06_rb,3.16448e-06_rb,3.24261e-06_rb,3.32204e-06_rb,3.40275e-06_rb, & 3.48476e-06_rb,3.56808e-06_rb,3.65271e-06_rb,3.73866e-06_rb,3.82595e-06_rb, & 3.91456e-06_rb,4.00453e-06_rb,4.09584e-06_rb,4.18851e-06_rb,4.28254e-06_rb/) totplnk(101:150, 7) = (/ & 4.37796e-06_rb,4.47475e-06_rb,4.57293e-06_rb,4.67249e-06_rb,4.77346e-06_rb, & 4.87583e-06_rb,4.97961e-06_rb,5.08481e-06_rb,5.19143e-06_rb,5.29948e-06_rb, & 5.40896e-06_rb,5.51989e-06_rb,5.63226e-06_rb,5.74608e-06_rb,5.86136e-06_rb, & 5.97810e-06_rb,6.09631e-06_rb,6.21597e-06_rb,6.33713e-06_rb,6.45976e-06_rb, & 6.58388e-06_rb,6.70950e-06_rb,6.83661e-06_rb,6.96521e-06_rb,7.09531e-06_rb, & 7.22692e-06_rb,7.36005e-06_rb,7.49468e-06_rb,7.63084e-06_rb,7.76851e-06_rb, & 7.90773e-06_rb,8.04846e-06_rb,8.19072e-06_rb,8.33452e-06_rb,8.47985e-06_rb, & 8.62674e-06_rb,8.77517e-06_rb,8.92514e-06_rb,9.07666e-06_rb,9.22975e-06_rb, & 9.38437e-06_rb,9.54057e-06_rb,9.69832e-06_rb,9.85762e-06_rb,1.00185e-05_rb, & 1.01810e-05_rb,1.03450e-05_rb,1.05106e-05_rb,1.06777e-05_rb,1.08465e-05_rb/) totplnk(151:181, 7) = (/ & 1.10168e-05_rb,1.11887e-05_rb,1.13621e-05_rb,1.15372e-05_rb,1.17138e-05_rb, & 1.18920e-05_rb,1.20718e-05_rb,1.22532e-05_rb,1.24362e-05_rb,1.26207e-05_rb, & 1.28069e-05_rb,1.29946e-05_rb,1.31839e-05_rb,1.33749e-05_rb,1.35674e-05_rb, & 1.37615e-05_rb,1.39572e-05_rb,1.41544e-05_rb,1.43533e-05_rb,1.45538e-05_rb, & 1.47558e-05_rb,1.49595e-05_rb,1.51647e-05_rb,1.53716e-05_rb,1.55800e-05_rb, & 1.57900e-05_rb,1.60017e-05_rb,1.62149e-05_rb,1.64296e-05_rb,1.66460e-05_rb, & 1.68640e-05_rb/) totplnk(1:50, 8) = (/ & 6.74445e-08_rb,7.18176e-08_rb,7.64153e-08_rb,8.12456e-08_rb,8.63170e-08_rb, & 9.16378e-08_rb,9.72168e-08_rb,1.03063e-07_rb,1.09184e-07_rb,1.15591e-07_rb, & 1.22292e-07_rb,1.29296e-07_rb,1.36613e-07_rb,1.44253e-07_rb,1.52226e-07_rb, & 1.60540e-07_rb,1.69207e-07_rb,1.78236e-07_rb,1.87637e-07_rb,1.97421e-07_rb, & 2.07599e-07_rb,2.18181e-07_rb,2.29177e-07_rb,2.40598e-07_rb,2.52456e-07_rb, & 2.64761e-07_rb,2.77523e-07_rb,2.90755e-07_rb,3.04468e-07_rb,3.18673e-07_rb, & 3.33381e-07_rb,3.48603e-07_rb,3.64352e-07_rb,3.80638e-07_rb,3.97474e-07_rb, & 4.14871e-07_rb,4.32841e-07_rb,4.51395e-07_rb,4.70547e-07_rb,4.90306e-07_rb, & 5.10687e-07_rb,5.31699e-07_rb,5.53357e-07_rb,5.75670e-07_rb,5.98652e-07_rb, & 6.22315e-07_rb,6.46672e-07_rb,6.71731e-07_rb,6.97511e-07_rb,7.24018e-07_rb/) totplnk(51:100, 8) = (/ & 7.51266e-07_rb,7.79269e-07_rb,8.08038e-07_rb,8.37584e-07_rb,8.67922e-07_rb, & 8.99061e-07_rb,9.31016e-07_rb,9.63797e-07_rb,9.97417e-07_rb,1.03189e-06_rb, & 1.06722e-06_rb,1.10343e-06_rb,1.14053e-06_rb,1.17853e-06_rb,1.21743e-06_rb, & 1.25726e-06_rb,1.29803e-06_rb,1.33974e-06_rb,1.38241e-06_rb,1.42606e-06_rb, & 1.47068e-06_rb,1.51630e-06_rb,1.56293e-06_rb,1.61056e-06_rb,1.65924e-06_rb, & 1.70894e-06_rb,1.75971e-06_rb,1.81153e-06_rb,1.86443e-06_rb,1.91841e-06_rb, & 1.97350e-06_rb,2.02968e-06_rb,2.08699e-06_rb,2.14543e-06_rb,2.20500e-06_rb, & 2.26573e-06_rb,2.32762e-06_rb,2.39068e-06_rb,2.45492e-06_rb,2.52036e-06_rb, & 2.58700e-06_rb,2.65485e-06_rb,2.72393e-06_rb,2.79424e-06_rb,2.86580e-06_rb, & 2.93861e-06_rb,3.01269e-06_rb,3.08803e-06_rb,3.16467e-06_rb,3.24259e-06_rb/) totplnk(101:150, 8) = (/ & 3.32181e-06_rb,3.40235e-06_rb,3.48420e-06_rb,3.56739e-06_rb,3.65192e-06_rb, & 3.73779e-06_rb,3.82502e-06_rb,3.91362e-06_rb,4.00359e-06_rb,4.09494e-06_rb, & 4.18768e-06_rb,4.28182e-06_rb,4.37737e-06_rb,4.47434e-06_rb,4.57273e-06_rb, & 4.67254e-06_rb,4.77380e-06_rb,4.87651e-06_rb,4.98067e-06_rb,5.08630e-06_rb, & 5.19339e-06_rb,5.30196e-06_rb,5.41201e-06_rb,5.52356e-06_rb,5.63660e-06_rb, & 5.75116e-06_rb,5.86722e-06_rb,5.98479e-06_rb,6.10390e-06_rb,6.22453e-06_rb, & 6.34669e-06_rb,6.47042e-06_rb,6.59569e-06_rb,6.72252e-06_rb,6.85090e-06_rb, & 6.98085e-06_rb,7.11238e-06_rb,7.24549e-06_rb,7.38019e-06_rb,7.51646e-06_rb, & 7.65434e-06_rb,7.79382e-06_rb,7.93490e-06_rb,8.07760e-06_rb,8.22192e-06_rb, & 8.36784e-06_rb,8.51540e-06_rb,8.66459e-06_rb,8.81542e-06_rb,8.96786e-06_rb/) totplnk(151:181, 8) = (/ & 9.12197e-06_rb,9.27772e-06_rb,9.43513e-06_rb,9.59419e-06_rb,9.75490e-06_rb, & 9.91728e-06_rb,1.00813e-05_rb,1.02471e-05_rb,1.04144e-05_rb,1.05835e-05_rb, & 1.07543e-05_rb,1.09267e-05_rb,1.11008e-05_rb,1.12766e-05_rb,1.14541e-05_rb, & 1.16333e-05_rb,1.18142e-05_rb,1.19969e-05_rb,1.21812e-05_rb,1.23672e-05_rb, & 1.25549e-05_rb,1.27443e-05_rb,1.29355e-05_rb,1.31284e-05_rb,1.33229e-05_rb, & 1.35193e-05_rb,1.37173e-05_rb,1.39170e-05_rb,1.41185e-05_rb,1.43217e-05_rb, & 1.45267e-05_rb/) totplnk(1:50, 9) = (/ & 2.61522e-08_rb,2.80613e-08_rb,3.00838e-08_rb,3.22250e-08_rb,3.44899e-08_rb, & 3.68841e-08_rb,3.94129e-08_rb,4.20820e-08_rb,4.48973e-08_rb,4.78646e-08_rb, & 5.09901e-08_rb,5.42799e-08_rb,5.77405e-08_rb,6.13784e-08_rb,6.52001e-08_rb, & 6.92126e-08_rb,7.34227e-08_rb,7.78375e-08_rb,8.24643e-08_rb,8.73103e-08_rb, & 9.23832e-08_rb,9.76905e-08_rb,1.03240e-07_rb,1.09039e-07_rb,1.15097e-07_rb, & 1.21421e-07_rb,1.28020e-07_rb,1.34902e-07_rb,1.42075e-07_rb,1.49548e-07_rb, & 1.57331e-07_rb,1.65432e-07_rb,1.73860e-07_rb,1.82624e-07_rb,1.91734e-07_rb, & 2.01198e-07_rb,2.11028e-07_rb,2.21231e-07_rb,2.31818e-07_rb,2.42799e-07_rb, & 2.54184e-07_rb,2.65983e-07_rb,2.78205e-07_rb,2.90862e-07_rb,3.03963e-07_rb, & 3.17519e-07_rb,3.31541e-07_rb,3.46039e-07_rb,3.61024e-07_rb,3.76507e-07_rb/) totplnk(51:100, 9) = (/ & 3.92498e-07_rb,4.09008e-07_rb,4.26050e-07_rb,4.43633e-07_rb,4.61769e-07_rb, & 4.80469e-07_rb,4.99744e-07_rb,5.19606e-07_rb,5.40067e-07_rb,5.61136e-07_rb, & 5.82828e-07_rb,6.05152e-07_rb,6.28120e-07_rb,6.51745e-07_rb,6.76038e-07_rb, & 7.01010e-07_rb,7.26674e-07_rb,7.53041e-07_rb,7.80124e-07_rb,8.07933e-07_rb, & 8.36482e-07_rb,8.65781e-07_rb,8.95845e-07_rb,9.26683e-07_rb,9.58308e-07_rb, & 9.90732e-07_rb,1.02397e-06_rb,1.05803e-06_rb,1.09292e-06_rb,1.12866e-06_rb, & 1.16526e-06_rb,1.20274e-06_rb,1.24109e-06_rb,1.28034e-06_rb,1.32050e-06_rb, & 1.36158e-06_rb,1.40359e-06_rb,1.44655e-06_rb,1.49046e-06_rb,1.53534e-06_rb, & 1.58120e-06_rb,1.62805e-06_rb,1.67591e-06_rb,1.72478e-06_rb,1.77468e-06_rb, & 1.82561e-06_rb,1.87760e-06_rb,1.93066e-06_rb,1.98479e-06_rb,2.04000e-06_rb/) totplnk(101:150, 9) = (/ & 2.09631e-06_rb,2.15373e-06_rb,2.21228e-06_rb,2.27196e-06_rb,2.33278e-06_rb, & 2.39475e-06_rb,2.45790e-06_rb,2.52222e-06_rb,2.58773e-06_rb,2.65445e-06_rb, & 2.72238e-06_rb,2.79152e-06_rb,2.86191e-06_rb,2.93354e-06_rb,3.00643e-06_rb, & 3.08058e-06_rb,3.15601e-06_rb,3.23273e-06_rb,3.31075e-06_rb,3.39009e-06_rb, & 3.47074e-06_rb,3.55272e-06_rb,3.63605e-06_rb,3.72072e-06_rb,3.80676e-06_rb, & 3.89417e-06_rb,3.98297e-06_rb,4.07315e-06_rb,4.16474e-06_rb,4.25774e-06_rb, & 4.35217e-06_rb,4.44802e-06_rb,4.54532e-06_rb,4.64406e-06_rb,4.74428e-06_rb, & 4.84595e-06_rb,4.94911e-06_rb,5.05376e-06_rb,5.15990e-06_rb,5.26755e-06_rb, & 5.37671e-06_rb,5.48741e-06_rb,5.59963e-06_rb,5.71340e-06_rb,5.82871e-06_rb, & 5.94559e-06_rb,6.06403e-06_rb,6.18404e-06_rb,6.30565e-06_rb,6.42885e-06_rb/) totplnk(151:181, 9) = (/ & 6.55364e-06_rb,6.68004e-06_rb,6.80806e-06_rb,6.93771e-06_rb,7.06898e-06_rb, & 7.20190e-06_rb,7.33646e-06_rb,7.47267e-06_rb,7.61056e-06_rb,7.75010e-06_rb, & 7.89133e-06_rb,8.03423e-06_rb,8.17884e-06_rb,8.32514e-06_rb,8.47314e-06_rb, & 8.62284e-06_rb,8.77427e-06_rb,8.92743e-06_rb,9.08231e-06_rb,9.23893e-06_rb, & 9.39729e-06_rb,9.55741e-06_rb,9.71927e-06_rb,9.88291e-06_rb,1.00483e-05_rb, & 1.02155e-05_rb,1.03844e-05_rb,1.05552e-05_rb,1.07277e-05_rb,1.09020e-05_rb, & 1.10781e-05_rb/) totplnk(1:50,10) = (/ & 8.89300e-09_rb,9.63263e-09_rb,1.04235e-08_rb,1.12685e-08_rb,1.21703e-08_rb, & 1.31321e-08_rb,1.41570e-08_rb,1.52482e-08_rb,1.64090e-08_rb,1.76428e-08_rb, & 1.89533e-08_rb,2.03441e-08_rb,2.18190e-08_rb,2.33820e-08_rb,2.50370e-08_rb, & 2.67884e-08_rb,2.86402e-08_rb,3.05969e-08_rb,3.26632e-08_rb,3.48436e-08_rb, & 3.71429e-08_rb,3.95660e-08_rb,4.21179e-08_rb,4.48040e-08_rb,4.76294e-08_rb, & 5.05996e-08_rb,5.37201e-08_rb,5.69966e-08_rb,6.04349e-08_rb,6.40411e-08_rb, & 6.78211e-08_rb,7.17812e-08_rb,7.59276e-08_rb,8.02670e-08_rb,8.48059e-08_rb, & 8.95508e-08_rb,9.45090e-08_rb,9.96873e-08_rb,1.05093e-07_rb,1.10733e-07_rb, & 1.16614e-07_rb,1.22745e-07_rb,1.29133e-07_rb,1.35786e-07_rb,1.42711e-07_rb, & 1.49916e-07_rb,1.57410e-07_rb,1.65202e-07_rb,1.73298e-07_rb,1.81709e-07_rb/) totplnk(51:100,10) = (/ & 1.90441e-07_rb,1.99505e-07_rb,2.08908e-07_rb,2.18660e-07_rb,2.28770e-07_rb, & 2.39247e-07_rb,2.50101e-07_rb,2.61340e-07_rb,2.72974e-07_rb,2.85013e-07_rb, & 2.97467e-07_rb,3.10345e-07_rb,3.23657e-07_rb,3.37413e-07_rb,3.51623e-07_rb, & 3.66298e-07_rb,3.81448e-07_rb,3.97082e-07_rb,4.13212e-07_rb,4.29848e-07_rb, & 4.47000e-07_rb,4.64680e-07_rb,4.82898e-07_rb,5.01664e-07_rb,5.20991e-07_rb, & 5.40888e-07_rb,5.61369e-07_rb,5.82440e-07_rb,6.04118e-07_rb,6.26410e-07_rb, & 6.49329e-07_rb,6.72887e-07_rb,6.97095e-07_rb,7.21964e-07_rb,7.47506e-07_rb, & 7.73732e-07_rb,8.00655e-07_rb,8.28287e-07_rb,8.56635e-07_rb,8.85717e-07_rb, & 9.15542e-07_rb,9.46122e-07_rb,9.77469e-07_rb,1.00960e-06_rb,1.04251e-06_rb, & 1.07623e-06_rb,1.11077e-06_rb,1.14613e-06_rb,1.18233e-06_rb,1.21939e-06_rb/) totplnk(101:150,10) = (/ & 1.25730e-06_rb,1.29610e-06_rb,1.33578e-06_rb,1.37636e-06_rb,1.41785e-06_rb, & 1.46027e-06_rb,1.50362e-06_rb,1.54792e-06_rb,1.59319e-06_rb,1.63942e-06_rb, & 1.68665e-06_rb,1.73487e-06_rb,1.78410e-06_rb,1.83435e-06_rb,1.88564e-06_rb, & 1.93797e-06_rb,1.99136e-06_rb,2.04582e-06_rb,2.10137e-06_rb,2.15801e-06_rb, & 2.21576e-06_rb,2.27463e-06_rb,2.33462e-06_rb,2.39577e-06_rb,2.45806e-06_rb, & 2.52153e-06_rb,2.58617e-06_rb,2.65201e-06_rb,2.71905e-06_rb,2.78730e-06_rb, & 2.85678e-06_rb,2.92749e-06_rb,2.99946e-06_rb,3.07269e-06_rb,3.14720e-06_rb, & 3.22299e-06_rb,3.30007e-06_rb,3.37847e-06_rb,3.45818e-06_rb,3.53923e-06_rb, & 3.62161e-06_rb,3.70535e-06_rb,3.79046e-06_rb,3.87695e-06_rb,3.96481e-06_rb, & 4.05409e-06_rb,4.14477e-06_rb,4.23687e-06_rb,4.33040e-06_rb,4.42538e-06_rb/) totplnk(151:181,10) = (/ & 4.52180e-06_rb,4.61969e-06_rb,4.71905e-06_rb,4.81991e-06_rb,4.92226e-06_rb, & 5.02611e-06_rb,5.13148e-06_rb,5.23839e-06_rb,5.34681e-06_rb,5.45681e-06_rb, & 5.56835e-06_rb,5.68146e-06_rb,5.79614e-06_rb,5.91242e-06_rb,6.03030e-06_rb, & 6.14978e-06_rb,6.27088e-06_rb,6.39360e-06_rb,6.51798e-06_rb,6.64398e-06_rb, & 6.77165e-06_rb,6.90099e-06_rb,7.03198e-06_rb,7.16468e-06_rb,7.29906e-06_rb, & 7.43514e-06_rb,7.57294e-06_rb,7.71244e-06_rb,7.85369e-06_rb,7.99666e-06_rb, & 8.14138e-06_rb/) totplnk(1:50,11) = (/ & 2.53767e-09_rb,2.77242e-09_rb,3.02564e-09_rb,3.29851e-09_rb,3.59228e-09_rb, & 3.90825e-09_rb,4.24777e-09_rb,4.61227e-09_rb,5.00322e-09_rb,5.42219e-09_rb, & 5.87080e-09_rb,6.35072e-09_rb,6.86370e-09_rb,7.41159e-09_rb,7.99628e-09_rb, & 8.61974e-09_rb,9.28404e-09_rb,9.99130e-09_rb,1.07437e-08_rb,1.15436e-08_rb, & 1.23933e-08_rb,1.32953e-08_rb,1.42522e-08_rb,1.52665e-08_rb,1.63410e-08_rb, & 1.74786e-08_rb,1.86820e-08_rb,1.99542e-08_rb,2.12985e-08_rb,2.27179e-08_rb, & 2.42158e-08_rb,2.57954e-08_rb,2.74604e-08_rb,2.92141e-08_rb,3.10604e-08_rb, & 3.30029e-08_rb,3.50457e-08_rb,3.71925e-08_rb,3.94476e-08_rb,4.18149e-08_rb, & 4.42991e-08_rb,4.69043e-08_rb,4.96352e-08_rb,5.24961e-08_rb,5.54921e-08_rb, & 5.86277e-08_rb,6.19081e-08_rb,6.53381e-08_rb,6.89231e-08_rb,7.26681e-08_rb/) totplnk(51:100,11) = (/ & 7.65788e-08_rb,8.06604e-08_rb,8.49187e-08_rb,8.93591e-08_rb,9.39879e-08_rb, & 9.88106e-08_rb,1.03834e-07_rb,1.09063e-07_rb,1.14504e-07_rb,1.20165e-07_rb, & 1.26051e-07_rb,1.32169e-07_rb,1.38525e-07_rb,1.45128e-07_rb,1.51982e-07_rb, & 1.59096e-07_rb,1.66477e-07_rb,1.74132e-07_rb,1.82068e-07_rb,1.90292e-07_rb, & 1.98813e-07_rb,2.07638e-07_rb,2.16775e-07_rb,2.26231e-07_rb,2.36015e-07_rb, & 2.46135e-07_rb,2.56599e-07_rb,2.67415e-07_rb,2.78592e-07_rb,2.90137e-07_rb, & 3.02061e-07_rb,3.14371e-07_rb,3.27077e-07_rb,3.40186e-07_rb,3.53710e-07_rb, & 3.67655e-07_rb,3.82031e-07_rb,3.96848e-07_rb,4.12116e-07_rb,4.27842e-07_rb, & 4.44039e-07_rb,4.60713e-07_rb,4.77876e-07_rb,4.95537e-07_rb,5.13706e-07_rb, & 5.32392e-07_rb,5.51608e-07_rb,5.71360e-07_rb,5.91662e-07_rb,6.12521e-07_rb/) totplnk(101:150,11) = (/ & 6.33950e-07_rb,6.55958e-07_rb,6.78556e-07_rb,7.01753e-07_rb,7.25562e-07_rb, & 7.49992e-07_rb,7.75055e-07_rb,8.00760e-07_rb,8.27120e-07_rb,8.54145e-07_rb, & 8.81845e-07_rb,9.10233e-07_rb,9.39318e-07_rb,9.69113e-07_rb,9.99627e-07_rb, & 1.03087e-06_rb,1.06286e-06_rb,1.09561e-06_rb,1.12912e-06_rb,1.16340e-06_rb, & 1.19848e-06_rb,1.23435e-06_rb,1.27104e-06_rb,1.30855e-06_rb,1.34690e-06_rb, & 1.38609e-06_rb,1.42614e-06_rb,1.46706e-06_rb,1.50886e-06_rb,1.55155e-06_rb, & 1.59515e-06_rb,1.63967e-06_rb,1.68512e-06_rb,1.73150e-06_rb,1.77884e-06_rb, & 1.82715e-06_rb,1.87643e-06_rb,1.92670e-06_rb,1.97797e-06_rb,2.03026e-06_rb, & 2.08356e-06_rb,2.13791e-06_rb,2.19330e-06_rb,2.24975e-06_rb,2.30728e-06_rb, & 2.36589e-06_rb,2.42560e-06_rb,2.48641e-06_rb,2.54835e-06_rb,2.61142e-06_rb/) totplnk(151:181,11) = (/ & 2.67563e-06_rb,2.74100e-06_rb,2.80754e-06_rb,2.87526e-06_rb,2.94417e-06_rb, & 3.01429e-06_rb,3.08562e-06_rb,3.15819e-06_rb,3.23199e-06_rb,3.30704e-06_rb, & 3.38336e-06_rb,3.46096e-06_rb,3.53984e-06_rb,3.62002e-06_rb,3.70151e-06_rb, & 3.78433e-06_rb,3.86848e-06_rb,3.95399e-06_rb,4.04084e-06_rb,4.12907e-06_rb, & 4.21868e-06_rb,4.30968e-06_rb,4.40209e-06_rb,4.49592e-06_rb,4.59117e-06_rb, & 4.68786e-06_rb,4.78600e-06_rb,4.88561e-06_rb,4.98669e-06_rb,5.08926e-06_rb, & 5.19332e-06_rb/) totplnk(1:50,12) = (/ & 2.73921e-10_rb,3.04500e-10_rb,3.38056e-10_rb,3.74835e-10_rb,4.15099e-10_rb, & 4.59126e-10_rb,5.07214e-10_rb,5.59679e-10_rb,6.16857e-10_rb,6.79103e-10_rb, & 7.46796e-10_rb,8.20335e-10_rb,9.00144e-10_rb,9.86671e-10_rb,1.08039e-09_rb, & 1.18180e-09_rb,1.29142e-09_rb,1.40982e-09_rb,1.53757e-09_rb,1.67529e-09_rb, & 1.82363e-09_rb,1.98327e-09_rb,2.15492e-09_rb,2.33932e-09_rb,2.53726e-09_rb, & 2.74957e-09_rb,2.97710e-09_rb,3.22075e-09_rb,3.48145e-09_rb,3.76020e-09_rb, & 4.05801e-09_rb,4.37595e-09_rb,4.71513e-09_rb,5.07672e-09_rb,5.46193e-09_rb, & 5.87201e-09_rb,6.30827e-09_rb,6.77205e-09_rb,7.26480e-09_rb,7.78794e-09_rb, & 8.34304e-09_rb,8.93163e-09_rb,9.55537e-09_rb,1.02159e-08_rb,1.09151e-08_rb, & 1.16547e-08_rb,1.24365e-08_rb,1.32625e-08_rb,1.41348e-08_rb,1.50554e-08_rb/) totplnk(51:100,12) = (/ & 1.60264e-08_rb,1.70500e-08_rb,1.81285e-08_rb,1.92642e-08_rb,2.04596e-08_rb, & 2.17171e-08_rb,2.30394e-08_rb,2.44289e-08_rb,2.58885e-08_rb,2.74209e-08_rb, & 2.90290e-08_rb,3.07157e-08_rb,3.24841e-08_rb,3.43371e-08_rb,3.62782e-08_rb, & 3.83103e-08_rb,4.04371e-08_rb,4.26617e-08_rb,4.49878e-08_rb,4.74190e-08_rb, & 4.99589e-08_rb,5.26113e-08_rb,5.53801e-08_rb,5.82692e-08_rb,6.12826e-08_rb, & 6.44245e-08_rb,6.76991e-08_rb,7.11105e-08_rb,7.46634e-08_rb,7.83621e-08_rb, & 8.22112e-08_rb,8.62154e-08_rb,9.03795e-08_rb,9.47081e-08_rb,9.92066e-08_rb, & 1.03879e-07_rb,1.08732e-07_rb,1.13770e-07_rb,1.18998e-07_rb,1.24422e-07_rb, & 1.30048e-07_rb,1.35880e-07_rb,1.41924e-07_rb,1.48187e-07_rb,1.54675e-07_rb, & 1.61392e-07_rb,1.68346e-07_rb,1.75543e-07_rb,1.82988e-07_rb,1.90688e-07_rb/) totplnk(101:150,12) = (/ & 1.98650e-07_rb,2.06880e-07_rb,2.15385e-07_rb,2.24172e-07_rb,2.33247e-07_rb, & 2.42617e-07_rb,2.52289e-07_rb,2.62272e-07_rb,2.72571e-07_rb,2.83193e-07_rb, & 2.94147e-07_rb,3.05440e-07_rb,3.17080e-07_rb,3.29074e-07_rb,3.41430e-07_rb, & 3.54155e-07_rb,3.67259e-07_rb,3.80747e-07_rb,3.94631e-07_rb,4.08916e-07_rb, & 4.23611e-07_rb,4.38725e-07_rb,4.54267e-07_rb,4.70245e-07_rb,4.86666e-07_rb, & 5.03541e-07_rb,5.20879e-07_rb,5.38687e-07_rb,5.56975e-07_rb,5.75751e-07_rb, & 5.95026e-07_rb,6.14808e-07_rb,6.35107e-07_rb,6.55932e-07_rb,6.77293e-07_rb, & 6.99197e-07_rb,7.21656e-07_rb,7.44681e-07_rb,7.68278e-07_rb,7.92460e-07_rb, & 8.17235e-07_rb,8.42614e-07_rb,8.68606e-07_rb,8.95223e-07_rb,9.22473e-07_rb, & 9.50366e-07_rb,9.78915e-07_rb,1.00813e-06_rb,1.03802e-06_rb,1.06859e-06_rb/) totplnk(151:181,12) = (/ & 1.09986e-06_rb,1.13184e-06_rb,1.16453e-06_rb,1.19796e-06_rb,1.23212e-06_rb, & 1.26703e-06_rb,1.30270e-06_rb,1.33915e-06_rb,1.37637e-06_rb,1.41440e-06_rb, & 1.45322e-06_rb,1.49286e-06_rb,1.53333e-06_rb,1.57464e-06_rb,1.61679e-06_rb, & 1.65981e-06_rb,1.70370e-06_rb,1.74847e-06_rb,1.79414e-06_rb,1.84071e-06_rb, & 1.88821e-06_rb,1.93663e-06_rb,1.98599e-06_rb,2.03631e-06_rb,2.08759e-06_rb, & 2.13985e-06_rb,2.19310e-06_rb,2.24734e-06_rb,2.30260e-06_rb,2.35888e-06_rb, & 2.41619e-06_rb/) totplnk(1:50,13) = (/ & 4.53634e-11_rb,5.11435e-11_rb,5.75754e-11_rb,6.47222e-11_rb,7.26531e-11_rb, & 8.14420e-11_rb,9.11690e-11_rb,1.01921e-10_rb,1.13790e-10_rb,1.26877e-10_rb, & 1.41288e-10_rb,1.57140e-10_rb,1.74555e-10_rb,1.93665e-10_rb,2.14613e-10_rb, & 2.37548e-10_rb,2.62633e-10_rb,2.90039e-10_rb,3.19948e-10_rb,3.52558e-10_rb, & 3.88073e-10_rb,4.26716e-10_rb,4.68719e-10_rb,5.14331e-10_rb,5.63815e-10_rb, & 6.17448e-10_rb,6.75526e-10_rb,7.38358e-10_rb,8.06277e-10_rb,8.79625e-10_rb, & 9.58770e-10_rb,1.04410e-09_rb,1.13602e-09_rb,1.23495e-09_rb,1.34135e-09_rb, & 1.45568e-09_rb,1.57845e-09_rb,1.71017e-09_rb,1.85139e-09_rb,2.00268e-09_rb, & 2.16464e-09_rb,2.33789e-09_rb,2.52309e-09_rb,2.72093e-09_rb,2.93212e-09_rb, & 3.15740e-09_rb,3.39757e-09_rb,3.65341e-09_rb,3.92579e-09_rb,4.21559e-09_rb/) totplnk(51:100,13) = (/ & 4.52372e-09_rb,4.85115e-09_rb,5.19886e-09_rb,5.56788e-09_rb,5.95928e-09_rb, & 6.37419e-09_rb,6.81375e-09_rb,7.27917e-09_rb,7.77168e-09_rb,8.29256e-09_rb, & 8.84317e-09_rb,9.42487e-09_rb,1.00391e-08_rb,1.06873e-08_rb,1.13710e-08_rb, & 1.20919e-08_rb,1.28515e-08_rb,1.36514e-08_rb,1.44935e-08_rb,1.53796e-08_rb, & 1.63114e-08_rb,1.72909e-08_rb,1.83201e-08_rb,1.94008e-08_rb,2.05354e-08_rb, & 2.17258e-08_rb,2.29742e-08_rb,2.42830e-08_rb,2.56545e-08_rb,2.70910e-08_rb, & 2.85950e-08_rb,3.01689e-08_rb,3.18155e-08_rb,3.35373e-08_rb,3.53372e-08_rb, & 3.72177e-08_rb,3.91818e-08_rb,4.12325e-08_rb,4.33727e-08_rb,4.56056e-08_rb, & 4.79342e-08_rb,5.03617e-08_rb,5.28915e-08_rb,5.55270e-08_rb,5.82715e-08_rb, & 6.11286e-08_rb,6.41019e-08_rb,6.71951e-08_rb,7.04119e-08_rb,7.37560e-08_rb/) totplnk(101:150,13) = (/ & 7.72315e-08_rb,8.08424e-08_rb,8.45927e-08_rb,8.84866e-08_rb,9.25281e-08_rb, & 9.67218e-08_rb,1.01072e-07_rb,1.05583e-07_rb,1.10260e-07_rb,1.15107e-07_rb, & 1.20128e-07_rb,1.25330e-07_rb,1.30716e-07_rb,1.36291e-07_rb,1.42061e-07_rb, & 1.48031e-07_rb,1.54206e-07_rb,1.60592e-07_rb,1.67192e-07_rb,1.74015e-07_rb, & 1.81064e-07_rb,1.88345e-07_rb,1.95865e-07_rb,2.03628e-07_rb,2.11643e-07_rb, & 2.19912e-07_rb,2.28443e-07_rb,2.37244e-07_rb,2.46318e-07_rb,2.55673e-07_rb, & 2.65316e-07_rb,2.75252e-07_rb,2.85489e-07_rb,2.96033e-07_rb,3.06891e-07_rb, & 3.18070e-07_rb,3.29576e-07_rb,3.41417e-07_rb,3.53600e-07_rb,3.66133e-07_rb, & 3.79021e-07_rb,3.92274e-07_rb,4.05897e-07_rb,4.19899e-07_rb,4.34288e-07_rb, & 4.49071e-07_rb,4.64255e-07_rb,4.79850e-07_rb,4.95863e-07_rb,5.12300e-07_rb/) totplnk(151:181,13) = (/ & 5.29172e-07_rb,5.46486e-07_rb,5.64250e-07_rb,5.82473e-07_rb,6.01164e-07_rb, & 6.20329e-07_rb,6.39979e-07_rb,6.60122e-07_rb,6.80767e-07_rb,7.01922e-07_rb, & 7.23596e-07_rb,7.45800e-07_rb,7.68539e-07_rb,7.91826e-07_rb,8.15669e-07_rb, & 8.40076e-07_rb,8.65058e-07_rb,8.90623e-07_rb,9.16783e-07_rb,9.43544e-07_rb, & 9.70917e-07_rb,9.98912e-07_rb,1.02754e-06_rb,1.05681e-06_rb,1.08673e-06_rb, & 1.11731e-06_rb,1.14856e-06_rb,1.18050e-06_rb,1.21312e-06_rb,1.24645e-06_rb, & 1.28049e-06_rb/) totplnk(1:50,14) = (/ & 1.40113e-11_rb,1.59358e-11_rb,1.80960e-11_rb,2.05171e-11_rb,2.32266e-11_rb, & 2.62546e-11_rb,2.96335e-11_rb,3.33990e-11_rb,3.75896e-11_rb,4.22469e-11_rb, & 4.74164e-11_rb,5.31466e-11_rb,5.94905e-11_rb,6.65054e-11_rb,7.42522e-11_rb, & 8.27975e-11_rb,9.22122e-11_rb,1.02573e-10_rb,1.13961e-10_rb,1.26466e-10_rb, & 1.40181e-10_rb,1.55206e-10_rb,1.71651e-10_rb,1.89630e-10_rb,2.09265e-10_rb, & 2.30689e-10_rb,2.54040e-10_rb,2.79467e-10_rb,3.07128e-10_rb,3.37190e-10_rb, & 3.69833e-10_rb,4.05243e-10_rb,4.43623e-10_rb,4.85183e-10_rb,5.30149e-10_rb, & 5.78755e-10_rb,6.31255e-10_rb,6.87910e-10_rb,7.49002e-10_rb,8.14824e-10_rb, & 8.85687e-10_rb,9.61914e-10_rb,1.04385e-09_rb,1.13186e-09_rb,1.22631e-09_rb, & 1.32761e-09_rb,1.43617e-09_rb,1.55243e-09_rb,1.67686e-09_rb,1.80992e-09_rb/) totplnk(51:100,14) = (/ & 1.95212e-09_rb,2.10399e-09_rb,2.26607e-09_rb,2.43895e-09_rb,2.62321e-09_rb, & 2.81949e-09_rb,3.02844e-09_rb,3.25073e-09_rb,3.48707e-09_rb,3.73820e-09_rb, & 4.00490e-09_rb,4.28794e-09_rb,4.58819e-09_rb,4.90647e-09_rb,5.24371e-09_rb, & 5.60081e-09_rb,5.97875e-09_rb,6.37854e-09_rb,6.80120e-09_rb,7.24782e-09_rb, & 7.71950e-09_rb,8.21740e-09_rb,8.74271e-09_rb,9.29666e-09_rb,9.88054e-09_rb, & 1.04956e-08_rb,1.11434e-08_rb,1.18251e-08_rb,1.25422e-08_rb,1.32964e-08_rb, & 1.40890e-08_rb,1.49217e-08_rb,1.57961e-08_rb,1.67140e-08_rb,1.76771e-08_rb, & 1.86870e-08_rb,1.97458e-08_rb,2.08553e-08_rb,2.20175e-08_rb,2.32342e-08_rb, & 2.45077e-08_rb,2.58401e-08_rb,2.72334e-08_rb,2.86900e-08_rb,3.02122e-08_rb, & 3.18021e-08_rb,3.34624e-08_rb,3.51954e-08_rb,3.70037e-08_rb,3.88899e-08_rb/) totplnk(101:150,14) = (/ & 4.08568e-08_rb,4.29068e-08_rb,4.50429e-08_rb,4.72678e-08_rb,4.95847e-08_rb, & 5.19963e-08_rb,5.45058e-08_rb,5.71161e-08_rb,5.98309e-08_rb,6.26529e-08_rb, & 6.55857e-08_rb,6.86327e-08_rb,7.17971e-08_rb,7.50829e-08_rb,7.84933e-08_rb, & 8.20323e-08_rb,8.57035e-08_rb,8.95105e-08_rb,9.34579e-08_rb,9.75488e-08_rb, & 1.01788e-07_rb,1.06179e-07_rb,1.10727e-07_rb,1.15434e-07_rb,1.20307e-07_rb, & 1.25350e-07_rb,1.30566e-07_rb,1.35961e-07_rb,1.41539e-07_rb,1.47304e-07_rb, & 1.53263e-07_rb,1.59419e-07_rb,1.65778e-07_rb,1.72345e-07_rb,1.79124e-07_rb, & 1.86122e-07_rb,1.93343e-07_rb,2.00792e-07_rb,2.08476e-07_rb,2.16400e-07_rb, & 2.24568e-07_rb,2.32988e-07_rb,2.41666e-07_rb,2.50605e-07_rb,2.59813e-07_rb, & 2.69297e-07_rb,2.79060e-07_rb,2.89111e-07_rb,2.99455e-07_rb,3.10099e-07_rb/) totplnk(151:181,14) = (/ & 3.21049e-07_rb,3.32311e-07_rb,3.43893e-07_rb,3.55801e-07_rb,3.68041e-07_rb, & 3.80621e-07_rb,3.93547e-07_rb,4.06826e-07_rb,4.20465e-07_rb,4.34473e-07_rb, & 4.48856e-07_rb,4.63620e-07_rb,4.78774e-07_rb,4.94325e-07_rb,5.10280e-07_rb, & 5.26648e-07_rb,5.43436e-07_rb,5.60652e-07_rb,5.78302e-07_rb,5.96397e-07_rb, & 6.14943e-07_rb,6.33949e-07_rb,6.53421e-07_rb,6.73370e-07_rb,6.93803e-07_rb, & 7.14731e-07_rb,7.36157e-07_rb,7.58095e-07_rb,7.80549e-07_rb,8.03533e-07_rb, & 8.27050e-07_rb/) totplnk(1:50,15) = (/ & 3.90483e-12_rb,4.47999e-12_rb,5.13122e-12_rb,5.86739e-12_rb,6.69829e-12_rb, & 7.63467e-12_rb,8.68833e-12_rb,9.87221e-12_rb,1.12005e-11_rb,1.26885e-11_rb, & 1.43534e-11_rb,1.62134e-11_rb,1.82888e-11_rb,2.06012e-11_rb,2.31745e-11_rb, & 2.60343e-11_rb,2.92087e-11_rb,3.27277e-11_rb,3.66242e-11_rb,4.09334e-11_rb, & 4.56935e-11_rb,5.09455e-11_rb,5.67338e-11_rb,6.31057e-11_rb,7.01127e-11_rb, & 7.78096e-11_rb,8.62554e-11_rb,9.55130e-11_rb,1.05651e-10_rb,1.16740e-10_rb, & 1.28858e-10_rb,1.42089e-10_rb,1.56519e-10_rb,1.72243e-10_rb,1.89361e-10_rb, & 2.07978e-10_rb,2.28209e-10_rb,2.50173e-10_rb,2.73999e-10_rb,2.99820e-10_rb, & 3.27782e-10_rb,3.58034e-10_rb,3.90739e-10_rb,4.26067e-10_rb,4.64196e-10_rb, & 5.05317e-10_rb,5.49631e-10_rb,5.97347e-10_rb,6.48689e-10_rb,7.03891e-10_rb/) totplnk(51:100,15) = (/ & 7.63201e-10_rb,8.26876e-10_rb,8.95192e-10_rb,9.68430e-10_rb,1.04690e-09_rb, & 1.13091e-09_rb,1.22079e-09_rb,1.31689e-09_rb,1.41957e-09_rb,1.52922e-09_rb, & 1.64623e-09_rb,1.77101e-09_rb,1.90401e-09_rb,2.04567e-09_rb,2.19647e-09_rb, & 2.35690e-09_rb,2.52749e-09_rb,2.70875e-09_rb,2.90127e-09_rb,3.10560e-09_rb, & 3.32238e-09_rb,3.55222e-09_rb,3.79578e-09_rb,4.05375e-09_rb,4.32682e-09_rb, & 4.61574e-09_rb,4.92128e-09_rb,5.24420e-09_rb,5.58536e-09_rb,5.94558e-09_rb, & 6.32575e-09_rb,6.72678e-09_rb,7.14964e-09_rb,7.59526e-09_rb,8.06470e-09_rb, & 8.55897e-09_rb,9.07916e-09_rb,9.62638e-09_rb,1.02018e-08_rb,1.08066e-08_rb, & 1.14420e-08_rb,1.21092e-08_rb,1.28097e-08_rb,1.35446e-08_rb,1.43155e-08_rb, & 1.51237e-08_rb,1.59708e-08_rb,1.68581e-08_rb,1.77873e-08_rb,1.87599e-08_rb/) totplnk(101:150,15) = (/ & 1.97777e-08_rb,2.08423e-08_rb,2.19555e-08_rb,2.31190e-08_rb,2.43348e-08_rb, & 2.56045e-08_rb,2.69302e-08_rb,2.83140e-08_rb,2.97578e-08_rb,3.12636e-08_rb, & 3.28337e-08_rb,3.44702e-08_rb,3.61755e-08_rb,3.79516e-08_rb,3.98012e-08_rb, & 4.17265e-08_rb,4.37300e-08_rb,4.58143e-08_rb,4.79819e-08_rb,5.02355e-08_rb, & 5.25777e-08_rb,5.50114e-08_rb,5.75393e-08_rb,6.01644e-08_rb,6.28896e-08_rb, & 6.57177e-08_rb,6.86521e-08_rb,7.16959e-08_rb,7.48520e-08_rb,7.81239e-08_rb, & 8.15148e-08_rb,8.50282e-08_rb,8.86675e-08_rb,9.24362e-08_rb,9.63380e-08_rb, & 1.00376e-07_rb,1.04555e-07_rb,1.08878e-07_rb,1.13349e-07_rb,1.17972e-07_rb, & 1.22751e-07_rb,1.27690e-07_rb,1.32793e-07_rb,1.38064e-07_rb,1.43508e-07_rb, & 1.49129e-07_rb,1.54931e-07_rb,1.60920e-07_rb,1.67099e-07_rb,1.73473e-07_rb/) totplnk(151:181,15) = (/ & 1.80046e-07_rb,1.86825e-07_rb,1.93812e-07_rb,2.01014e-07_rb,2.08436e-07_rb, & 2.16082e-07_rb,2.23957e-07_rb,2.32067e-07_rb,2.40418e-07_rb,2.49013e-07_rb, & 2.57860e-07_rb,2.66963e-07_rb,2.76328e-07_rb,2.85961e-07_rb,2.95868e-07_rb, & 3.06053e-07_rb,3.16524e-07_rb,3.27286e-07_rb,3.38345e-07_rb,3.49707e-07_rb, & 3.61379e-07_rb,3.73367e-07_rb,3.85676e-07_rb,3.98315e-07_rb,4.11287e-07_rb, & 4.24602e-07_rb,4.38265e-07_rb,4.52283e-07_rb,4.66662e-07_rb,4.81410e-07_rb, & 4.96535e-07_rb/) totplnk(1:50,16) = (/ & 0.28639e-12_rb,0.33349e-12_rb,0.38764e-12_rb,0.44977e-12_rb,0.52093e-12_rb, & 0.60231e-12_rb,0.69522e-12_rb,0.80111e-12_rb,0.92163e-12_rb,0.10586e-11_rb, & 0.12139e-11_rb,0.13899e-11_rb,0.15890e-11_rb,0.18138e-11_rb,0.20674e-11_rb, & 0.23531e-11_rb,0.26744e-11_rb,0.30352e-11_rb,0.34401e-11_rb,0.38936e-11_rb, & 0.44011e-11_rb,0.49681e-11_rb,0.56010e-11_rb,0.63065e-11_rb,0.70919e-11_rb, & 0.79654e-11_rb,0.89357e-11_rb,0.10012e-10_rb,0.11205e-10_rb,0.12526e-10_rb, & 0.13986e-10_rb,0.15600e-10_rb,0.17380e-10_rb,0.19342e-10_rb,0.21503e-10_rb, & 0.23881e-10_rb,0.26494e-10_rb,0.29362e-10_rb,0.32509e-10_rb,0.35958e-10_rb, & 0.39733e-10_rb,0.43863e-10_rb,0.48376e-10_rb,0.53303e-10_rb,0.58679e-10_rb, & 0.64539e-10_rb,0.70920e-10_rb,0.77864e-10_rb,0.85413e-10_rb,0.93615e-10_rb/) totplnk(51:100,16) = (/ & 0.10252e-09_rb,0.11217e-09_rb,0.12264e-09_rb,0.13397e-09_rb,0.14624e-09_rb, & 0.15950e-09_rb,0.17383e-09_rb,0.18930e-09_rb,0.20599e-09_rb,0.22399e-09_rb, & 0.24339e-09_rb,0.26427e-09_rb,0.28674e-09_rb,0.31090e-09_rb,0.33686e-09_rb, & 0.36474e-09_rb,0.39466e-09_rb,0.42676e-09_rb,0.46115e-09_rb,0.49800e-09_rb, & 0.53744e-09_rb,0.57964e-09_rb,0.62476e-09_rb,0.67298e-09_rb,0.72448e-09_rb, & 0.77945e-09_rb,0.83809e-09_rb,0.90062e-09_rb,0.96725e-09_rb,0.10382e-08_rb, & 0.11138e-08_rb,0.11941e-08_rb,0.12796e-08_rb,0.13704e-08_rb,0.14669e-08_rb, & 0.15694e-08_rb,0.16781e-08_rb,0.17934e-08_rb,0.19157e-08_rb,0.20453e-08_rb, & 0.21825e-08_rb,0.23278e-08_rb,0.24815e-08_rb,0.26442e-08_rb,0.28161e-08_rb, & 0.29978e-08_rb,0.31898e-08_rb,0.33925e-08_rb,0.36064e-08_rb,0.38321e-08_rb/) totplnk(101:150,16) = (/ & 0.40700e-08_rb,0.43209e-08_rb,0.45852e-08_rb,0.48636e-08_rb,0.51567e-08_rb, & 0.54652e-08_rb,0.57897e-08_rb,0.61310e-08_rb,0.64897e-08_rb,0.68667e-08_rb, & 0.72626e-08_rb,0.76784e-08_rb,0.81148e-08_rb,0.85727e-08_rb,0.90530e-08_rb, & 0.95566e-08_rb,0.10084e-07_rb,0.10638e-07_rb,0.11217e-07_rb,0.11824e-07_rb, & 0.12458e-07_rb,0.13123e-07_rb,0.13818e-07_rb,0.14545e-07_rb,0.15305e-07_rb, & 0.16099e-07_rb,0.16928e-07_rb,0.17795e-07_rb,0.18699e-07_rb,0.19643e-07_rb, & 0.20629e-07_rb,0.21656e-07_rb,0.22728e-07_rb,0.23845e-07_rb,0.25010e-07_rb, & 0.26223e-07_rb,0.27487e-07_rb,0.28804e-07_rb,0.30174e-07_rb,0.31600e-07_rb, & 0.33084e-07_rb,0.34628e-07_rb,0.36233e-07_rb,0.37902e-07_rb,0.39637e-07_rb, & 0.41440e-07_rb,0.43313e-07_rb,0.45259e-07_rb,0.47279e-07_rb,0.49376e-07_rb/) totplnk(151:181,16) = (/ & 0.51552e-07_rb,0.53810e-07_rb,0.56153e-07_rb,0.58583e-07_rb,0.61102e-07_rb, & 0.63713e-07_rb,0.66420e-07_rb,0.69224e-07_rb,0.72129e-07_rb,0.75138e-07_rb, & 0.78254e-07_rb,0.81479e-07_rb,0.84818e-07_rb,0.88272e-07_rb,0.91846e-07_rb, & 0.95543e-07_rb,0.99366e-07_rb,0.10332e-06_rb,0.10740e-06_rb,0.11163e-06_rb, & 0.11599e-06_rb,0.12050e-06_rb,0.12515e-06_rb,0.12996e-06_rb,0.13493e-06_rb, & 0.14005e-06_rb,0.14534e-06_rb,0.15080e-06_rb,0.15643e-06_rb,0.16224e-06_rb, & 0.16823e-06_rb/) totplk16(1:50) = (/ & 0.28481e-12_rb,0.33159e-12_rb,0.38535e-12_rb,0.44701e-12_rb,0.51763e-12_rb, & 0.59836e-12_rb,0.69049e-12_rb,0.79549e-12_rb,0.91493e-12_rb,0.10506e-11_rb, & 0.12045e-11_rb,0.13788e-11_rb,0.15758e-11_rb,0.17984e-11_rb,0.20493e-11_rb, & 0.23317e-11_rb,0.26494e-11_rb,0.30060e-11_rb,0.34060e-11_rb,0.38539e-11_rb, & 0.43548e-11_rb,0.49144e-11_rb,0.55387e-11_rb,0.62344e-11_rb,0.70086e-11_rb, & 0.78692e-11_rb,0.88248e-11_rb,0.98846e-11_rb,0.11059e-10_rb,0.12358e-10_rb, & 0.13794e-10_rb,0.15379e-10_rb,0.17128e-10_rb,0.19055e-10_rb,0.21176e-10_rb, & 0.23508e-10_rb,0.26070e-10_rb,0.28881e-10_rb,0.31963e-10_rb,0.35339e-10_rb, & 0.39034e-10_rb,0.43073e-10_rb,0.47484e-10_rb,0.52299e-10_rb,0.57548e-10_rb, & 0.63267e-10_rb,0.69491e-10_rb,0.76261e-10_rb,0.83616e-10_rb,0.91603e-10_rb/) totplk16(51:100) = (/ & 0.10027e-09_rb,0.10966e-09_rb,0.11983e-09_rb,0.13084e-09_rb,0.14275e-09_rb, & 0.15562e-09_rb,0.16951e-09_rb,0.18451e-09_rb,0.20068e-09_rb,0.21810e-09_rb, & 0.23686e-09_rb,0.25704e-09_rb,0.27875e-09_rb,0.30207e-09_rb,0.32712e-09_rb, & 0.35400e-09_rb,0.38282e-09_rb,0.41372e-09_rb,0.44681e-09_rb,0.48223e-09_rb, & 0.52013e-09_rb,0.56064e-09_rb,0.60392e-09_rb,0.65015e-09_rb,0.69948e-09_rb, & 0.75209e-09_rb,0.80818e-09_rb,0.86794e-09_rb,0.93157e-09_rb,0.99929e-09_rb, & 0.10713e-08_rb,0.11479e-08_rb,0.12293e-08_rb,0.13157e-08_rb,0.14074e-08_rb, & 0.15047e-08_rb,0.16079e-08_rb,0.17172e-08_rb,0.18330e-08_rb,0.19557e-08_rb, & 0.20855e-08_rb,0.22228e-08_rb,0.23680e-08_rb,0.25214e-08_rb,0.26835e-08_rb, & 0.28546e-08_rb,0.30352e-08_rb,0.32257e-08_rb,0.34266e-08_rb,0.36384e-08_rb/) totplk16(101:150) = (/ & 0.38615e-08_rb,0.40965e-08_rb,0.43438e-08_rb,0.46041e-08_rb,0.48779e-08_rb, & 0.51658e-08_rb,0.54683e-08_rb,0.57862e-08_rb,0.61200e-08_rb,0.64705e-08_rb, & 0.68382e-08_rb,0.72240e-08_rb,0.76285e-08_rb,0.80526e-08_rb,0.84969e-08_rb, & 0.89624e-08_rb,0.94498e-08_rb,0.99599e-08_rb,0.10494e-07_rb,0.11052e-07_rb, & 0.11636e-07_rb,0.12246e-07_rb,0.12884e-07_rb,0.13551e-07_rb,0.14246e-07_rb, & 0.14973e-07_rb,0.15731e-07_rb,0.16522e-07_rb,0.17347e-07_rb,0.18207e-07_rb, & 0.19103e-07_rb,0.20037e-07_rb,0.21011e-07_rb,0.22024e-07_rb,0.23079e-07_rb, & 0.24177e-07_rb,0.25320e-07_rb,0.26508e-07_rb,0.27744e-07_rb,0.29029e-07_rb, & 0.30365e-07_rb,0.31753e-07_rb,0.33194e-07_rb,0.34691e-07_rb,0.36246e-07_rb, & 0.37859e-07_rb,0.39533e-07_rb,0.41270e-07_rb,0.43071e-07_rb,0.44939e-07_rb/) totplk16(151:181) = (/ & 0.46875e-07_rb,0.48882e-07_rb,0.50961e-07_rb,0.53115e-07_rb,0.55345e-07_rb, & 0.57655e-07_rb,0.60046e-07_rb,0.62520e-07_rb,0.65080e-07_rb,0.67728e-07_rb, & 0.70466e-07_rb,0.73298e-07_rb,0.76225e-07_rb,0.79251e-07_rb,0.82377e-07_rb, & 0.85606e-07_rb,0.88942e-07_rb,0.92386e-07_rb,0.95942e-07_rb,0.99612e-07_rb, & 0.10340e-06_rb,0.10731e-06_rb,0.11134e-06_rb,0.11550e-06_rb,0.11979e-06_rb, & 0.12421e-06_rb,0.12876e-06_rb,0.13346e-06_rb,0.13830e-06_rb,0.14328e-06_rb, & 0.14841e-06_rb/) ! end subroutine lwavplank !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- end module rrtmg_lw_setcoef_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrtmg_lw_taumol_k !------------------------------------------------------------------------------- ! -------------------------------------------------------------------------- ! | | ! | Copyright 2002-2009, Atmospheric & Environmental Research, Inc. (AER). | ! | This software may be used, copied, or redistributed as long as it is | ! | not sold and this copyright notice is reproduced on each copy made. | ! | This model is provided as is without any express or implied warranties. | ! | (http://www.rtweb.aer.com/) | ! | | ! -------------------------------------------------------------------------- !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb use parrrtm_k, only : mg, nbndlw, maxxsec, ngptlw use rrlw_con_k, only : oneminus use rrlw_wvn_k, only : nspa, nspb use rrlw_vsn_k, only : hvrtau, hnamtau ! implicit none ! contains !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taumol(nlayers, pavel, wx, coldry, & laytrop, jp, jt, jt1, planklay, planklev, plankbnd, & colh2o, colco2, colo3, coln2o, colco, colch4, colo2, & colbrd, fac00, fac01, fac10, fac11, & rat_h2oco2, rat_h2oco2_1, rat_h2oo3, rat_h2oo3_1, & rat_h2on2o, rat_h2on2o_1, rat_h2och4, rat_h2och4_1, & rat_n2oco2, rat_n2oco2_1, rat_o3co2, rat_o3co2_1, & selffac, selffrac, indself, forfac, forfrac, indfor, & minorfrac, scaleminor, scaleminorn2, indminor, & fracs, taug) !------------------------------------------------------------------------------- ! * ! Optical depths developed for the * ! * ! RAPID RADIATIVE TRANSFER MODEL (RRTM) * ! * ! * ! ATMOSPHERIC AND ENVIRONMENTAL RESEARCH, INC. * ! 131 HARTWELL AVENUE * ! LEXINGTON, MA 02421 * ! * ! * ! ELI J. MLAWER * ! JENNIFER DELAMERE * ! STEVEN J. TAUBMAN * ! SHEPARD A. CLOUGH * ! * ! * ! * ! * ! email: mlawer@aer.com * ! email: jdelamer@aer.com * ! * ! The authors wish to acknowledge the contributions of the * ! following people: Karen Cady-Pereira, Patrick D. Brown, * ! Michael J. Iacono, Ronald E. Farren, Luke Chen, Robert Bergstrom. * ! * ! ****************************************************************************** ! * ! Revision for g-point reduction: Michael J. Iacono, AER, Inc. * ! * ! ****************************************************************************** ! TAUMOL * ! * ! This file contains the subroutines TAUGBn (where n goes from * ! 1 to 16). TAUGBn calculates the optical depths and Planck fractions * ! per g-value and layer for band n. * ! * ! Output: optical depths (unitless) * ! fractions needed to compute Planck functions at every layer * ! and g-value * ! * ! COMMON /TAUGCOM/ TAUG(MXLAY,MG) * ! COMMON /PLANKG/ FRACS(MXLAY,MG) * ! * ! Input * ! * ! COMMON /FEATURES/ NG(NBANDS),NSPA(NBANDS),NSPB(NBANDS) * ! COMMON /PRECISE/ ONEMINUS * ! COMMON /PROFILE/ NLAYERS,PAVEL(MXLAY),TAVEL(MXLAY), * ! & PZ(0:MXLAY),TZ(0:MXLAY) * ! COMMON /PROFdata/ LAYTROP, * ! & COLH2O(MXLAY),COLCO2(MXLAY),COLO3(MXLAY), * ! & COLN2O(MXLAY),COLCO(MXLAY),COLCH4(MXLAY), * ! & COLO2(MXLAY) ! COMMON /INTFAC/ FAC00(MXLAY),FAC01(MXLAY), * ! & FAC10(MXLAY),FAC11(MXLAY) * ! COMMON /INTIND/ JP(MXLAY),JT(MXLAY),JT1(MXLAY) * ! COMMON /SELF/ SELFFAC(MXLAY), SELFFRAC(MXLAY), INDSELF(MXLAY) * ! * ! Description: * ! NG(IBAND) - number of g-values in band IBAND * ! NSPA(IBAND) - for the lower atmosphere, the number of reference * ! atmospheres that are stored for band IBAND per * ! pressure level and temperature. Each of these * ! atmospheres has different relative amounts of the * ! key species for the band (i.e. different binary * ! species parameters). * ! NSPB(IBAND) - same for upper atmosphere * ! ONEMINUS - since problems are caused in some cases by interpolation * ! parameters equal to or greater than 1, for these cases * ! these parameters are set to this value, slightly < 1. * ! PAVEL - layer pressures (mb) * ! TAVEL - layer temperatures (degrees K) * ! PZ - level pressures (mb) * ! TZ - level temperatures (degrees K) * ! LAYTROP - layer at which switch is made from one combination of * ! key species to another * ! COLH2O, COLCO2, COLO3, COLN2O, COLCH4 - column amounts of water * ! vapor,carbon dioxide, ozone, nitrous ozide, methane, * ! respectively (molecules/cm**2) * ! FACij(LAY) - for layer LAY, these are factors that are needed to * ! compute the interpolation factors that multiply the * ! appropriate reference k-values. A value of 0 (1) for * ! i,j indicates that the corresponding factor multiplies * ! reference k-value for the lower (higher) of the two * ! appropriate temperatures, and altitudes, respectively. * ! JP - the index of the lower (in altitude) of the two appropriate * ! reference pressure levels needed for interpolation * ! JT, JT1 - the indices of the lower of the two appropriate reference * ! temperatures needed for interpolation (for pressure * ! levels JP and JP+1, respectively) * ! SELFFAC - scale factor needed for water vapor self-continuum, equals * ! (water vapor density)/(atmospheric density at 296K and * ! 1013 mb) * ! SELFFRAC - factor needed for temperature interpolation of reference * ! water vapor self-continuum data * ! INDSELF - index of the lower of the two appropriate reference * ! temperatures needed for the self-continuum interpolation * ! FORFAC - scale factor needed for water vapor foreign-continuum. * ! FORFRAC - factor needed for temperature interpolation of reference * ! water vapor foreign-continuum data * ! INDFOR - index of the lower of the two appropriate reference * ! temperatures needed for the foreign-continuum interpolation * ! * ! Data input * ! COMMON /Kn/ KA(NSPA(n),5,13,MG), KB(NSPB(n),5,13:59,MG), SELFREF(10,MG),* ! FORREF(4,MG), KA_M'MGAS', KB_M'MGAS' * ! (note: n is the band number,'MGAS' is the species name of the minor * ! gas) * ! * ! Description: * ! KA - k-values for low reference atmospheres (key-species only) * ! (units: cm**2/molecule) * ! KB - k-values for high reference atmospheres (key-species only) * ! (units: cm**2/molecule) * ! KA_M'MGAS' - k-values for low reference atmosphere minor species * ! (units: cm**2/molecule) * ! KB_M'MGAS' - k-values for high reference atmosphere minor species * ! (units: cm**2/molecule) * ! SELFREF - k-values for water vapor self-continuum for reference * ! atmospheres (used below LAYTROP) * ! (units: cm**2/molecule) * ! FORREF - k-values for water vapor foreign-continuum for reference * ! atmospheres (used below/above LAYTROP) * ! (units: cm**2/molecule) * ! * ! dimension ABSA(65*NSPA(n),MG), ABSB(235*NSPB(n),MG) * ! equivalence (KA,ABSA),(KB,ABSB) * !------------------------------------------------------------------------------- ! input : ! layers - total number of layers ! pavel(nlayers) - layer pressures (mb) ! wx(maxxsec,nlayers) - cross-section amounts (mol/cm2) ! coldry(nlayers) - column amount (dry air) ! laytrop - tropopause layer index ! jp(nlayers) ! jt(nlayers) ! jt1(nlayers) ! planklay(nlayers,nbndlw) ! planklev(nlayers,nbndlw) ! plankbnd(nbndlw) ! colh2o(nlayers) - column amount (h2o) ! colco2(nlayers) - column amount (co2) ! colo3(nlayers) - column amount (o3) ! coln2o(nlayers) - column amount (n2o) ! colco(nlayers) - column amount (co) ! colch4(nlayers) - column amount (ch4) ! colo2(nlayers) - column amount (o2) ! colbrd(nlayers) - column amount (broadening gases) ! indself(nlayers) ! indfor(nlayers) ! selffac(nlayers) ! selffrac(nlayers) ! forfac(nlayers) ! forfrac(nlayers) ! indminor(nlayers) ! minorfrac(nlayers) ! scaleminor(nlayers) ! scaleminorn2(nlayers) ! fac00(nlayers), fac01(nlayers), fac10(nlayers), fac11(nlayers) ! rat_h2oco2(nlayers), rat_h2oco2_1(nlayers) ! rat_h2oo3(nlayers),rat_h2oo3_1(nlayers) ! rat_h2on2o(nlayers),rat_h2on2o_1(nlayers) ! rat_h2och4(nlayers),rat_h2och4_1(nlayers) ! rat_n2oco2(nlayers),rat_n2oco2_1(nlayers) ! rat_o3co2(nlayers),rat_o3co2_1(nlayers) ! ! output : ! fracs(nlayers,ngptlw) - planck fractions ! taug(nlayers,ngptlw) - gaseous optical depth ! !------------------------------------------------------------------------------- ! ! Input ! integer(kind=im) , intent(in ) :: nlayers real(kind=rb), dimension(:) , intent(in ) :: pavel real(kind=rb), dimension(:,:) , intent(in ) :: wx real(kind=rb), dimension(:) , intent(in ) :: coldry ! integer(kind=im) , intent(in ) :: laytrop integer(kind=im), dimension(:), intent(in ) :: jp integer(kind=im), dimension(:), intent(in ) :: jt integer(kind=im), dimension(:), intent(in ) :: jt1 real(kind=rb), dimension(:,:) , intent(in ) :: planklay real(kind=rb), dimension(0:,:), intent(in ) :: planklev real(kind=rb), dimension(:) , intent(in ) :: plankbnd ! real(kind=rb), dimension(:) , intent(in ) :: colh2o real(kind=rb), dimension(:) , intent(in ) :: colco2 real(kind=rb), dimension(:) , intent(in ) :: colo3 real(kind=rb), dimension(:) , intent(in ) :: coln2o real(kind=rb), dimension(:) , intent(in ) :: colco real(kind=rb), dimension(:) , intent(in ) :: colch4 real(kind=rb), dimension(:) , intent(in ) :: colo2 real(kind=rb), dimension(:) , intent(in ) :: colbrd ! integer(kind=im), dimension(:), intent(in ) :: indself integer(kind=im), dimension(:), intent(in ) :: indfor real(kind=rb), dimension(:) , intent(in ) :: selffac real(kind=rb), dimension(:) , intent(in ) :: selffrac real(kind=rb), dimension(:) , intent(in ) :: forfac real(kind=rb), dimension(:) , intent(in ) :: forfrac ! integer(kind=im), dimension(:), intent(in ) :: indminor real(kind=rb), dimension(:) , intent(in ) :: minorfrac real(kind=rb), dimension(:) , intent(in ) :: scaleminor real(kind=rb), dimension(:) , intent(in ) :: scaleminorn2 real(kind=rb), dimension(:) , intent(in ) :: fac00, fac01, fac10, fac11 real(kind=rb), dimension(:) , intent(in ) :: rat_h2oco2, rat_h2oco2_1, & rat_h2oo3, rat_h2oo3_1, & rat_h2on2o, rat_h2on2o_1, & rat_h2och4, rat_h2och4_1, & rat_n2oco2, rat_n2oco2_1, & rat_o3co2, rat_o3co2_1 ! ! Output ! real(kind=rb), dimension(:,:), intent( out) :: fracs real(kind=rb), dimension(:,:), intent( out) :: taug !------------------------------------------------------------------------------- ! hvrtau = '$Revision: 1.7 $' ! ! Calculate gaseous optical depth and planck fractions for each spectral band. ! call taugb1 call taugb2 call taugb3 call taugb4 call taugb5 call taugb6 call taugb7 call taugb8 call taugb9 call taugb10 call taugb11 call taugb12 call taugb13 call taugb14 call taugb15 call taugb16 ! contains !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb1 !------------------------------------------------------------------------------- ! ! ------- Modifications ------- ! Written by Eli J. Mlawer, Atmospheric & Environmental Research. ! Revised by Michael J. Iacono, Atmospheric & Environmental Research. ! ! band 1: 10-350 cm-1 (low key - h2o; low minor - n2) ! (high key - h2o; high minor - n2) ! ! note: previous versions of rrtm band 1: ! 10-250 cm-1 (low - h2o; high - h2o) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng1 use rrlw_kg01_k, only : fracrefa, fracrefb, absa, ka, absb, kb, & ka_mn2, kb_mn2, selfref, forref ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig real(kind=rb) :: pp, corradj, scalen2, tauself, taufor, taun2 !------------------------------------------------------------------------------- ! ! Minor gas mapping levels: ! lower - n2, p = 142.5490 mbar, t = 215.70 k ! upper - n2, p = 142.5490 mbar, t = 215.70 k ! ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. Below laytrop, the water vapor self-continuum and ! foreign continuum is interpolated (in temperature) separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop ! ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(1) + 1 ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(1) + 1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) pp = pavel(lay) corradj = 1. if (pp.lt.250._rb) then corradj = 1._rb-0.15_rb*(250._rb-pp)/154.4_rb endif ! scalen2 = colbrd(lay) * scaleminorn2(lay) do ig = 1,ng1 tauself = selffac(lay)*(selfref(inds,ig)+selffrac(lay)* & (selfref(inds+1,ig)-selfref(inds,ig))) taufor = forfac(lay)*(forref(indf,ig)+forfrac(lay)* & (forref(indf+1,ig)- forref(indf,ig))) taun2 = scalen2*(ka_mn2(indm,ig)+ & minorfrac(lay)*(ka_mn2(indm+1,ig)-ka_mn2(indm,ig))) taug(lay,ig) = corradj*(colh2o(lay)* & (fac00(lay)*absa(ind0,ig)+ & fac10(lay)*absa(ind0+1,ig)+ & fac01(lay)*absa(ind1,ig)+ & fac11(lay)*absa(ind1+1,ig)) & +tauself+taufor+taun2) fracs(lay,ig) = fracrefa(ig) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1,nlayers ! ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(1) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(1) + 1 indf = indfor(lay) indm = indminor(lay) pp = pavel(lay) corradj = 1._rb-0.15_rb*(pp/95.6_rb) ! scalen2 = colbrd(lay)*scaleminorn2(lay) ! do ig = 1,ng1 taufor = forfac(lay)*(forref(indf,ig)+ & forfrac(lay)*(forref(indf+1,ig)-forref(indf,ig))) taun2 = scalen2*(kb_mn2(indm,ig)+ & minorfrac(lay)*(kb_mn2(indm+1,ig)-kb_mn2(indm,ig))) taug(lay,ig) = corradj*(colh2o(lay)* & (fac00(lay)*absb(ind0,ig)+ & fac10(lay)*absb(ind0+1,ig)+ & fac01(lay)*absb(ind1,ig)+ & fac11(lay)*absb(ind1+1,ig)) & +taufor + taun2) fracs(lay,ig) = fracrefb(ig) enddo enddo ! end subroutine taugb1 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb2 !------------------------------------------------------------------------------- ! ! abstract : band 2, 350-500 cm-1 (low key - h2o; high key - h2o) ! ! note: previous version of rrtm band 2: ! 250 - 500 cm-1 (low - h2o; high - h2o) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng2, ngs1 use rrlw_kg02_k, only : fracrefa, fracrefb, absa, ka, absb, kb, & selfref, forref ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, ig real(kind=rb) :: pp, corradj, tauself, taufor !------------------------------------------------------------------------------- ! ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. Below laytrop, the water vapor self-continuum and ! foreign continuum is interpolated (in temperature) separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(2) + 1 ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(2) + 1 inds = indself(lay) indf = indfor(lay) pp = pavel(lay) corradj = 1._rb-.05_rb*(pp-100._rb)/900._rb do ig = 1,ng2 tauself = selffac(lay)*(selfref(inds,ig)+selffrac(lay)* & (selfref(inds+1,ig)-selfref(inds,ig))) taufor = forfac(lay)*(forref(indf,ig)+forfrac(lay)* & (forref(indf+1,ig) - forref(indf,ig))) taug(lay,ngs1+ig) = corradj*(colh2o(lay)* & (fac00(lay)*absa(ind0,ig)+ & fac10(lay)*absa(ind0+1,ig)+ & fac01(lay)*absa(ind1,ig)+ & fac11(lay)*absa(ind1+1,ig)) & +tauself+taufor) fracs(lay,ngs1+ig) = fracrefa(ig) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1,nlayers ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(2) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(2) + 1 indf = indfor(lay) do ig = 1,ng2 taufor = forfac(lay)*(forref(indf,ig)+ & forfrac(lay)*(forref(indf+1,ig)-forref(indf,ig))) taug(lay,ngs1+ig) = colh2o(lay)* & (fac00(lay)*absb(ind0,ig)+ & fac10(lay)*absb(ind0+1,ig)+ & fac01(lay)*absb(ind1,ig)+ & fac11(lay)*absb(ind1+1,ig)) & +taufor fracs(lay,ngs1+ig) = fracrefb(ig) enddo enddo ! end subroutine taugb2 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb3 !------------------------------------------------------------------------------- ! ! abstract : band 3, 500-630 cm-1 (low key - h2o,co2; low minor - n2o) ! (high key - h2o,co2; high minor - n2o) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng3, ngs2 use rrlw_ref_k, only : chi_mls use rrlw_kg03_k, only : fracrefa, fracrefb, absa, ka, absb, kb, & ka_mn2o, kb_mn2o, selfref, forref ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig integer(kind=im) :: js, js1, jmn2o, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_mn2o, specparm_mn2o, specmult_mn2o, & fmn2o, fmn2omf, chi_n2o, ratn2o, adjfac, adjcoln2o real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor, n2om1, n2om2, absn2o real(kind=rb) :: refrat_planck_a, refrat_planck_b, refrat_m_a, refrat_m_b real(kind=rb) :: tau_major, tau_major1 !------------------------------------------------------------------------------- ! ! Minor gas mapping levels: ! lower - n2o, p = 706.272 mbar, t = 278.94 k ! upper - n2o, p = 95.58 mbar, t = 215.7 k ! ! P = 212.725 mb ! refrat_planck_a = chi_mls(1,9)/chi_mls(2,9) ! ! P = 95.58 mb ! refrat_planck_b = chi_mls(1,13)/chi_mls(2,13) ! ! P = 706.270mb ! refrat_m_a = chi_mls(1,3)/chi_mls(2,3) ! ! P = 95.58 mb ! refrat_m_b = chi_mls(1,13)/chi_mls(2,13) ! ! Compute the optical depth by interpolating in ln(pressure) and ! temperature, and appropriate species. Below laytrop, the water vapor ! self-continuum and foreign continuum is interpolated (in temperature) ! separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop speccomb = colh2o(lay)+rat_h2oco2(lay)*colco2(lay) specparm = colh2o(lay)/speccomb if (specparm.ge.oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1+int(specmult) fs = mod(specmult,1.0_rb) ! speccomb1 = colh2o(lay)+rat_h2oco2_1(lay)*colco2(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1.ge.oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1+int(specmult1) fs1 = mod(specmult1,1.0_rb) ! speccomb_mn2o = colh2o(lay)+refrat_m_a*colco2(lay) specparm_mn2o = colh2o(lay)/speccomb_mn2o if (specparm_mn2o.ge.oneminus) specparm_mn2o = oneminus specmult_mn2o = 8._rb*specparm_mn2o jmn2o = 1+int(specmult_mn2o) fmn2o = mod(specmult_mn2o,1.0_rb) fmn2omf = minorfrac(lay)*fmn2o ! ! In atmospheres where the amount of N2O is too great to be considered ! a minor species, adjust the column amount of N2O by an empirical factor ! to obtain the proper contribution. ! chi_n2o = coln2o(lay)/coldry(lay) ratn2o = 1.e20_rb*chi_n2o/chi_mls(4,jp(lay)+1) if (ratn2o.gt.1.5_rb) then adjfac = 0.5_rb+(ratn2o-0.5_rb)**0.65_rb adjcoln2o = adjfac*chi_mls(4,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcoln2o = coln2o(lay) endif ! speccomb_planck = colh2o(lay)+refrat_planck_a*colco2(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck.ge.oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl = 1+int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ! ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(3)+js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(3)+js1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) ! if (specparm.lt.0.125_rb) then p = fs-1 p4 = p**4 fk0 = p4 fk1 = 1-p-2.0_rb*p4 fk2 = p+p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm.gt.0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1-p-2.0_rb*p4 fk2 = p+p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb-fs)*fac00(lay) fac010 = (1._rb-fs)*fac10(lay) fac100 = fs*fac00(lay) fac110 = fs*fac10(lay) endif ! if (specparm1.lt.0.125_rb) then p = fs1-1 p4 = p**4 fk0 = p4 fk1 = 1-p-2.0_rb*p4 fk2 = p+p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1.gt.0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1-p-2.0_rb*p4 fk2 = p+p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb-fs1)*fac01(lay) fac011 = (1._rb-fs1)*fac11(lay) fac101 = fs1*fac01(lay) fac111 = fs1*fac11(lay) endif ! do ig = 1,ng3 tauself = selffac(lay)*(selfref(inds,ig)+selffrac(lay)* & (selfref(inds+1,ig)-selfref(inds,ig))) taufor = forfac(lay)*(forref(indf,ig)+forfrac(lay)* & (forref(indf+1,ig)-forref(indf,ig))) n2om1 = ka_mn2o(jmn2o,indm,ig)+fmn2o* & (ka_mn2o(jmn2o+1,indm,ig)-ka_mn2o(jmn2o,indm,ig)) n2om2 = ka_mn2o(jmn2o,indm+1,ig)+fmn2o* & (ka_mn2o(jmn2o+1,indm+1,ig)-ka_mn2o(jmn2o,indm+1,ig)) absn2o = n2om1 + minorfrac(lay)*(n2om2 - n2om1) ! if (specparm.lt.0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm.gt.0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif ! if (specparm1.lt.0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1.gt.0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif ! taug(lay,ngs2+ig) = tau_major+tau_major1 & + tauself+taufor & + adjcoln2o*absn2o fracs(lay,ngs2+ig) = fracrefa(ig,jpl)+fpl* & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1,nlayers speccomb = colh2o(lay)+rat_h2oco2(lay)*colco2(lay) specparm = colh2o(lay)/speccomb if (specparm.ge.oneminus) specparm = oneminus specmult = 4._rb*(specparm) js = 1+int(specmult) fs = mod(specmult,1.0_rb) ! speccomb1 = colh2o(lay)+rat_h2oco2_1(lay)*colco2(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1.ge.oneminus) specparm1 = oneminus specmult1 = 4._rb*(specparm1) js1 = 1+int(specmult1) fs1 = mod(specmult1,1.0_rb) ! fac000 = (1._rb-fs)*fac00(lay) fac010 = (1._rb-fs)*fac10(lay) fac100 = fs*fac00(lay) fac110 = fs*fac10(lay) fac001 = (1._rb-fs1)*fac01(lay) fac011 = (1._rb-fs1)*fac11(lay) fac101 = fs1*fac01(lay) fac111 = fs1*fac11(lay) ! speccomb_mn2o = colh2o(lay)+refrat_m_b*colco2(lay) specparm_mn2o = colh2o(lay)/speccomb_mn2o if (specparm_mn2o.ge.oneminus) specparm_mn2o = oneminus specmult_mn2o = 4._rb*specparm_mn2o jmn2o = 1+int(specmult_mn2o) fmn2o = mod(specmult_mn2o,1.0_rb) fmn2omf = minorfrac(lay)*fmn2o ! ! In atmospheres where the amount of N2O is too great to be considered ! a minor species, adjust the column amount of N2O by an empirical factor ! to obtain the proper contribution. ! chi_n2o = coln2o(lay)/coldry(lay) ratn2o = 1.e20*chi_n2o/chi_mls(4,jp(lay)+1) if (ratn2o .gt. 1.5_rb) then adjfac = 0.5_rb+(ratn2o-0.5_rb)**0.65_rb adjcoln2o = adjfac*chi_mls(4,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcoln2o = coln2o(lay) endif ! speccomb_planck = colh2o(lay)+refrat_planck_b*colco2(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 4._rb*specparm_planck jpl = 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ! ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(3) + js ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(3) + js1 indf = indfor(lay) indm = indminor(lay) ! do ig = 1,ng3 taufor = forfac(lay)*(forref(indf,ig)+ & forfrac(lay)*(forref(indf+1,ig) - forref(indf,ig))) n2om1 = kb_mn2o(jmn2o,indm,ig)+fmn2o* & (kb_mn2o(jmn2o+1,indm,ig)-kb_mn2o(jmn2o,indm,ig)) n2om2 = kb_mn2o(jmn2o,indm+1,ig)+fmn2o* & (kb_mn2o(jmn2o+1,indm+1,ig)-kb_mn2o(jmn2o,indm+1,ig)) absn2o = n2om1 + minorfrac(lay)*(n2om2 - n2om1) taug(lay,ngs2+ig) = speccomb * & (fac000 * absb(ind0,ig) + & fac100 * absb(ind0+1,ig) + & fac010 * absb(ind0+5,ig) + & fac110 * absb(ind0+6,ig)) & +speccomb1 * & (fac001 * absb(ind1,ig) + & fac101 * absb(ind1+1,ig) + & fac011 * absb(ind1+5,ig) + & fac111 * absb(ind1+6,ig)) & +taufor & +adjcoln2o*absn2o fracs(lay,ngs2+ig) = fracrefb(ig,jpl)+fpl* & (fracrefb(ig,jpl+1)-fracrefb(ig,jpl)) enddo enddo ! end subroutine taugb3 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb4 !------------------------------------------------------------------------------- ! ! abstract : band 4, 630-700 cm-1 (low key - h2o,co2; high key - o3,co2) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng4, ngs3 use rrlw_ref_k, only : chi_mls use rrlw_kg04_k, only : fracrefa, fracrefb, absa, ka, absb, kb, & selfref, forref ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, ig integer(kind=im) :: js, js1, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor real(kind=rb) :: refrat_planck_a, refrat_planck_b real(kind=rb) :: tau_major, tau_major1 !------------------------------------------------------------------------------- ! ! P = 142.5940 mb ! refrat_planck_a = chi_mls(1,11)/chi_mls(2,11) ! ! P = 95.58350 mb ! refrat_planck_b = chi_mls(3,13)/chi_mls(2,13) ! ! Compute the optical depth by interpolating in ln(pressure) and ! temperature, and appropriate species. Below laytrop, the water ! vapor self-continuum and foreign continuum is interpolated (in temperature) ! separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop speccomb = colh2o(lay)+rat_h2oco2(lay)*colco2(lay) specparm = colh2o(lay)/speccomb if (specparm.ge.oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1+int(specmult) fs = mod(specmult,1.0_rb) ! speccomb1 = colh2o(lay)+rat_h2oco2_1(lay)*colco2(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1.ge.oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1+int(specmult1) fs1 = mod(specmult1,1.0_rb) ! speccomb_planck = colh2o(lay)+refrat_planck_a*colco2(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck.ge.oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl = 1+int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ! ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(4) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(4) + js1 inds = indself(lay) indf = indfor(lay) ! if (specparm.lt.0.125_rb) then p = fs-1 p4 = p**4 fk0 = p4 fk1 = 1-p-2.0_rb*p4 fk2 = p+p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm.gt.0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1-p-2.0_rb*p4 fk2 = p+p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb-fs)*fac00(lay) fac010 = (1._rb-fs)*fac10(lay) fac100 = fs*fac00(lay) fac110 = fs*fac10(lay) endif ! if (specparm1.lt.0.125_rb) then p = fs1-1 p4 = p**4 fk0 = p4 fk1 = 1-p-2.0_rb*p4 fk2 = p+p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1.gt.0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1-p-2.0_rb*p4 fk2 = p+p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb-fs1)*fac01(lay) fac011 = (1._rb-fs1)*fac11(lay) fac101 = fs1*fac01(lay) fac111 = fs1*fac11(lay) endif ! do ig = 1,ng4 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) ! if (specparm.lt.0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm.gt.0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif ! if (specparm1.lt.0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1.gt.0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif ! taug(lay,ngs3+ig) = tau_major+tau_major1 & + tauself + taufor fracs(lay,ngs3+ig) = fracrefa(ig,jpl)+fpl* & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1,nlayers speccomb = colo3(lay)+rat_o3co2(lay)*colco2(lay) specparm = colo3(lay)/speccomb if (specparm.ge.oneminus) specparm = oneminus specmult = 4._rb*(specparm) js = 1+int(specmult) fs = mod(specmult,1.0_rb) ! speccomb1 = colo3(lay)+rat_o3co2_1(lay)*colco2(lay) specparm1 = colo3(lay)/speccomb1 if (specparm1.ge.oneminus) specparm1 = oneminus specmult1 = 4._rb*(specparm1) js1 = 1+int(specmult1) fs1 = mod(specmult1,1.0_rb) ! fac000 = (1._rb-fs)*fac00(lay) fac010 = (1._rb-fs)*fac10(lay) fac100 = fs*fac00(lay) fac110 = fs*fac10(lay) fac001 = (1._rb-fs1)*fac01(lay) fac011 = (1._rb-fs1)*fac11(lay) fac101 = fs1*fac01(lay) fac111 = fs1*fac11(lay) ! speccomb_planck = colo3(lay)+refrat_planck_b*colco2(lay) specparm_planck = colo3(lay)/speccomb_planck if (specparm_planck.ge.oneminus) specparm_planck=oneminus specmult_planck = 4._rb*specparm_planck jpl = 1+int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ! ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(4) + js ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(4) + js1 ! do ig = 1,ng4 taug(lay,ngs3+ig) = speccomb * & (fac000 * absb(ind0,ig) + & fac100 * absb(ind0+1,ig) + & fac010 * absb(ind0+5,ig) + & fac110 * absb(ind0+6,ig)) & +speccomb1 * & (fac001 * absb(ind1,ig ) + & fac101 * absb(ind1+1,ig) + & fac011 * absb(ind1+5,ig) + & fac111 * absb(ind1+6,ig)) fracs(lay,ngs3+ig) = fracrefb(ig,jpl) + fpl * & (fracrefb(ig,jpl+1)-fracrefb(ig,jpl)) enddo ! ! Empirical modification to code to improve stratospheric cooling rates ! for co2. Revised to apply weighting for g-point reduction in this band. ! taug(lay,ngs3+8) = taug(lay,ngs3+8)*0.92 taug(lay,ngs3+9) = taug(lay,ngs3+9)*0.88 taug(lay,ngs3+10) = taug(lay,ngs3+10)*1.07 taug(lay,ngs3+11) = taug(lay,ngs3+11)*1.1 taug(lay,ngs3+12) = taug(lay,ngs3+12)*0.99 taug(lay,ngs3+13) = taug(lay,ngs3+13)*0.88 taug(lay,ngs3+14) = taug(lay,ngs3+14)*0.943 ! enddo ! end subroutine taugb4 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb5 !------------------------------------------------------------------------------- ! ! abstract : band 5, 700-820 cm-1 (low key - h2o,co2; low minor - o3, ccl4) ! (high key - o3,co2) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng5, ngs4 use rrlw_ref_k, only : chi_mls use rrlw_kg05_k, only : fracrefa, fracrefb, absa, ka, absb, kb, & ka_mo3, selfref, forref, ccl4 ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig integer(kind=im) :: js, js1, jmo3, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_mo3, specparm_mo3, specmult_mo3, fmo3 real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor, o3m1, o3m2, abso3 real(kind=rb) :: refrat_planck_a, refrat_planck_b, refrat_m_a real(kind=rb) :: tau_major, tau_major1 !------------------------------------------------------------------------------- ! ! Minor gas mapping level : ! lower - o3, p = 317.34 mbar, t = 240.77 k ! lower - ccl4 ! ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower/upper atmosphere. ! ! P = 473.420 mb ! refrat_planck_a = chi_mls(1,5)/chi_mls(2,5) ! ! P = 0.2369 mb ! refrat_planck_b = chi_mls(3,43)/chi_mls(2,43) ! ! P = 317.3480 ! refrat_m_a = chi_mls(1,7)/chi_mls(2,7) ! ! Compute the optical depth by interpolating in ln(pressure) and ! temperature, and appropriate species. Below laytrop, the ! water vapor self-continuum and foreign continuum is ! interpolated (in temperature) separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop speccomb = colh2o(lay)+rat_h2oco2(lay)*colco2(lay) specparm = colh2o(lay)/speccomb if (specparm.ge.oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1+int(specmult) fs = mod(specmult,1.0_rb) ! speccomb1 = colh2o(lay) + rat_h2oco2_1(lay)*colco2(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) ! speccomb_mo3 = colh2o(lay) + refrat_m_a*colco2(lay) specparm_mo3 = colh2o(lay)/speccomb_mo3 if (specparm_mo3.ge.oneminus) specparm_mo3 = oneminus specmult_mo3 = 8._rb*specparm_mo3 jmo3 = 1 + int(specmult_mo3) fmo3 = mod(specmult_mo3,1.0_rb) ! speccomb_planck = colh2o(lay)+refrat_planck_a*colco2(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck.ge.oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl = 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ! ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(5) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(5) + js1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) ! if (specparm.lt.0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm.gt.0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif ! if (specparm1.lt.0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1.gt.0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif ! do ig = 1,ng5 tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) o3m1 = ka_mo3(jmo3,indm,ig) + fmo3 * & (ka_mo3(jmo3+1,indm,ig)-ka_mo3(jmo3,indm,ig)) o3m2 = ka_mo3(jmo3,indm+1,ig) + fmo3 * & (ka_mo3(jmo3+1,indm+1,ig)-ka_mo3(jmo3,indm+1,ig)) abso3 = o3m1 + minorfrac(lay)*(o3m2-o3m1) ! if (specparm.lt.0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm.gt.0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif ! if (specparm1.lt.0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1.gt.0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif ! taug(lay,ngs4+ig) = tau_major + tau_major1 & + tauself + taufor & + abso3*colo3(lay) & + wx(1,lay) * ccl4(ig) fracs(lay,ngs4+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1,nlayers speccomb = colo3(lay) + rat_o3co2(lay)*colco2(lay) specparm = colo3(lay)/speccomb if (specparm.ge.oneminus) specparm = oneminus specmult = 4._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) ! speccomb1 = colo3(lay) + rat_o3co2_1(lay)*colco2(lay) specparm1 = colo3(lay)/speccomb1 if (specparm1.ge.oneminus) specparm1 = oneminus specmult1 = 4._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) ! fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) ! speccomb_planck = colo3(lay)+refrat_planck_b*colco2(lay) specparm_planck = colo3(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 4._rb*specparm_planck jpl = 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ! ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(5) + js ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(5) + js1 ! do ig = 1,ng5 taug(lay,ngs4+ig) = speccomb * & (fac000 * absb(ind0,ig) + & fac100 * absb(ind0+1,ig) + & fac010 * absb(ind0+5,ig) + & fac110 * absb(ind0+6,ig)) & +speccomb1 * & (fac001 * absb(ind1,ig) + & fac101 * absb(ind1+1,ig) + & fac011 * absb(ind1+5,ig) + & fac111 * absb(ind1+6,ig)) & +wx(1,lay) * ccl4(ig) fracs(lay,ngs4+ig) = fracrefb(ig,jpl) + fpl * & (fracrefb(ig,jpl+1)-fracrefb(ig,jpl)) enddo enddo ! end subroutine taugb5 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb6 !------------------------------------------------------------------------------- ! ! abstract : band 6, 820-980 cm-1 (low key - h2o; low minor - co2) ! (high key - nothing; high minor-cfc11, cfc12) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ngs5 use rrlw_ref_k, only : chi_mls use rrlw_kg06_k ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig real(kind=rb) :: chi_co2, ratco2, adjfac, adjcolco2 real(kind=rb) :: tauself, taufor, absco2 !------------------------------------------------------------------------------- ! ! Minor gas mapping level: ! lower - co2, p = 706.2720 mb, t = 294.2 k ! upper - cfc11, cfc12 ! ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. The water vapor self-continuum and foreign continuum ! is interpolated (in temperature) separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop ! ! In atmospheres where the amount of CO2 is too great to be considered ! a minor species, adjust the column amount of CO2 by an empirical factor ! to obtain the proper contribution. ! chi_co2 = colco2(lay)/(coldry(lay)) ratco2 = 1.e20_rb*chi_co2/chi_mls(2,jp(lay)+1) ! if (ratco2.gt.3.0_rb) then adjfac = 2.0_rb+(ratco2-2.0_rb)**0.77_rb adjcolco2 = adjfac*chi_mls(2,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcolco2 = colco2(lay) endif ! ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(6) + 1 ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(6) + 1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) ! do ig = 1,ng6 tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) absco2 = (ka_mco2(indm,ig) + minorfrac(lay) * & (ka_mco2(indm+1,ig) - ka_mco2(indm,ig))) taug(lay,ngs5+ig) = colh2o(lay) * & (fac00(lay) * absa(ind0,ig) + & fac10(lay) * absa(ind0+1,ig) + & fac01(lay) * absa(ind1,ig) + & fac11(lay) * absa(ind1+1,ig)) & +tauself + taufor & +adjcolco2 * absco2 & +wx(2,lay) * cfc11adj(ig) & +wx(3,lay) * cfc12(ig) fracs(lay,ngs5+ig) = fracrefa(ig) enddo enddo ! ! Upper atmosphere loop ! Nothing important goes on above laytrop in this band. ! do lay = laytrop+1,nlayers do ig = 1,ng6 taug(lay,ngs5+ig) = 0.0_rb & + wx(2,lay) * cfc11adj(ig) & + wx(3,lay) * cfc12(ig) fracs(lay,ngs5+ig) = fracrefa(ig) enddo enddo ! end subroutine taugb6 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb7 !------------------------------------------------------------------------------- ! ! abstract : band 7, 980-1080 cm-1 (low key - h2o,o3; low minor - co2) ! (high key - o3; high minor - co2) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng7, ngs6 use rrlw_ref_k, only : chi_mls use rrlw_kg07_k, only : fracrefa, fracrefb, absa, ka, absb, kb, & ka_mco2, kb_mco2, selfref, forref ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig integer(kind=im) :: js, js1, jmco2, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_mco2, specparm_mco2, specmult_mco2, fmco2 real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor, co2m1, co2m2, absco2 real(kind=rb) :: chi_co2, ratco2, adjfac, adjcolco2 real(kind=rb) :: refrat_planck_a, refrat_m_a real(kind=rb) :: tau_major, tau_major1 !------------------------------------------------------------------------------- ! ! Minor gas mapping level : ! lower - co2, p = 706.2620 mbar, t= 278.94 k ! upper - co2, p = 12.9350 mbar, t = 234.01 k ! ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower atmosphere. ! ! P = 706.2620 mb ! refrat_planck_a = chi_mls(1,3)/chi_mls(3,3) ! ! P = 706.2720 mb ! refrat_m_a = chi_mls(1,3)/chi_mls(3,3) ! ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below laytrop, the water ! vapor self-continuum and foreign continuum is interpolated ! (in temperature) separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop speccomb = colh2o(lay) + rat_h2oo3(lay)*colo3(lay) specparm = colh2o(lay)/speccomb if (specparm.ge.oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) ! speccomb1 = colh2o(lay) + rat_h2oo3_1(lay)*colo3(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1.ge.oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) ! speccomb_mco2 = colh2o(lay) + refrat_m_a*colo3(lay) specparm_mco2 = colh2o(lay)/speccomb_mco2 if (specparm_mco2.ge.oneminus) specparm_mco2 = oneminus specmult_mco2 = 8._rb*specparm_mco2 ! jmco2 = 1+int(specmult_mco2) fmco2 = mod(specmult_mco2,1.0_rb) ! ! In atmospheres where the amount of CO2 is too great to be considered ! a minor species, adjust the column amount of CO2 by an empirical factor ! to obtain the proper contribution. ! chi_co2 = colco2(lay)/(coldry(lay)) ratco2 = 1.e20*chi_co2/chi_mls(2,jp(lay)+1) if (ratco2.gt.3.0_rb) then adjfac = 3.0_rb+(ratco2-3.0_rb)**0.79_rb adjcolco2 = adjfac*chi_mls(2,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcolco2 = colco2(lay) endif ! speccomb_planck = colh2o(lay)+refrat_planck_a*colo3(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck.ge.oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl = 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ! ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(7) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(7) + js1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) ! if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm.gt.0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif ! if (specparm.lt.0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1.gt.0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif ! do ig = 1,ng7 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) co2m1 = ka_mco2(jmco2,indm,ig) + fmco2 * & (ka_mco2(jmco2+1,indm,ig) - ka_mco2(jmco2,indm,ig)) co2m2 = ka_mco2(jmco2,indm+1,ig) + fmco2 * & (ka_mco2(jmco2+1,indm+1,ig) - ka_mco2(jmco2,indm+1,ig)) absco2 = co2m1 + minorfrac(lay) * (co2m2 - co2m1) ! if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm.gt.0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif ! if (specparm1.lt.0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1.gt.0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif ! taug(lay,ngs6+ig) = tau_major + tau_major1 & + tauself + taufor & + adjcolco2*absco2 fracs(lay,ngs6+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1,nlayers ! ! In atmospheres where the amount of CO2 is too great to be considered ! a minor species, adjust the column amount of CO2 by an empirical factor ! to obtain the proper contribution. ! chi_co2 = colco2(lay)/(coldry(lay)) ratco2 = 1.e20*chi_co2/chi_mls(2,jp(lay)+1) if (ratco2 .gt. 3.0_rb) then adjfac = 2.0_rb+(ratco2-2.0_rb)**0.79_rb adjcolco2 = adjfac*chi_mls(2,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcolco2 = colco2(lay) endif ! ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(7) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(7) + 1 indm = indminor(lay) ! do ig = 1,ng7 absco2 = kb_mco2(indm,ig) + minorfrac(lay) * & (kb_mco2(indm+1,ig) - kb_mco2(indm,ig)) taug(lay,ngs6+ig) = colo3(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) & +adjcolco2 * absco2 fracs(lay,ngs6+ig) = fracrefb(ig) enddo ! ! Empirical modification to code to improve stratospheric cooling rates ! for o3. Revised to apply weighting for g-point reduction in this band. ! taug(lay,ngs6+6) = taug(lay,ngs6+6)*0.92_rb taug(lay,ngs6+7) = taug(lay,ngs6+7)*0.88_rb taug(lay,ngs6+8) = taug(lay,ngs6+8)*1.07_rb taug(lay,ngs6+9) = taug(lay,ngs6+9)*1.1_rb taug(lay,ngs6+10) = taug(lay,ngs6+10)*0.99_rb taug(lay,ngs6+11) = taug(lay,ngs6+11)*0.855_rb ! enddo ! end subroutine taugb7 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb8 !------------------------------------------------------------------------------- ! ! abstract : band 8, 1080-1180 cm-1 (low key - h2o; low minor - co2,o3,n2o) ! (high key - o3; high minor - co2, n2o) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng8, ngs7 use rrlw_ref_k, only : chi_mls use rrlw_kg08_k, only : fracrefa, fracrefb, absa, ka, absb, kb, & ka_mco2, ka_mn2o, ka_mo3, kb_mco2, kb_mn2o, & selfref, forref, cfc12, cfc22adj ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig real(kind=rb) :: tauself, taufor, absco2, abso3, absn2o real(kind=rb) :: chi_co2, ratco2, adjfac, adjcolco2 !------------------------------------------------------------------------------- ! ! Minor gas mapping level: ! lower - co2, p = 1053.63 mb, t = 294.2 k ! lower - o3, p = 317.348 mb, t = 240.77 k ! lower - n2o, p = 706.2720 mb, t= 278.94 k ! lower - cfc12,cfc11 ! upper - co2, p = 35.1632 mb, t = 223.28 k ! upper - n2o, p = 8.716e-2 mb, t = 226.03 k ! ! Compute the optical depth by interpolating in ln(pressure) and ! temperature, and appropriate species. Below laytrop, the water vapor ! self-continuum and foreign continuum is interpolated (in temperature) ! separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop ! ! In atmospheres where the amount of CO2 is too great to be considered ! a minor species, adjust the column amount of CO2 by an empirical factor ! to obtain the proper contribution. ! chi_co2 = colco2(lay)/(coldry(lay)) ratco2 = 1.e20_rb*chi_co2/chi_mls(2,jp(lay)+1) if (ratco2 .gt. 3.0_rb) then adjfac = 2.0_rb+(ratco2-2.0_rb)**0.65_rb adjcolco2 = adjfac*chi_mls(2,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcolco2 = colco2(lay) endif ! ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(8) + 1 ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(8) + 1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) ! do ig = 1, ng8 tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) absco2 = (ka_mco2(indm,ig) + minorfrac(lay) * & (ka_mco2(indm+1,ig) - ka_mco2(indm,ig))) abso3 = (ka_mo3(indm,ig) + minorfrac(lay) * & (ka_mo3(indm+1,ig) - ka_mo3(indm,ig))) absn2o = (ka_mn2o(indm,ig) + minorfrac(lay) * & (ka_mn2o(indm+1,ig) - ka_mn2o(indm,ig))) taug(lay,ngs7+ig) = colh2o(lay) * & (fac00(lay) * absa(ind0,ig) + & fac10(lay) * absa(ind0+1,ig) + & fac01(lay) * absa(ind1,ig) + & fac11(lay) * absa(ind1+1,ig)) & + tauself + taufor & + adjcolco2 * absco2 & + colo3(lay) * abso3 & + coln2o(lay) * absn2o & + wx(3,lay) * cfc12(ig) & + wx(4,lay) * cfc22adj(ig) fracs(lay,ngs7+ig) = fracrefa(ig) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1, nlayers ! ! In atmospheres where the amount of CO2 is too great to be considered ! a minor species, adjust the column amount of CO2 by an empirical factor ! to obtain the proper contribution. ! chi_co2 = colco2(lay)/coldry(lay) ratco2 = 1.e20_rb*chi_co2/chi_mls(2,jp(lay)+1) if (ratco2 .gt. 3.0_rb) then adjfac = 2.0_rb+(ratco2-2.0_rb)**0.65_rb adjcolco2 = adjfac*chi_mls(2,jp(lay)+1) * coldry(lay)*1.e-20_rb else adjcolco2 = colco2(lay) endif ! ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(8) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(8) + 1 indm = indminor(lay) ! do ig = 1, ng8 absco2 = (kb_mco2(indm,ig) + minorfrac(lay) * & (kb_mco2(indm+1,ig) - kb_mco2(indm,ig))) absn2o = (kb_mn2o(indm,ig) + minorfrac(lay) * & (kb_mn2o(indm+1,ig) - kb_mn2o(indm,ig))) taug(lay,ngs7+ig) = colo3(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) & + adjcolco2 * absco2 & + coln2o(lay)* absn2o & + wx(3,lay) * cfc12(ig) & + wx(4,lay) * cfc22adj(ig) fracs(lay,ngs7+ig) = fracrefb(ig) enddo enddo ! end subroutine taugb8 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb9 !------------------------------------------------------------------------------- ! ! abstract : band 9, 1180-1390 cm-1 (low key - h2o,ch4; low minor - n2o) ! (high key - ch4; high minor - n2o) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng9, ngs8 use rrlw_ref_k, only : chi_mls use rrlw_kg09_k, only : fracrefa, fracrefb, absa, ka, absb, kb, & ka_mn2o, kb_mn2o, selfref, forref ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig integer(kind=im) :: js, js1, jmn2o, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_mn2o, specparm_mn2o, specmult_mn2o, fmn2o real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor, n2om1, n2om2, absn2o real(kind=rb) :: chi_n2o, ratn2o, adjfac, adjcoln2o real(kind=rb) :: refrat_planck_a, refrat_m_a real(kind=rb) :: tau_major, tau_major1 !------------------------------------------------------------------------------- ! ! Minor gas mapping level : ! lower - n2o, p = 706.272 mbar, t = 278.94 k ! upper - n2o, p = 95.58 mbar, t = 215.7 k ! ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower/upper atmosphere. ! ! P = 212 mb ! refrat_planck_a = chi_mls(1,9)/chi_mls(6,9) ! ! P = 706.272 mb ! refrat_m_a = chi_mls(1,3)/chi_mls(6,3) ! ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below laytrop, the water ! vapor self-continuum and foreign continuum is interpolated ! (in temperature) separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop ! speccomb = colh2o(lay) + rat_h2och4(lay)*colch4(lay) specparm = colh2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) ! speccomb1 = colh2o(lay) + rat_h2och4_1(lay)*colch4(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) ! speccomb_mn2o = colh2o(lay) + refrat_m_a*colch4(lay) specparm_mn2o = colh2o(lay)/speccomb_mn2o if (specparm_mn2o .ge. oneminus) specparm_mn2o = oneminus specmult_mn2o = 8._rb*specparm_mn2o jmn2o = 1 + int(specmult_mn2o) fmn2o = mod(specmult_mn2o,1.0_rb) ! ! In atmospheres where the amount of N2O is too great to be considered ! a minor species, adjust the column amount of N2O by an empirical factor ! to obtain the proper contribution. ! chi_n2o = coln2o(lay)/(coldry(lay)) ratn2o = 1.e20_rb*chi_n2o/chi_mls(4,jp(lay)+1) if (ratn2o .gt. 1.5_rb) then adjfac = 0.5_rb+(ratn2o-0.5_rb)**0.65_rb adjcoln2o = adjfac*chi_mls(4,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcoln2o = coln2o(lay) endif ! speccomb_planck = colh2o(lay)+refrat_planck_a*colch4(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl = 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ! ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(9) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(9) + js1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) ! if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm .gt. 0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif ! if (specparm1 .lt. 0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1 .gt. 0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif ! do ig = 1, ng9 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) n2om1 = ka_mn2o(jmn2o,indm,ig) + fmn2o * & (ka_mn2o(jmn2o+1,indm,ig) - ka_mn2o(jmn2o,indm,ig)) n2om2 = ka_mn2o(jmn2o,indm+1,ig) + fmn2o * & (ka_mn2o(jmn2o+1,indm+1,ig) - ka_mn2o(jmn2o,indm+1,ig)) absn2o = n2om1 + minorfrac(lay) * (n2om2 - n2om1) ! if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm .gt. 0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif ! if (specparm1 .lt. 0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1 .gt. 0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif taug(lay,ngs8+ig) = tau_major + tau_major1 & + tauself + taufor & + adjcoln2o*absn2o fracs(lay,ngs8+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1,nlayers ! ! In atmospheres where the amount of N2O is too great to be considered ! a minor species, adjust the column amount of N2O by an empirical factor ! to obtain the proper contribution. ! chi_n2o = coln2o(lay)/(coldry(lay)) ratn2o = 1.e20_rb*chi_n2o/chi_mls(4,jp(lay)+1) if (ratn2o .gt. 1.5_rb) then adjfac = 0.5_rb+(ratn2o-0.5_rb)**0.65_rb adjcoln2o = adjfac*chi_mls(4,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcoln2o = coln2o(lay) endif ! ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(9) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(9) + 1 indm = indminor(lay) ! do ig = 1,ng9 absn2o = kb_mn2o(indm,ig) + minorfrac(lay) * & (kb_mn2o(indm+1,ig) - kb_mn2o(indm,ig)) taug(lay,ngs8+ig) = colch4(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) & + adjcoln2o*absn2o fracs(lay,ngs8+ig) = fracrefb(ig) enddo enddo ! end subroutine taugb9 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb10 !------------------------------------------------------------------------------- ! ! abstract : band 10, 1390-1480 cm-1 (low key - h2o; high key - h2o) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng10, ngs9 use rrlw_kg10_k, only : fracrefa, fracrefb, absa, ka, absb, kb, & selfref, forref ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, ig real(kind=rb) :: tauself, taufor !------------------------------------------------------------------------------- ! ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. Below laytrop, the water vapor self-continuum and ! foreign continuum is interpolated (in temperature) separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(10) + 1 ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(10) + 1 inds = indself(lay) indf = indfor(lay) ! do ig = 1,ng10 tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) taug(lay,ngs9+ig) = colh2o(lay) * & (fac00(lay) * absa(ind0,ig) + & fac10(lay) * absa(ind0+1,ig) + & fac01(lay) * absa(ind1,ig) + & fac11(lay) * absa(ind1+1,ig)) & + tauself + taufor fracs(lay,ngs9+ig) = fracrefa(ig) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1,nlayers ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(10) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(10) + 1 indf = indfor(lay) ! do ig = 1,ng10 taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) taug(lay,ngs9+ig) = colh2o(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) & + taufor fracs(lay,ngs9+ig) = fracrefb(ig) enddo enddo ! end subroutine taugb10 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb11 !------------------------------------------------------------------------------- ! ! abstract : band 11, 1480-1800 cm-1 (low - h2o; low minor - o2) ! (high key - h2o; high minor - o2) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng11, ngs10 use rrlw_kg11_k, only : fracrefa, fracrefb, absa, ka, absb, kb, & ka_mo2, kb_mo2, selfref, forref ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig real(kind=rb) :: scaleo2, tauself, taufor, tauo2 !------------------------------------------------------------------------------- ! ! Minor gas mapping level : ! lower - o2, p = 706.2720 mbar, t = 278.94 k ! upper - o2, p = 4.758820 mbarm t = 250.85 k ! ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. Below laytrop, the water vapor self-continuum and ! foreign continuum is interpolated (in temperature) separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(11) + 1 ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(11) + 1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) scaleo2 = colo2(lay)*scaleminor(lay) do ig = 1,ng11 tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) tauo2 = scaleo2 * (ka_mo2(indm,ig) + minorfrac(lay) * & (ka_mo2(indm+1,ig) - ka_mo2(indm,ig))) taug(lay,ngs10+ig) = colh2o(lay) * & (fac00(lay) * absa(ind0,ig) + & fac10(lay) * absa(ind0+1,ig) + & fac01(lay) * absa(ind1,ig) + & fac11(lay) * absa(ind1+1,ig)) & + tauself + taufor & + tauo2 fracs(lay,ngs10+ig) = fracrefa(ig) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1,nlayers ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(11) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(11) + 1 indf = indfor(lay) indm = indminor(lay) scaleo2 = colo2(lay)*scaleminor(lay) do ig = 1,ng11 taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) tauo2 = scaleo2 * (kb_mo2(indm,ig) + minorfrac(lay) * & (kb_mo2(indm+1,ig) - kb_mo2(indm,ig))) taug(lay,ngs10+ig) = colh2o(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) & + taufor & + tauo2 fracs(lay,ngs10+ig) = fracrefb(ig) enddo enddo ! end subroutine taugb11 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb12 !------------------------------------------------------------------------------- ! ! abstract : band 12, 1800-2080 cm-1 (low - h2o,co2; high - nothing) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng12, ngs11 use rrlw_ref_k, only : chi_mls use rrlw_kg12_k, only : fracrefa, absa, ka, & selfref, forref ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, ig integer(kind=im) :: js, js1, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor real(kind=rb) :: refrat_planck_a real(kind=rb) :: tau_major, tau_major1 !------------------------------------------------------------------------------- ! ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower/upper atmosphere. ! ! P = 174.164 mb ! refrat_planck_a = chi_mls(1,10)/chi_mls(2,10) ! ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below laytrop, the water ! vapor self-continuum adn foreign continuum is interpolated ! (in temperature) separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop ! speccomb = colh2o(lay) + rat_h2oco2(lay)*colco2(lay) specparm = colh2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) ! speccomb1 = colh2o(lay) + rat_h2oco2_1(lay)*colco2(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) ! speccomb_planck = colh2o(lay)+refrat_planck_a*colco2(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl = 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ! ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(12) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(12) + js1 inds = indself(lay) indf = indfor(lay) ! if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm .gt. 0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif ! if (specparm1 .lt. 0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1 .gt. 0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif ! do ig = 1,ng12 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) ! if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm .gt. 0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif ! if (specparm1 .lt. 0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1 .gt. 0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif ! taug(lay,ngs11+ig) = tau_major + tau_major1 & + tauself + taufor fracs(lay,ngs11+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1, nlayers ! do ig = 1, ng12 taug(lay,ngs11+ig) = 0.0_rb fracs(lay,ngs11+ig) = 0.0_rb enddo enddo ! end subroutine taugb12 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb13 !------------------------------------------------------------------------------- ! ! abstract : band 13, 2080-2250 cm-1 (low key - h2o,n2o; high minor - o3 minor) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng13, ngs12 use rrlw_ref_k, only : chi_mls use rrlw_kg13_k, only : fracrefa, fracrefb, absa, ka, & ka_mco2, ka_mco, kb_mo3, selfref, forref ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig integer(kind=im) :: js, js1, jmco2, jmco, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_mco2, specparm_mco2, specmult_mco2, fmco2 real(kind=rb) :: speccomb_mco, specparm_mco, specmult_mco, fmco real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor, co2m1, co2m2, absco2 real(kind=rb) :: com1, com2, absco, abso3 real(kind=rb) :: chi_co2, ratco2, adjfac, adjcolco2 real(kind=rb) :: refrat_planck_a, refrat_m_a, refrat_m_a3 real(kind=rb) :: tau_major, tau_major1 !------------------------------------------------------------------------------- ! ! Minor gas mapping levels : ! lower - co2, p = 1053.63 mb, t = 294.2 k ! lower - co, p = 706 mb, t = 278.94 k ! upper - o3, p = 95.5835 mb, t = 215.7 k ! ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower/upper atmosphere. ! ! P = 473.420 mb (Level 5) ! refrat_planck_a = chi_mls(1,5)/chi_mls(4,5) ! ! P = 1053. (Level 1) ! refrat_m_a = chi_mls(1,1)/chi_mls(4,1) ! ! P = 706. (Level 3) ! refrat_m_a3 = chi_mls(1,3)/chi_mls(4,3) ! ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below laytrop, the water ! vapor self-continuum and foreign continuum is interpolated ! (in temperature) separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop ! speccomb = colh2o(lay) + rat_h2on2o(lay)*coln2o(lay) specparm = colh2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) ! speccomb1 = colh2o(lay) + rat_h2on2o_1(lay)*coln2o(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) ! speccomb_mco2 = colh2o(lay) + refrat_m_a*coln2o(lay) specparm_mco2 = colh2o(lay)/speccomb_mco2 if (specparm_mco2 .ge. oneminus) specparm_mco2 = oneminus specmult_mco2 = 8._rb*specparm_mco2 jmco2 = 1 + int(specmult_mco2) fmco2 = mod(specmult_mco2,1.0_rb) ! ! In atmospheres where the amount of CO2 is too great to be considered ! a minor species, adjust the column amount of CO2 by an empirical factor ! to obtain the proper contribution. ! chi_co2 = colco2(lay)/(coldry(lay)) ratco2 = 1.e20_rb*chi_co2/3.55e-4_rb if (ratco2 .gt. 3.0_rb) then adjfac = 2.0_rb+(ratco2-2.0_rb)**0.68_rb adjcolco2 = adjfac*3.55e-4*coldry(lay)*1.e-20_rb else adjcolco2 = colco2(lay) endif ! speccomb_mco = colh2o(lay) + refrat_m_a3*coln2o(lay) specparm_mco = colh2o(lay)/speccomb_mco if (specparm_mco .ge. oneminus) specparm_mco = oneminus specmult_mco = 8._rb*specparm_mco jmco = 1 + int(specmult_mco) fmco = mod(specmult_mco,1.0_rb) ! speccomb_planck = colh2o(lay)+refrat_planck_a*coln2o(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl = 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ! ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(13) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(13) + js1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) ! if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm .gt. 0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif ! if (specparm1 .lt. 0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1 .gt. 0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif ! do ig = 1, ng13 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) co2m1 = ka_mco2(jmco2,indm,ig) + fmco2 * & (ka_mco2(jmco2+1,indm,ig) - ka_mco2(jmco2,indm,ig)) co2m2 = ka_mco2(jmco2,indm+1,ig) + fmco2 * & (ka_mco2(jmco2+1,indm+1,ig) - ka_mco2(jmco2,indm+1,ig)) absco2 = co2m1 + minorfrac(lay) * (co2m2 - co2m1) com1 = ka_mco(jmco,indm,ig) + fmco * & (ka_mco(jmco+1,indm,ig) - ka_mco(jmco,indm,ig)) com2 = ka_mco(jmco,indm+1,ig) + fmco * & (ka_mco(jmco+1,indm+1,ig) - ka_mco(jmco,indm+1,ig)) absco = com1 + minorfrac(lay) * (com2 - com1) ! if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm .gt. 0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif ! if (specparm1 .lt. 0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1 .gt. 0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif ! taug(lay,ngs12+ig) = tau_major + tau_major1 & + tauself + taufor & + adjcolco2*absco2 & + colco(lay)*absco fracs(lay,ngs12+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1,nlayers indm = indminor(lay) do ig = 1,ng13 abso3 = kb_mo3(indm,ig) + minorfrac(lay) * & (kb_mo3(indm+1,ig) - kb_mo3(indm,ig)) taug(lay,ngs12+ig) = colo3(lay)*abso3 fracs(lay,ngs12+ig) = fracrefb(ig) enddo enddo ! end subroutine taugb13 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb14 !------------------------------------------------------------------------------- ! ! abstract : band 14, 2250-2380 cm-1 (low - co2; high - co2) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng14, ngs13 use rrlw_kg14_k, only : fracrefa, fracrefb, absa, ka, absb, kb, & selfref, forref ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, ig real(kind=rb) :: tauself, taufor !------------------------------------------------------------------------------- ! ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. Below laytrop, the water vapor self-continuum ! and foreign continuum is interpolated (in temperature) separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(14) + 1 ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(14) + 1 inds = indself(lay) indf = indfor(lay) do ig = 1,ng14 tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) taug(lay,ngs13+ig) = colco2(lay) * & (fac00(lay) * absa(ind0,ig) + & fac10(lay) * absa(ind0+1,ig) + & fac01(lay) * absa(ind1,ig) + & fac11(lay) * absa(ind1+1,ig)) & + tauself + taufor fracs(lay,ngs13+ig) = fracrefa(ig) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1,nlayers ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(14) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(14) + 1 do ig = 1,ng14 taug(lay,ngs13+ig) = colco2(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) fracs(lay,ngs13+ig) = fracrefb(ig) enddo enddo ! end subroutine taugb14 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb15 !------------------------------------------------------------------------------- ! ! abstract : band 15, 2380-2600 cm-1 (low - n2o,co2; low minor - n2) ! (high - nothing) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng15, ngs14 use rrlw_ref_k, only : chi_mls use rrlw_kg15_k, only : fracrefa, absa, ka, ka_mn2, selfref, forref ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig integer(kind=im) :: js, js1, jmn2, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_mn2, specparm_mn2, specmult_mn2, fmn2 real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: scalen2, tauself, taufor, n2m1, n2m2, taun2 real(kind=rb) :: refrat_planck_a, refrat_m_a real(kind=rb) :: tau_major, tau_major1 !------------------------------------------------------------------------------- ! ! Minor gas mapping level : ! Lower - Nitrogen Continuum, P = 1053., T = 294. ! ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower atmosphere. ! ! P = 1053. mb (Level 1) ! refrat_planck_a = chi_mls(4,1)/chi_mls(2,1) ! ! P = 1053. ! refrat_m_a = chi_mls(4,1)/chi_mls(2,1) ! ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below laytrop, the water ! vapor self-continuum and foreign continuum is interpolated ! (in temperature) separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop ! speccomb = coln2o(lay) + rat_n2oco2(lay)*colco2(lay) specparm = coln2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) ! speccomb1 = coln2o(lay) + rat_n2oco2_1(lay)*colco2(lay) specparm1 = coln2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) ! speccomb_mn2 = coln2o(lay) + refrat_m_a*colco2(lay) specparm_mn2 = coln2o(lay)/speccomb_mn2 if (specparm_mn2 .ge. oneminus) specparm_mn2 = oneminus specmult_mn2 = 8._rb*specparm_mn2 jmn2 = 1 + int(specmult_mn2) fmn2 = mod(specmult_mn2,1.0_rb) ! speccomb_planck = coln2o(lay) + refrat_planck_a*colco2(lay) specparm_planck = coln2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl = 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ! ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(15) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(15) + js1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) ! scalen2 = colbrd(lay)*scaleminor(lay) ! if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm .gt. 0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif ! if (specparm1 .lt. 0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1 .gt. 0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif ! do ig = 1,ng15 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) n2m1 = ka_mn2(jmn2,indm,ig) + fmn2 * & (ka_mn2(jmn2+1,indm,ig) - ka_mn2(jmn2,indm,ig)) n2m2 = ka_mn2(jmn2,indm+1,ig) + fmn2 * & (ka_mn2(jmn2+1,indm+1,ig) - ka_mn2(jmn2,indm+1,ig)) taun2 = scalen2 * (n2m1 + minorfrac(lay) * (n2m2 - n2m1)) ! if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm .gt. 0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif ! if (specparm1 .lt. 0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1 .gt. 0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif ! taug(lay,ngs14+ig) = tau_major + tau_major1 & + tauself + taufor & + taun2 fracs(lay,ngs14+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1,nlayers do ig = 1,ng15 taug(lay,ngs14+ig) = 0.0_rb fracs(lay,ngs14+ig) = 0.0_rb enddo enddo ! end subroutine taugb15 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine taugb16 !------------------------------------------------------------------------------- ! ! abstract : band 16, 2600-3250 cm-1 (low key- h2o,ch4; high key - ch4) ! !------------------------------------------------------------------------------- use parrrtm_k, only : ng16, ngs15 use rrlw_ref_k, only : chi_mls use rrlw_kg16_k, only : fracrefa, fracrefb, absa, ka, & absb, kb, selfref, forref ! ! Local ! integer(kind=im) :: lay, ind0, ind1, inds, indf, ig integer(kind=im) :: js, js1, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor real(kind=rb) :: refrat_planck_a real(kind=rb) :: tau_major, tau_major1 !------------------------------------------------------------------------------- ! ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower atmosphere. ! P = 387. mb (Level 6) ! refrat_planck_a = chi_mls(1,6)/chi_mls(6,6) ! ! Compute the optical depth by interpolating in ln(pressure), ! temperature,and appropriate species. Below laytrop, the water ! vapor self-continuum and foreign continuum is interpolated ! (in temperature) separately. ! ! Lower atmosphere loop ! do lay = 1,laytrop ! speccomb = colh2o(lay) + rat_h2och4(lay)*colch4(lay) specparm = colh2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) ! speccomb1 = colh2o(lay) + rat_h2och4_1(lay)*colch4(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) ! speccomb_planck = colh2o(lay)+refrat_planck_a*colch4(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl = 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ! ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(16) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(16) + js1 inds = indself(lay) indf = indfor(lay) ! if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm .gt. 0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif ! if (specparm1 .lt. 0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1 .gt. 0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif ! do ig = 1,ng16 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) ! if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm .gt. 0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif ! if (specparm1 .lt. 0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1 .gt. 0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif ! taug(lay,ngs15+ig) = tau_major + tau_major1 & + tauself + taufor fracs(lay,ngs15+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! ! Upper atmosphere loop ! do lay = laytrop+1,nlayers ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(16) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(16) + 1 do ig = 1,ng16 taug(lay,ngs15+ig) = colch4(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) fracs(lay,ngs15+ig) = fracrefb(ig) enddo enddo ! end subroutine taugb16 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- end subroutine taumol !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- end module rrtmg_lw_taumol_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- ! ! path: $Source: /cvsroot/NWP/WRFV3/phys/module_ra_rrtmg_lw.F,v $ ! author: $Author: trn $ ! revision: $Revision: 1.3 $ ! created: $Date: 2009/04/16 19:54:22 $ ! !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrtmg_lw_init_k !------------------------------------------------------------------------------- ! ! abstract : rrtmg_lw_init (Steven Cavallo: added for buffer layer adjustment) ! ! -------------------------------------------------------------------------- ! | Copyright 2002-2008, Atmospheric & Environmental Research, Inc. (AER). | ! | This software may be used, copied, or redistributed as long as it is | ! | not sold and this copyright notice is reproduced on each copy made. | ! | This model is provided as is without any express or implied warranties. | ! | (http://www.rtweb.aer.com/) | ! -------------------------------------------------------------------------- ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb use rrlw_wvn_k use rrtmg_lw_setcoef_k, only : lwatmref, lwavplank ! implicit none ! integer, save :: nlayers ! contains !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine rrtmg_lw_ini (cpdair) !------------------------------------------------------------------------------- ! ! abstract : ! This subroutine performs calculations necessary for the initialization ! of the longwave model. Lookup tables are computed for use in the LW ! radiative transfer, and input absorption coefficient data for each ! spectral band are reduced from 256 g-point intervals to 140. ! ! history log : ! 1998-07-01 Michael J. Iacono original version ! 1998-09-01 first revision for GCMs ! 2002-09-01 second revision for RRTM_V3.0 ! ! input : ! cpdair - Specific heat capacity of dry air at constant pressure at 273 K ! (J kg-1 K-1) ! ! local variable : ! expeps - Smallest value for exponential table ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw use rrlw_tbl_k, only : ntbl, tblint, pade, bpade, tau_tbl, exp_tbl, tfn_tbl use rrlw_vsn_k, only : hvrini, hnamini ! real(kind=rb), intent(in ) :: cpdair ! ! Local ! integer(kind=im) :: itr, ibnd, igc, ig, ind, ipr integer(kind=im) :: igcsm, iprsm real(kind=rb) :: wtsum, wtsm(mg) real(kind=rb) :: tfn real(kind=rb), parameter :: expeps = 1.e-20 !------------------------------------------------------------------------------- ! ! ------- Definitions ------- ! Arrays for 10000-point look-up tables: ! tau_tbl Clear-sky optical depth (used in cloudy radiative transfer) ! exp_tbl Exponential lookup table for ransmittance ! tfn_tbl Tau transition function; i.e. the transition of the Planck ! function from that for the mean layer temperature to that for ! the layer boundary temperature as a function of optical depth. ! The "linear in tau" method is used to make the table. ! pade Pade approximation constant (= 0.278) ! bpade Inverse of the Pade approximation constant ! hvrini = '$Revision: 1.3 $' ! ! Initialize model data ! call lwdatinit(cpdair) call lwcmbdat ! g-point interval reduction data call lwcldpr ! cloud optical properties call lwatmref ! reference MLS profile call lwavplank ! Planck function ! ! Moved to module_ra_rrtmg_lw for WRF ! ! call lw_kgb01 ! molecular absorption coefficients ! call lw_kgb02 ! call lw_kgb03 ! call lw_kgb04 ! call lw_kgb05 ! call lw_kgb06 ! call lw_kgb07 ! call lw_kgb08 ! call lw_kgb09 ! call lw_kgb10 ! call lw_kgb11 ! call lw_kgb12 ! call lw_kgb13 ! call lw_kgb14 ! call lw_kgb15 ! call lw_kgb16 ! ! Compute lookup tables for transmittance, tau transition function, ! and clear sky tau (for the cloudy sky radiative transfer). Tau is ! computed as a function of the tau transition function, transmittance ! is calculated as a function of tau, and the tau transition function ! is calculated using the linear in tau formulation at values of tau ! above 0.01. TF is approximated as tau/6 for tau < 0.01. All tables ! are computed at intervals of 0.001. The inverse of the constant used ! in the Pade approximation to the tau transition function is set to b. ! tau_tbl(0) = 0.0_rb tau_tbl(ntbl) = 1.e10_rb exp_tbl(0) = 1.0_rb exp_tbl(ntbl) = expeps tfn_tbl(0) = 0.0_rb tfn_tbl(ntbl) = 1.0_rb bpade = 1.0_rb / pade ! do itr = 1,ntbl-1 tfn = real(itr) / real(ntbl) tau_tbl(itr) = bpade * tfn / (1._rb - tfn) exp_tbl(itr) = exp(-tau_tbl(itr)) if (exp_tbl(itr) .le. expeps) exp_tbl(itr) = expeps if (tau_tbl(itr) .lt. 0.06_rb) then tfn_tbl(itr) = tau_tbl(itr)/6._rb else tfn_tbl(itr) = 1._rb-2._rb*((1._rb/tau_tbl(itr)) & -(exp_tbl(itr)/(1.-exp_tbl(itr)))) endif enddo ! ! Perform g-point reduction from 16 per band (256 total points) to ! a band dependant number (140 total points) for all absorption ! coefficient input data and Planck fraction input data. ! Compute relative weighting for new g-point combinations. ! igcsm = 0 do ibnd = 1,nbndlw iprsm = 0 if (ngc(ibnd).lt.mg) then do igc = 1,ngc(ibnd) igcsm = igcsm + 1 wtsum = 0._rb do ipr = 1,ngn(igcsm) iprsm = iprsm + 1 wtsum = wtsum + wt(iprsm) enddo wtsm(igc) = wtsum enddo ! do ig = 1,ng(ibnd) ind = (ibnd-1)*mg + ig rwgt(ind) = wt(ig)/wtsm(ngm(ind)) enddo else do ig = 1,ng(ibnd) igcsm = igcsm + 1 ind = (ibnd-1)*mg + ig rwgt(ind) = 1.0_rb enddo endif enddo ! ! Reduce g-points for absorption coefficient data in each LW spectral band. ! call cmbgb1 call cmbgb2 call cmbgb3 call cmbgb4 call cmbgb5 call cmbgb6 call cmbgb7 call cmbgb8 call cmbgb9 call cmbgb10 call cmbgb11 call cmbgb12 call cmbgb13 call cmbgb14 call cmbgb15 call cmbgb16 ! end subroutine rrtmg_lw_ini !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lwdatinit (cpdair) !------------------------------------------------------------------------------- ! ! abstract : lwdatinit ! ! input : ! cpdair - Specific heat capacity of dry air at constant pressure at 273 K ! (J kg-1 K-1) ! !------------------------------------------------------------------------------- use parrrtm_k, only : maxxsec, maxinpx use rrlw_con_k, only : heatfac, grav, planck, boltz, & clight, avogad, alosmt, gascon, radcn1, radcn2, & sbcnst, secdy use rrlw_vsn_k ! save ! real(kind=rb), intent(in ) :: cpdair !------------------------------------------------------------------------------- ! ! Longwave spectral band limits (wavenumbers) ! wavenum1(:) = (/ 10._rb, 350._rb, 500._rb, 630._rb, 700._rb, 820._rb, & 980._rb,1080._rb,1180._rb,1390._rb,1480._rb,1800._rb, & 2080._rb,2250._rb,2380._rb,2600._rb/) wavenum2(:) = (/350._rb, 500._rb, 630._rb, 700._rb, 820._rb, 980._rb, & 1080._rb,1180._rb,1390._rb,1480._rb,1800._rb,2080._rb, & 2250._rb,2380._rb,2600._rb,3250._rb/) delwave(:) = (/340._rb, 150._rb, 130._rb, 70._rb, 120._rb, 160._rb, & 100._rb, 100._rb, 210._rb, 90._rb, 320._rb, 280._rb, & 170._rb, 130._rb, 220._rb, 650._rb/) ! ! Spectral band information ! ng(:) = (/16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16/) nspa(:) = (/1,1,9,9,9,1,9,1,9,1,1,9,9,1,9,9/) nspb(:) = (/1,1,5,5,5,0,1,1,1,1,1,0,0,1,0,0/) ! ! nxmol - number of cross-sections input by user ! ixindx(i) - index of cross-section molecule corresponding to Ith ! cross-section specified by user ! = 0 -- not allowed in rrtm ! = 1 -- ccl4 ! = 2 -- cfc11 ! = 3 -- cfc12 ! = 4 -- cfc22 ! nxmol = 4 ixindx(1) = 1 ixindx(2) = 2 ixindx(3) = 3 ixindx(4) = 4 ixindx(5:maxinpx) = 0 ! ! Fundamental physical constants from NIST 2002 ! grav = 9.8066_rb ! Acceleration of gravity ! (m s-2) planck = 6.62606876e-27_rb ! Planck constant ! (ergs s; g cm2 s-1) boltz = 1.3806503e-16_rb ! Boltzmann constant ! (ergs K-1; g cm2 s-2 K-1) clight = 2.99792458e+10_rb ! Speed of light in a vacuum ! (cm s-1) avogad = 6.02214199e+23_rb ! Avogadro constant ! (mol-1) alosmt = 2.6867775e+19_rb ! Loschmidt constant ! (cm-3) gascon = 8.31447200e+07_rb ! Molar gas constant ! (ergs mol-1 K-1) radcn1 = 1.191042722e-12_rb ! First radiation constant ! (W cm2 sr-1) radcn2 = 1.4387752_rb ! Second radiation constant ! (cm K) sbcnst = 5.670400e-04_rb ! Stefan-Boltzmann constant ! (W cm-2 K-4) secdy = 8.6400e4_rb ! Number of seconds per day ! (s d-1) ! ! units are generally cgs ! ! The first and second radiation constants are taken from NIST. ! They were previously obtained from the relations: ! radcn1 = 2.*planck*clight*clight*1.e-07 ! radcn2 = planck*clight/boltz ! ! Heatfac is the factor by which delta-flux / delta-pressure is ! multiplied, with flux in W/m-2 and pressure in mbar, to get ! the heating rate in units of degrees/day. It is equal to: ! Original value: ! (g)x(#sec/day)x(1e-5)/(specific heat of air at const. p) ! Here, cpdair (1.004) is in units of J g-1 K-1, and the ! constant (1.e-5) converts mb to Pa and g-1 to kg-1. ! = (9.8066)(86400)(1e-5)/(1.004) ! heatfac = 8.4391_rb ! ! Modified value for consistency with CAM3: ! (g)x(#sec/day)x(1e-5)/(specific heat of air at const. p) ! Here, cpdair (1.00464) is in units of J g-1 K-1, and the ! constant (1.e-5) converts mb to Pa and g-1 to kg-1. ! = (9.80616)(86400)(1e-5)/(1.00464) ! heatfac = 8.43339130434_rb ! ! Calculated value: ! (grav) x (#sec/day) / (specific heat of dry air at const. p x 1.e2) ! Here, cpdair is in units of J kg-1 K-1, and the constant (1.e2) ! converts mb to Pa when heatfac is multiplied by W m-2 mb-1. ! heatfac = grav * secdy / (cpdair * 1.e2_rb) ! end subroutine lwdatinit !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lwcmbdat !------------------------------------------------------------------------------- ! ! abstract : ! Arrays for the g-point reduction from 256 to 140 for the 16 LW bands: ! This mapping from 256 to 140 points has been carefully selected to ! minimize the effect on the resulting fluxes and cooling rates, and ! caution should be used if the mapping is modified. The full 256 ! g-point set can be restored with ngptlw=256, ngc=16*16, ngn=256*1., etc. ! ! data : ! ngptlw The total number of new g-points ! ngc The number of new g-points in each band ! ngs The cumulative sum of new g-points for each band ! ngm The index of each new g-point relative to the original ! 16 g-points for each band. ! ngn The number of original g-points that are combined to make ! each new g-point in each band. ! ngb The band index for each new g-point. ! wt RRTM weights for 16 g-points. ! !------------------------------------------------------------------------------- ! save ! ! ------- Data statements ------- ! ngc(:) = (/10,12,16,14,16,8,12,8,12,6,8,8,4,2,2,2/) ngs(:) = (/10,22,38,52,68,76,88,96,108,114,122,130,134,136,138,140/) ngm(:) = (/1,2,3,3,4,4,5,5,6,6,7,7,8,8,9,10, & ! band 1 1,2,3,4,5,6,7,8,9,9,10,10,11,11,12,12, & ! band 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, & ! band 3 1,2,3,4,5,6,7,8,9,10,11,12,13,14,14,14, & ! band 4 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, & ! band 5 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8, & ! band 6 1,1,2,2,3,4,5,6,7,8,9,10,11,11,12,12, & ! band 7 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8, & ! band 8 1,2,3,4,5,6,7,8,9,9,10,10,11,11,12,12, & ! band 9 1,1,2,2,3,3,4,4,5,5,5,5,6,6,6,6, & ! band 10 1,2,3,3,4,4,5,5,6,6,7,7,7,8,8,8, & ! band 11 1,2,3,4,5,5,6,6,7,7,7,7,8,8,8,8, & ! band 12 1,1,1,2,2,2,3,3,3,3,4,4,4,4,4,4, & ! band 13 1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2, & ! band 14 1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2, & ! band 15 1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2/) ! band 16 ngn(:) = (/1,1,2,2,2,2,2,2,1,1, & ! band 1 1,1,1,1,1,1,1,1,2,2,2,2, & ! band 2 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, & ! band 3 1,1,1,1,1,1,1,1,1,1,1,1,1,3, & ! band 4 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, & ! band 5 2,2,2,2,2,2,2,2, & ! band 6 2,2,1,1,1,1,1,1,1,1,2,2, & ! band 7 2,2,2,2,2,2,2,2, & ! band 8 1,1,1,1,1,1,1,1,2,2,2,2, & ! band 9 2,2,2,2,4,4, & ! band 10 1,1,2,2,2,2,3,3, & ! band 11 1,1,1,1,2,2,4,4, & ! band 12 3,3,4,6, & ! band 13 8,8, & ! band 14 8,8, & ! band 15 4,12/) ! band 16 ngb(:) = (/1,1,1,1,1,1,1,1,1,1, & ! band 1 2,2,2,2,2,2,2,2,2,2,2,2, & ! band 2 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, & ! band 3 4,4,4,4,4,4,4,4,4,4,4,4,4,4, & ! band 4 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, & ! band 5 6,6,6,6,6,6,6,6, & ! band 6 7,7,7,7,7,7,7,7,7,7,7,7, & ! band 7 8,8,8,8,8,8,8,8, & ! band 8 9,9,9,9,9,9,9,9,9,9,9,9, & ! band 9 10,10,10,10,10,10, & ! band 10 11,11,11,11,11,11,11,11, & ! band 11 12,12,12,12,12,12,12,12, & ! band 12 13,13,13,13, & ! band 13 14,14, & ! band 14 15,15, & ! band 15 16,16/) ! band 16 wt(:) = (/ 0.1527534276_rb, 0.1491729617_rb, 0.1420961469_rb, & 0.1316886544_rb, 0.1181945205_rb, 0.1019300893_rb, & 0.0832767040_rb, 0.0626720116_rb, 0.0424925000_rb, & 0.0046269894_rb, 0.0038279891_rb, 0.0030260086_rb, & 0.0022199750_rb, 0.0014140010_rb, 0.0005330000_rb, & 0.0000750000_rb/) ! end subroutine lwcmbdat !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb1 !------------------------------------------------------------------------------- ! ! abstract : ! The subroutines CMBGB1->CMBGB16 input the absorption coefficient ! data for each band, which are defined for 16 g-points and 16 spectral ! bands. The data are combined with appropriate weighting following the ! g-point mapping arrays specified in RRTMINIT. Plank fraction data ! in arrays FRACREFA and FRACREFB are combined without weighting. All ! g-point reduced data are put into new arrays for use in RRTM. ! ! band 1: 10-350 cm-1 (low key - h2o; low minor - n2) ! (high key - h2o; high minor - n2) ! note: previous versions of rrtm band 1: ! 10-250 cm-1 (low - h2o; high - h2o) ! ! history log : ! 1998-07-01 MJIacono original version ! 1998-09-01 MJIacono revision for GCMs ! 2002-09-01 MJIacono revision for RRTMG ! 2006-06-01 MJIacono revision for F90 reformatting ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng1 use rrlw_kg01_k, only : fracrefao, fracrefbo, kao, kbo, kao_mn2, kbo_mn2, & selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, ka_mn2,kb_mn2,& selfref, forref ! ! Local ! integer(kind=im) :: jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumk1, sumk2, sumf1, sumf2 !------------------------------------------------------------------------------- ! do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(1) sumk = 0. do ipr = 1,ngn(igc) iprsm = iprsm + 1 sumk = sumk + kao(jt,jp,iprsm)*rwgt(iprsm) enddo ka(jt,jp,igc) = sumk enddo enddo ! do jp = 13,59 iprsm = 0 do igc = 1,ngc(1) sumk = 0. do ipr = 1,ngn(igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm) enddo kb(jt,jp,igc) = sumk enddo enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(1) sumk = 0. do ipr = 1,ngn(igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(1) sumk = 0. do ipr = 1,ngn(igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm) enddo forref(jt,igc) = sumk enddo enddo ! do jt = 1,19 iprsm = 0 do igc = 1,ngc(1) sumk1 = 0. sumk2 = 0. do ipr = 1,ngn(igc) iprsm = iprsm + 1 sumk1 = sumk1 + kao_mn2(jt,iprsm)*rwgt(iprsm) sumk2 = sumk2 + kbo_mn2(jt,iprsm)*rwgt(iprsm) enddo ka_mn2(jt,igc) = sumk1 kb_mn2(jt,igc) = sumk2 enddo enddo ! iprsm = 0 do igc = 1,ngc(1) sumf1 = 0. sumf2 = 0. do ipr = 1,ngn(igc) iprsm = iprsm + 1 sumf1 = sumf1+ fracrefao(iprsm) sumf2 = sumf2+ fracrefbo(iprsm) enddo fracrefa(igc) = sumf1 fracrefb(igc) = sumf2 enddo ! end subroutine cmbgb1 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb2 !------------------------------------------------------------------------------- ! ! abstract : ! band 2: 350-500 cm-1 (low key - h2o; high key - h2o) ! ! note: previous version of rrtm band 2: ! 250 - 500 cm-1 (low - h2o; high - h2o) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng2 use rrlw_kg02_k, only : fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, selfref, forref ! ! Local ! integer(kind=im) :: jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf1, sumf2 !------------------------------------------------------------------------------- ! do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(2) sumk = 0. do ipr = 1,ngn(ngs(1)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jt,jp,iprsm)*rwgt(iprsm+16) enddo ka(jt,jp,igc) = sumk enddo enddo ! do jp = 13,59 iprsm = 0 do igc = 1,ngc(2) sumk = 0. do ipr = 1,ngn(ngs(1)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+16) enddo kb(jt,jp,igc) = sumk enddo enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(2) sumk = 0. do ipr = 1,ngn(ngs(1)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+16) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(2) sumk = 0. do ipr = 1,ngn(ngs(1)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+16) enddo forref(jt,igc) = sumk enddo enddo ! iprsm = 0 do igc = 1,ngc(2) sumf1 = 0. sumf2 = 0. do ipr = 1,ngn(ngs(1)+igc) iprsm = iprsm + 1 sumf1 = sumf1+ fracrefao(iprsm) sumf2 = sumf2+ fracrefbo(iprsm) enddo fracrefa(igc) = sumf1 fracrefb(igc) = sumf2 enddo ! end subroutine cmbgb2 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb3 !------------------------------------------------------------------------------- ! ! abstract : ! band 3: 500-630 cm-1 (low key - h2o,co2; low minor - n2o) ! (high key - h2o,co2; high minor - n2o) ! ! old band 3: 500-630 cm-1 (low - h2o,co2; high - h2o,co2) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng3 use rrlw_kg03_k, only : fracrefao, fracrefbo, kao, kbo, kao_mn2o, kbo_mn2o, & selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb,kb,ka_mn2o,kb_mn2o,& selfref, forref ! ! Local ! integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf !------------------------------------------------------------------------------- ! do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(3) sumk = 0. do ipr = 1,ngn(ngs(2)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+32) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo ! do jn = 1,5 do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(3) sumk = 0. do ipr = 1,ngn(ngs(2)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jn,jt,jp,iprsm)*rwgt(iprsm+32) enddo kb(jn,jt,jp,igc) = sumk enddo enddo enddo enddo ! do jn = 1,9 do jt = 1,19 iprsm = 0 do igc = 1,ngc(3) sumk = 0. do ipr = 1,ngn(ngs(2)+igc) iprsm = iprsm + 1 sumk = sumk + kao_mn2o(jn,jt,iprsm)*rwgt(iprsm+32) enddo ka_mn2o(jn,jt,igc) = sumk enddo enddo enddo ! do jn = 1,5 do jt = 1,19 iprsm = 0 do igc = 1,ngc(3) sumk = 0. do ipr = 1,ngn(ngs(2)+igc) iprsm = iprsm + 1 sumk = sumk + kbo_mn2o(jn,jt,iprsm)*rwgt(iprsm+32) enddo kb_mn2o(jn,jt,igc) = sumk enddo enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(3) sumk = 0. do ipr = 1,ngn(ngs(2)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+32) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(3) sumk = 0. do ipr = 1,ngn(ngs(2)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+32) enddo forref(jt,igc) = sumk enddo enddo ! do jp = 1,9 iprsm = 0 do igc = 1,ngc(3) sumf = 0. do ipr = 1,ngn(ngs(2)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo ! do jp = 1,5 iprsm = 0 do igc = 1,ngc(3) sumf = 0. do ipr = 1,ngn(ngs(2)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefbo(iprsm,jp) enddo fracrefb(igc,jp) = sumf enddo enddo ! end subroutine cmbgb3 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb4 !------------------------------------------------------------------------------- ! ! abstract : ! band 4: 630-700 cm-1 (low key - h2o,co2; high key - o3,co2) ! ! old band 4: 630-700 cm-1 (low - h2o,co2; high - o3,co2) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng4 use rrlw_kg04_k, only : fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, selfref, forref ! ! Local ! integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf !------------------------------------------------------------------------------- ! do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(4) sumk = 0. do ipr = 1,ngn(ngs(3)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+48) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo ! do jn = 1,5 do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(4) sumk = 0. do ipr = 1,ngn(ngs(3)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jn,jt,jp,iprsm)*rwgt(iprsm+48) enddo kb(jn,jt,jp,igc) = sumk enddo enddo enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(4) sumk = 0. do ipr = 1,ngn(ngs(3)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+48) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(4) sumk = 0. do ipr = 1,ngn(ngs(3)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+48) enddo forref(jt,igc) = sumk enddo enddo ! do jp = 1,9 iprsm = 0 do igc = 1,ngc(4) sumf = 0. do ipr = 1,ngn(ngs(3)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo ! do jp = 1,5 iprsm = 0 do igc = 1,ngc(4) sumf = 0. do ipr = 1,ngn(ngs(3)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefbo(iprsm,jp) enddo fracrefb(igc,jp) = sumf enddo enddo ! end subroutine cmbgb4 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb5 !------------------------------------------------------------------------------- ! ! abstract : ! band 5: 700-820 cm-1 (low key - h2o,co2; low minor - o3, ccl4) ! (high key - o3,co2) ! ! old band 5: 700-820 cm-1 (low - h2o,co2; high - o3,co2) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng5 use rrlw_kg05_k, only : fracrefao, fracrefbo, kao, kbo, kao_mo3, ccl4o, & selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, ka_mo3, ccl4, & selfref, forref ! ! Local ! integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf !------------------------------------------------------------------------------- ! do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(5) sumk = 0. do ipr = 1,ngn(ngs(4)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+64) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo ! do jn = 1,5 do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(5) sumk = 0. do ipr = 1,ngn(ngs(4)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jn,jt,jp,iprsm)*rwgt(iprsm+64) enddo kb(jn,jt,jp,igc) = sumk enddo enddo enddo enddo ! do jn = 1,9 do jt = 1,19 iprsm = 0 do igc = 1,ngc(5) sumk = 0. do ipr = 1,ngn(ngs(4)+igc) iprsm = iprsm + 1 sumk = sumk + kao_mo3(jn,jt,iprsm)*rwgt(iprsm+64) enddo ka_mo3(jn,jt,igc) = sumk enddo enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(5) sumk = 0. do ipr = 1,ngn(ngs(4)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+64) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(5) sumk = 0. do ipr = 1,ngn(ngs(4)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+64) enddo forref(jt,igc) = sumk enddo enddo ! do jp = 1,9 iprsm = 0 do igc = 1,ngc(5) sumf = 0. do ipr = 1,ngn(ngs(4)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo ! do jp = 1,5 iprsm = 0 do igc = 1,ngc(5) sumf = 0. do ipr = 1,ngn(ngs(4)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefbo(iprsm,jp) enddo fracrefb(igc,jp) = sumf enddo enddo ! iprsm = 0 do igc = 1,ngc(5) sumk = 0. do ipr = 1,ngn(ngs(4)+igc) iprsm = iprsm + 1 sumk = sumk + ccl4o(iprsm)*rwgt(iprsm+64) enddo ccl4(igc) = sumk enddo ! end subroutine cmbgb5 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb6 !------------------------------------------------------------------------------- ! ! abstract : ! band 6: 820-980 cm-1 (low key - h2o; low minor - co2) ! (high key - nothing; high minor - cfc11, cfc12) ! ! old band 6: 820-980 cm-1 (low - h2o; high - nothing) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw use rrlw_kg06 ! ! Local ! integer(kind=im) :: jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf, sumk1, sumk2 !------------------------------------------------------------------------------- ! do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(6) sumk = 0. do ipr = 1,ngn(ngs(5)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jt,jp,iprsm)*rwgt(iprsm+80) enddo ka(jt,jp,igc) = sumk enddo enddo enddo ! do jt = 1,19 iprsm = 0 do igc = 1,ngc(6) sumk = 0. do ipr = 1,ngn(ngs(5)+igc) iprsm = iprsm + 1 sumk = sumk + kao_mco2(jt,iprsm)*rwgt(iprsm+80) enddo ka_mco2(jt,igc) = sumk enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(6) sumk = 0. do ipr = 1,ngn(ngs(5)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+80) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(6) sumk = 0. do ipr = 1,ngn(ngs(5)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+80) enddo forref(jt,igc) = sumk enddo enddo ! iprsm = 0 do igc = 1,ngc(6) sumf = 0. sumk1 = 0. sumk2 = 0. do ipr = 1,ngn(ngs(5)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm) sumk1 = sumk1+ cfc11adjo(iprsm)*rwgt(iprsm+80) sumk2 = sumk2+ cfc12o(iprsm)*rwgt(iprsm+80) enddo fracrefa(igc) = sumf cfc11adj(igc) = sumk1 cfc12(igc) = sumk2 enddo ! end subroutine cmbgb6 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb7 !------------------------------------------------------------------------------- ! ! abstract : ! band 7: 980-1080 cm-1 (low key - h2o,o3; low minor - co2) ! (high key - o3; high minor - co2) ! ! old band 7: 980-1080 cm-1 (low - h2o,o3; high - o3) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng7 use rrlw_kg07_k, only : fracrefao, fracrefbo, kao, kbo, kao_mco2, kbo_mco2, & selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb,kb,ka_mco2,kb_mco2,& selfref, forref ! ! Local ! integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf !------------------------------------------------------------------------------- ! do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(7) sumk = 0. do ipr = 1,ngn(ngs(6)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+96) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo ! do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(7) sumk = 0. do ipr = 1,ngn(ngs(6)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+96) enddo kb(jt,jp,igc) = sumk enddo enddo enddo ! do jn = 1,9 do jt = 1,19 iprsm = 0 do igc = 1,ngc(7) sumk = 0. do ipr = 1,ngn(ngs(6)+igc) iprsm = iprsm + 1 sumk = sumk + kao_mco2(jn,jt,iprsm)*rwgt(iprsm+96) enddo ka_mco2(jn,jt,igc) = sumk enddo enddo enddo ! do jt = 1,19 iprsm = 0 do igc = 1,ngc(7) sumk = 0. do ipr = 1,ngn(ngs(6)+igc) iprsm = iprsm + 1 sumk = sumk + kbo_mco2(jt,iprsm)*rwgt(iprsm+96) enddo kb_mco2(jt,igc) = sumk enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(7) sumk = 0. do ipr = 1,ngn(ngs(6)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+96) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(7) sumk = 0. do ipr = 1,ngn(ngs(6)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+96) enddo forref(jt,igc) = sumk enddo enddo ! do jp = 1,9 iprsm = 0 do igc = 1,ngc(7) sumf = 0. do ipr = 1,ngn(ngs(6)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo ! iprsm = 0 do igc = 1,ngc(7) sumf = 0. do ipr = 1,ngn(ngs(6)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefbo(iprsm) enddo fracrefb(igc) = sumf enddo ! end subroutine cmbgb7 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb8 !------------------------------------------------------------------------------- ! ! abstract : ! band 8: 1080-1180 cm-1 (low key - h2o; low minor - co2,o3,n2o) ! (high key - o3; high minor - co2, n2o) ! ! old band 8: 1080-1180 cm-1 (low (i.e.>~300mb) - h2o; high - o3) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng8 use rrlw_kg08_k, only : fracrefao, fracrefbo, kao, kao_mco2, kao_mn2o, & kao_mo3, kbo, kbo_mco2, kbo_mn2o, selfrefo, forrefo, & cfc12o, cfc22adjo, & fracrefa, fracrefb, absa, ka, ka_mco2, ka_mn2o, & ka_mo3, absb, kb, kb_mco2, kb_mn2o, selfref, forref, & cfc12, cfc22adj ! ! Local ! integer(kind=im) :: jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumk1, sumk2, sumk3, sumk4, sumk5, sumf1, sumf2 !------------------------------------------------------------------------------- ! do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(8) sumk = 0. do ipr = 1,ngn(ngs(7)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jt,jp,iprsm)*rwgt(iprsm+112) enddo ka(jt,jp,igc) = sumk enddo enddo enddo ! do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(8) sumk = 0. do ipr = 1,ngn(ngs(7)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+112) enddo kb(jt,jp,igc) = sumk enddo enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(8) sumk = 0. do ipr = 1,ngn(ngs(7)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+112) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(8) sumk = 0. do ipr = 1,ngn(ngs(7)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+112) enddo forref(jt,igc) = sumk enddo enddo ! do jt = 1,19 iprsm = 0 do igc = 1,ngc(8) sumk1 = 0. sumk2 = 0. sumk3 = 0. sumk4 = 0. sumk5 = 0. do ipr = 1,ngn(ngs(7)+igc) iprsm = iprsm + 1 sumk1 = sumk1 + kao_mco2(jt,iprsm)*rwgt(iprsm+112) sumk2 = sumk2 + kbo_mco2(jt,iprsm)*rwgt(iprsm+112) sumk3 = sumk3 + kao_mo3(jt,iprsm)*rwgt(iprsm+112) sumk4 = sumk4 + kao_mn2o(jt,iprsm)*rwgt(iprsm+112) sumk5 = sumk5 + kbo_mn2o(jt,iprsm)*rwgt(iprsm+112) enddo ka_mco2(jt,igc) = sumk1 kb_mco2(jt,igc) = sumk2 ka_mo3(jt,igc) = sumk3 ka_mn2o(jt,igc) = sumk4 kb_mn2o(jt,igc) = sumk5 enddo enddo ! iprsm = 0 do igc = 1,ngc(8) sumf1 = 0. sumf2 = 0. sumk1 = 0. sumk2 = 0. do ipr = 1,ngn(ngs(7)+igc) iprsm = iprsm + 1 sumf1 = sumf1+ fracrefao(iprsm) sumf2 = sumf2+ fracrefbo(iprsm) sumk1 = sumk1+ cfc12o(iprsm)*rwgt(iprsm+112) sumk2 = sumk2+ cfc22adjo(iprsm)*rwgt(iprsm+112) enddo fracrefa(igc) = sumf1 fracrefb(igc) = sumf2 cfc12(igc) = sumk1 cfc22adj(igc) = sumk2 enddo ! end subroutine cmbgb8 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb9 !------------------------------------------------------------------------------- ! ! abstract : ! band 9: 1180-1390 cm-1 (low key - h2o,ch4; low minor - n2o) ! (high key - ch4; high minor - n2o)! ! ! old band 9: 1180-1390 cm-1 (low - h2o,ch4; high - ch4) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng9 use rrlw_kg09_k, only : fracrefao, fracrefbo, kao, kao_mn2o, & kbo, kbo_mn2o, selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, ka_mn2o, & absb, kb, kb_mn2o, selfref, forref ! ! Local ! integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf !------------------------------------------------------------------------------- ! do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(9) sumk = 0. do ipr = 1,ngn(ngs(8)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+128) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo ! do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(9) sumk = 0. do ipr = 1,ngn(ngs(8)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+128) enddo kb(jt,jp,igc) = sumk enddo enddo enddo ! do jn = 1,9 do jt = 1,19 iprsm = 0 do igc = 1,ngc(9) sumk = 0. do ipr = 1,ngn(ngs(8)+igc) iprsm = iprsm + 1 sumk = sumk + kao_mn2o(jn,jt,iprsm)*rwgt(iprsm+128) enddo ka_mn2o(jn,jt,igc) = sumk enddo enddo enddo ! do jt = 1,19 iprsm = 0 do igc = 1,ngc(9) sumk = 0. do ipr = 1,ngn(ngs(8)+igc) iprsm = iprsm + 1 sumk = sumk + kbo_mn2o(jt,iprsm)*rwgt(iprsm+128) enddo kb_mn2o(jt,igc) = sumk enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(9) sumk = 0. do ipr = 1,ngn(ngs(8)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+128) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(9) sumk = 0. do ipr = 1,ngn(ngs(8)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+128) enddo forref(jt,igc) = sumk enddo enddo ! do jp = 1,9 iprsm = 0 do igc = 1,ngc(9) sumf = 0. do ipr = 1,ngn(ngs(8)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo ! iprsm = 0 do igc = 1,ngc(9) sumf = 0. do ipr = 1,ngn(ngs(8)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefbo(iprsm) enddo fracrefb(igc) = sumf enddo ! end subroutine cmbgb9 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb10 !------------------------------------------------------------------------------- ! ! abstract : ! band 10: 1390-1480 cm-1 (low key - h2o; high key - h2o) ! ! old band 10: 1390-1480 cm-1 (low - h2o; high - h2o) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng10 use rrlw_kg10_k, only : fracrefao, fracrefbo, kao, kbo, & selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, & selfref, forref ! ! Local ! integer(kind=im) :: jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf1, sumf2 !------------------------------------------------------------------------------- ! do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(10) sumk = 0. do ipr = 1,ngn(ngs(9)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jt,jp,iprsm)*rwgt(iprsm+144) enddo ka(jt,jp,igc) = sumk enddo enddo enddo ! do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(10) sumk = 0. do ipr = 1,ngn(ngs(9)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+144) enddo kb(jt,jp,igc) = sumk enddo enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(10) sumk = 0. do ipr = 1,ngn(ngs(9)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+144) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(10) sumk = 0. do ipr = 1,ngn(ngs(9)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+144) enddo forref(jt,igc) = sumk enddo enddo ! iprsm = 0 do igc = 1,ngc(10) sumf1 = 0. sumf2 = 0. do ipr = 1,ngn(ngs(9)+igc) iprsm = iprsm + 1 sumf1 = sumf1+ fracrefao(iprsm) sumf2 = sumf2+ fracrefbo(iprsm) enddo fracrefa(igc) = sumf1 fracrefb(igc) = sumf2 enddo ! end subroutine cmbgb10 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb11 !------------------------------------------------------------------------------- ! ! abstract : ! band 11: 1480-1800 cm-1 (low - h2o; low minor - o2) ! (high key - h2o; high minor - o2) ! ! old band 11: 1480-1800 cm-1 (low - h2o; low minor - o2) ! (high key - h2o; high minor - o2) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng11 use rrlw_kg11_k, only : fracrefao, fracrefbo, kao, kao_mo2, & kbo, kbo_mo2, selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, ka_mo2, & absb, kb, kb_mo2, selfref, forref ! ! Local ! integer(kind=im) :: jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumk1, sumk2, sumf1, sumf2 !------------------------------------------------------------------------------- ! do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(11) sumk = 0. do ipr = 1,ngn(ngs(10)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jt,jp,iprsm)*rwgt(iprsm+160) enddo ka(jt,jp,igc) = sumk enddo enddo enddo ! do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(11) sumk = 0. do ipr = 1,ngn(ngs(10)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+160) enddo kb(jt,jp,igc) = sumk enddo enddo enddo ! do jt = 1,19 iprsm = 0 do igc = 1,ngc(11) sumk1 = 0. sumk2 = 0. do ipr = 1,ngn(ngs(10)+igc) iprsm = iprsm + 1 sumk1 = sumk1 + kao_mo2(jt,iprsm)*rwgt(iprsm+160) sumk2 = sumk2 + kbo_mo2(jt,iprsm)*rwgt(iprsm+160) enddo ka_mo2(jt,igc) = sumk1 kb_mo2(jt,igc) = sumk2 enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(11) sumk = 0. do ipr = 1,ngn(ngs(10)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+160) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(11) sumk = 0. do ipr = 1,ngn(ngs(10)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+160) enddo forref(jt,igc) = sumk enddo enddo ! iprsm = 0 do igc = 1,ngc(11) sumf1 = 0. sumf2 = 0. do ipr = 1,ngn(ngs(10)+igc) iprsm = iprsm + 1 sumf1 = sumf1+ fracrefao(iprsm) sumf2 = sumf2+ fracrefbo(iprsm) enddo fracrefa(igc) = sumf1 fracrefb(igc) = sumf2 enddo ! end subroutine cmbgb11 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb12 !------------------------------------------------------------------------------- ! ! abstract : ! band 12: 1800-2080 cm-1 (low - h2o,co2; high - nothing) ! ! old band 12: 1800-2080 cm-1 (low - h2o,co2; high - nothing) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng12 use rrlw_kg12_k, only : fracrefao, kao, selfrefo, forrefo, & fracrefa, absa, ka, selfref, forref ! ! Local ! integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf !------------------------------------------------------------------------------- ! do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(12) sumk = 0. do ipr = 1,ngn(ngs(11)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+176) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(12) sumk = 0. do ipr = 1,ngn(ngs(11)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+176) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(12) sumk = 0. do ipr = 1,ngn(ngs(11)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+176) enddo forref(jt,igc) = sumk enddo enddo ! do jp = 1,9 iprsm = 0 do igc = 1,ngc(12) sumf = 0. do ipr = 1,ngn(ngs(11)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo ! end subroutine cmbgb12 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb13 !------------------------------------------------------------------------------- ! ! abstract : ! band 13: 2080-2250 cm-1 (low key - h2o,n2o; high minor - o3 minor) ! ! old band 13: 2080-2250 cm-1 (low - h2o,n2o; high - nothing) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng13 use rrlw_kg13_k, only : fracrefao, fracrefbo, kao, kao_mco2, kao_mco, & kbo_mo3, selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, ka_mco2, ka_mco, & kb_mo3, selfref, forref ! ! Local ! integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumk1, sumk2, sumf !------------------------------------------------------------------------------- ! do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(13) sumk = 0. do ipr = 1,ngn(ngs(12)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+192) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo ! do jn = 1,9 do jt = 1,19 iprsm = 0 do igc = 1,ngc(13) sumk1 = 0. sumk2 = 0. do ipr = 1,ngn(ngs(12)+igc) iprsm = iprsm + 1 sumk1 = sumk1 + kao_mco2(jn,jt,iprsm)*rwgt(iprsm+192) sumk2 = sumk2 + kao_mco(jn,jt,iprsm)*rwgt(iprsm+192) enddo ka_mco2(jn,jt,igc) = sumk1 ka_mco(jn,jt,igc) = sumk2 enddo enddo enddo ! do jt = 1,19 iprsm = 0 do igc = 1,ngc(13) sumk = 0. do ipr = 1,ngn(ngs(12)+igc) iprsm = iprsm + 1 sumk = sumk + kbo_mo3(jt,iprsm)*rwgt(iprsm+192) enddo kb_mo3(jt,igc) = sumk enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(13) sumk = 0. do ipr = 1,ngn(ngs(12)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+192) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(13) sumk = 0. do ipr = 1,ngn(ngs(12)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+192) enddo forref(jt,igc) = sumk enddo enddo ! iprsm = 0 do igc = 1,ngc(13) sumf = 0. do ipr = 1,ngn(ngs(12)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefbo(iprsm) enddo fracrefb(igc) = sumf enddo ! do jp = 1,9 iprsm = 0 do igc = 1,ngc(13) sumf = 0. do ipr = 1,ngn(ngs(12)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo ! end subroutine cmbgb13 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb14 !------------------------------------------------------------------------------- ! ! abstract : ! band 14: 2250-2380 cm-1 (low - co2; high - co2) ! ! old band 14: 2250-2380 cm-1 (low - co2; high - co2) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng14 use rrlw_kg14_k, only : fracrefao, fracrefbo, kao, kbo, & selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, & selfref, forref ! ! Local ! integer(kind=im) :: jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf1, sumf2 !------------------------------------------------------------------------------- ! do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(14) sumk = 0. do ipr = 1,ngn(ngs(13)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jt,jp,iprsm)*rwgt(iprsm+208) enddo ka(jt,jp,igc) = sumk enddo enddo enddo ! do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(14) sumk = 0. do ipr = 1,ngn(ngs(13)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+208) enddo kb(jt,jp,igc) = sumk enddo enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(14) sumk = 0. do ipr = 1,ngn(ngs(13)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+208) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(14) sumk = 0. do ipr = 1,ngn(ngs(13)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+208) enddo forref(jt,igc) = sumk enddo enddo ! iprsm = 0 do igc = 1,ngc(14) sumf1 = 0. sumf2 = 0. do ipr = 1,ngn(ngs(13)+igc) iprsm = iprsm + 1 sumf1 = sumf1+ fracrefao(iprsm) sumf2 = sumf2+ fracrefbo(iprsm) enddo fracrefa(igc) = sumf1 fracrefb(igc) = sumf2 enddo ! end subroutine cmbgb14 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb15 !------------------------------------------------------------------------------- ! ! abstract : ! band 15: 2380-2600 cm-1 (low - n2o,co2; low minor - n2) ! (high - nothing) ! ! old band 15: 2380-2600 cm-1 (low - n2o,co2; high - nothing) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng15 use rrlw_kg15_k, only : fracrefao, kao, kao_mn2, selfrefo, forrefo, & fracrefa, absa, ka, ka_mn2, selfref, forref ! ! Local ! integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf !------------------------------------------------------------------------------- ! do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(15) sumk = 0. do ipr = 1,ngn(ngs(14)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+224) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo ! do jn = 1,9 do jt = 1,19 iprsm = 0 do igc = 1,ngc(15) sumk = 0. do ipr = 1,ngn(ngs(14)+igc) iprsm = iprsm + 1 sumk = sumk + kao_mn2(jn,jt,iprsm)*rwgt(iprsm+224) enddo ka_mn2(jn,jt,igc) = sumk enddo enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(15) sumk = 0. do ipr = 1,ngn(ngs(14)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+224) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(15) sumk = 0. do ipr = 1,ngn(ngs(14)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+224) enddo forref(jt,igc) = sumk enddo enddo ! do jp = 1,9 iprsm = 0 do igc = 1,ngc(15) sumf = 0. do ipr = 1,ngn(ngs(14)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo ! end subroutine cmbgb15 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine cmbgb16 !------------------------------------------------------------------------------- ! ! abstract : ! band 16: 2600-3250 cm-1 (low key- h2o,ch4; high key - ch4) ! ! old band 16: 2600-3000 cm-1 (low - h2o,ch4; high - nothing) ! !------------------------------------------------------------------------------- use parrrtm_k, only : mg, nbndlw, ngptlw, ng16 use rrlw_kg16_k, only : fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, selfref, forref ! ! Local ! integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf !------------------------------------------------------------------------------- ! do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(16) sumk = 0. do ipr = 1,ngn(ngs(15)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+240) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo ! do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(16) sumk = 0. do ipr = 1,ngn(ngs(15)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+240) enddo kb(jt,jp,igc) = sumk enddo enddo enddo ! do jt = 1,10 iprsm = 0 do igc = 1,ngc(16) sumk = 0. do ipr = 1,ngn(ngs(15)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+240) enddo selfref(jt,igc) = sumk enddo enddo ! do jt = 1,4 iprsm = 0 do igc = 1,ngc(16) sumk = 0. do ipr = 1,ngn(ngs(15)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+240) enddo forref(jt,igc) = sumk enddo enddo ! iprsm = 0 do igc = 1,ngc(16) sumf = 0. do ipr = 1,ngn(ngs(15)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefbo(iprsm) enddo fracrefb(igc) = sumf enddo ! do jp = 1,9 iprsm = 0 do igc = 1,ngc(16) sumf = 0. do ipr = 1,ngn(ngs(15)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo ! end subroutine cmbgb16 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lwcldpr !------------------------------------------------------------------------------- use rrlw_cld_k, only : abscld1, absliq0, absliq1, & absice0, absice1, absice2, absice3 ! save ! ! abscldn is the liquid water absorption coefficient (m2/g). ! For inflag = 1. ! abscld1 = 0.0602410_rb ! ! Everything below is for inflag = 2. ! ! absicen(j,ib) are the parameters needed to compute the liquid water ! absorption coefficient in spectral region ib for iceflag=n. The units ! of absicen(1,ib) are m2/g and absicen(2,ib) has units (microns (m2/g)). ! For iceflag = 0. ! absice0(:)= (/0.005_rb, 1.0_rb/) ! ! For iceflag = 1. ! absice1(1,:) = (/0.0036_rb, 0.0068_rb, 0.0003_rb, 0.0016_rb, 0.0020_rb/) absice1(2,:) = (/1.136_rb , 0.600_rb , 1.338_rb , 1.166_rb , 1.118_rb /) ! ! For iceflag = 2. In each band, the absorption ! coefficients are listed for a range of effective radii from 5.0 ! to 131.0 microns in increments of 3.0 microns. ! Spherical Ice Particle Parameterization ! absorption units (abs coef/iwc): [(m^-1)/(g m^-3)] ! ! band 1 ! absice2(:,1) = (/ & 7.798999e-02_rb,6.340479e-02_rb,5.417973e-02_rb,4.766245e-02_rb, & 4.272663e-02_rb,3.880939e-02_rb,3.559544e-02_rb,3.289241e-02_rb, & 3.057511e-02_rb,2.855800e-02_rb,2.678022e-02_rb,2.519712e-02_rb, & 2.377505e-02_rb,2.248806e-02_rb,2.131578e-02_rb,2.024194e-02_rb, & 1.925337e-02_rb,1.833926e-02_rb,1.749067e-02_rb,1.670007e-02_rb, & 1.596113e-02_rb,1.526845e-02_rb,1.461739e-02_rb,1.400394e-02_rb, & 1.342462e-02_rb,1.287639e-02_rb,1.235656e-02_rb,1.186279e-02_rb, & 1.139297e-02_rb,1.094524e-02_rb,1.051794e-02_rb,1.010956e-02_rb, & 9.718755e-03_rb,9.344316e-03_rb,8.985139e-03_rb,8.640223e-03_rb, & 8.308656e-03_rb,7.989606e-03_rb,7.682312e-03_rb,7.386076e-03_rb, & 7.100255e-03_rb,6.824258e-03_rb,6.557540e-03_rb/) ! ! band 2 ! absice2(:,2) = (/ & 2.784879e-02_rb,2.709863e-02_rb,2.619165e-02_rb,2.529230e-02_rb, & 2.443225e-02_rb,2.361575e-02_rb,2.284021e-02_rb,2.210150e-02_rb, & 2.139548e-02_rb,2.071840e-02_rb,2.006702e-02_rb,1.943856e-02_rb, & 1.883064e-02_rb,1.824120e-02_rb,1.766849e-02_rb,1.711099e-02_rb, & 1.656737e-02_rb,1.603647e-02_rb,1.551727e-02_rb,1.500886e-02_rb, & 1.451045e-02_rb,1.402132e-02_rb,1.354084e-02_rb,1.306842e-02_rb, & 1.260355e-02_rb,1.214575e-02_rb,1.169460e-02_rb,1.124971e-02_rb, & 1.081072e-02_rb,1.037731e-02_rb,9.949167e-03_rb,9.526021e-03_rb, & 9.107615e-03_rb,8.693714e-03_rb,8.284096e-03_rb,7.878558e-03_rb, & 7.476910e-03_rb,7.078974e-03_rb,6.684586e-03_rb,6.293589e-03_rb, & 5.905839e-03_rb,5.521200e-03_rb,5.139543e-03_rb/) ! ! band 3 ! absice2(:,3) = (/ & 1.065397e-01_rb,8.005726e-02_rb,6.546428e-02_rb,5.589131e-02_rb, & 4.898681e-02_rb,4.369932e-02_rb,3.947901e-02_rb,3.600676e-02_rb, & 3.308299e-02_rb,3.057561e-02_rb,2.839325e-02_rb,2.647040e-02_rb, & 2.475872e-02_rb,2.322164e-02_rb,2.183091e-02_rb,2.056430e-02_rb, & 1.940407e-02_rb,1.833586e-02_rb,1.734787e-02_rb,1.643034e-02_rb, & 1.557512e-02_rb,1.477530e-02_rb,1.402501e-02_rb,1.331924e-02_rb, & 1.265364e-02_rb,1.202445e-02_rb,1.142838e-02_rb,1.086257e-02_rb, & 1.032445e-02_rb,9.811791e-03_rb,9.322587e-03_rb,8.855053e-03_rb, & 8.407591e-03_rb,7.978763e-03_rb,7.567273e-03_rb,7.171949e-03_rb, & 6.791728e-03_rb,6.425642e-03_rb,6.072809e-03_rb,5.732424e-03_rb, & 5.403748e-03_rb,5.086103e-03_rb,4.778865e-03_rb/) ! ! band 4 ! absice2(:,4) = (/ & 1.804566e-01_rb,1.168987e-01_rb,8.680442e-02_rb,6.910060e-02_rb, & 5.738174e-02_rb,4.902332e-02_rb,4.274585e-02_rb,3.784923e-02_rb, & 3.391734e-02_rb,3.068690e-02_rb,2.798301e-02_rb,2.568480e-02_rb, & 2.370600e-02_rb,2.198337e-02_rb,2.046940e-02_rb,1.912777e-02_rb, & 1.793016e-02_rb,1.685420e-02_rb,1.588193e-02_rb,1.499882e-02_rb, & 1.419293e-02_rb,1.345440e-02_rb,1.277496e-02_rb,1.214769e-02_rb, & 1.156669e-02_rb,1.102694e-02_rb,1.052412e-02_rb,1.005451e-02_rb, & 9.614854e-03_rb,9.202335e-03_rb,8.814470e-03_rb,8.449077e-03_rb, & 8.104223e-03_rb,7.778195e-03_rb,7.469466e-03_rb,7.176671e-03_rb, & 6.898588e-03_rb,6.634117e-03_rb,6.382264e-03_rb,6.142134e-03_rb, & 5.912913e-03_rb,5.693862e-03_rb,5.484308e-03_rb/) ! ! band 5 ! absice2(:,5) = (/ & 2.131806e-01_rb,1.311372e-01_rb,9.407171e-02_rb,7.299442e-02_rb, & 5.941273e-02_rb,4.994043e-02_rb,4.296242e-02_rb,3.761113e-02_rb, & 3.337910e-02_rb,2.994978e-02_rb,2.711556e-02_rb,2.473461e-02_rb, & 2.270681e-02_rb,2.095943e-02_rb,1.943839e-02_rb,1.810267e-02_rb, & 1.692057e-02_rb,1.586719e-02_rb,1.492275e-02_rb,1.407132e-02_rb, & 1.329989e-02_rb,1.259780e-02_rb,1.195618e-02_rb,1.136761e-02_rb, & 1.082583e-02_rb,1.032552e-02_rb,9.862158e-03_rb,9.431827e-03_rb, & 9.031157e-03_rb,8.657217e-03_rb,8.307449e-03_rb,7.979609e-03_rb, & 7.671724e-03_rb,7.382048e-03_rb,7.109032e-03_rb,6.851298e-03_rb, & 6.607615e-03_rb,6.376881e-03_rb,6.158105e-03_rb,5.950394e-03_rb, & 5.752942e-03_rb,5.565019e-03_rb,5.385963e-03_rb/) ! ! band 6 ! absice2(:,6) = (/ & 1.546177e-01_rb,1.039251e-01_rb,7.910347e-02_rb,6.412429e-02_rb, & 5.399997e-02_rb,4.664937e-02_rb,4.104237e-02_rb,3.660781e-02_rb, & 3.300218e-02_rb,3.000586e-02_rb,2.747148e-02_rb,2.529633e-02_rb, & 2.340647e-02_rb,2.174723e-02_rb,2.027731e-02_rb,1.896487e-02_rb, & 1.778492e-02_rb,1.671761e-02_rb,1.574692e-02_rb,1.485978e-02_rb, & 1.404543e-02_rb,1.329489e-02_rb,1.260066e-02_rb,1.195636e-02_rb, & 1.135657e-02_rb,1.079664e-02_rb,1.027257e-02_rb,9.780871e-03_rb, & 9.318505e-03_rb,8.882815e-03_rb,8.471458e-03_rb,8.082364e-03_rb, & 7.713696e-03_rb,7.363817e-03_rb,7.031264e-03_rb,6.714725e-03_rb, & 6.413021e-03_rb,6.125086e-03_rb,5.849958e-03_rb,5.586764e-03_rb, & 5.334707e-03_rb,5.093066e-03_rb,4.861179e-03_rb/) ! ! band 7 ! absice2(:,7) = (/ & 7.583404e-02_rb,6.181558e-02_rb,5.312027e-02_rb,4.696039e-02_rb, & 4.225986e-02_rb,3.849735e-02_rb,3.538340e-02_rb,3.274182e-02_rb, & 3.045798e-02_rb,2.845343e-02_rb,2.667231e-02_rb,2.507353e-02_rb, & 2.362606e-02_rb,2.230595e-02_rb,2.109435e-02_rb,1.997617e-02_rb, & 1.893916e-02_rb,1.797328e-02_rb,1.707016e-02_rb,1.622279e-02_rb, & 1.542523e-02_rb,1.467241e-02_rb,1.395997e-02_rb,1.328414e-02_rb, & 1.264164e-02_rb,1.202958e-02_rb,1.144544e-02_rb,1.088697e-02_rb, & 1.035218e-02_rb,9.839297e-03_rb,9.346733e-03_rb,8.873057e-03_rb, & 8.416980e-03_rb,7.977335e-03_rb,7.553066e-03_rb,7.143210e-03_rb, & 6.746888e-03_rb,6.363297e-03_rb,5.991700e-03_rb,5.631422e-03_rb, & 5.281840e-03_rb,4.942378e-03_rb,4.612505e-03_rb/) ! ! band 8 ! absice2(:,8) = (/ & 9.022185e-02_rb,6.922700e-02_rb,5.710674e-02_rb,4.898377e-02_rb, & 4.305946e-02_rb,3.849553e-02_rb,3.484183e-02_rb,3.183220e-02_rb, & 2.929794e-02_rb,2.712627e-02_rb,2.523856e-02_rb,2.357810e-02_rb, & 2.210286e-02_rb,2.078089e-02_rb,1.958747e-02_rb,1.850310e-02_rb, & 1.751218e-02_rb,1.660205e-02_rb,1.576232e-02_rb,1.498440e-02_rb, & 1.426107e-02_rb,1.358624e-02_rb,1.295474e-02_rb,1.236212e-02_rb, & 1.180456e-02_rb,1.127874e-02_rb,1.078175e-02_rb,1.031106e-02_rb, & 9.864433e-03_rb,9.439878e-03_rb,9.035637e-03_rb,8.650140e-03_rb, & 8.281981e-03_rb,7.929895e-03_rb,7.592746e-03_rb,7.269505e-03_rb, & 6.959238e-03_rb,6.661100e-03_rb,6.374317e-03_rb,6.098185e-03_rb, & 5.832059e-03_rb,5.575347e-03_rb,5.327504e-03_rb/) ! ! band 9 ! absice2(:,9) = (/ & 1.294087e-01_rb,8.788217e-02_rb,6.728288e-02_rb,5.479720e-02_rb, & 4.635049e-02_rb,4.022253e-02_rb,3.555576e-02_rb,3.187259e-02_rb, & 2.888498e-02_rb,2.640843e-02_rb,2.431904e-02_rb,2.253038e-02_rb, & 2.098024e-02_rb,1.962267e-02_rb,1.842293e-02_rb,1.735426e-02_rb, & 1.639571e-02_rb,1.553060e-02_rb,1.474552e-02_rb,1.402953e-02_rb, & 1.337363e-02_rb,1.277033e-02_rb,1.221336e-02_rb,1.169741e-02_rb, & 1.121797e-02_rb,1.077117e-02_rb,1.035369e-02_rb,9.962643e-03_rb, & 9.595509e-03_rb,9.250088e-03_rb,8.924447e-03_rb,8.616876e-03_rb, & 8.325862e-03_rb,8.050057e-03_rb,7.788258e-03_rb,7.539388e-03_rb, & 7.302478e-03_rb,7.076656e-03_rb,6.861134e-03_rb,6.655197e-03_rb, & 6.458197e-03_rb,6.269543e-03_rb,6.088697e-03_rb/) ! ! band 10 ! absice2(:,10) = (/ & 1.593628e-01_rb,1.014552e-01_rb,7.458955e-02_rb,5.903571e-02_rb, & 4.887582e-02_rb,4.171159e-02_rb,3.638480e-02_rb,3.226692e-02_rb, & 2.898717e-02_rb,2.631256e-02_rb,2.408925e-02_rb,2.221156e-02_rb, & 2.060448e-02_rb,1.921325e-02_rb,1.799699e-02_rb,1.692456e-02_rb, & 1.597177e-02_rb,1.511961e-02_rb,1.435289e-02_rb,1.365933e-02_rb, & 1.302890e-02_rb,1.245334e-02_rb,1.192576e-02_rb,1.144037e-02_rb, & 1.099230e-02_rb,1.057739e-02_rb,1.019208e-02_rb,9.833302e-03_rb, & 9.498395e-03_rb,9.185047e-03_rb,8.891237e-03_rb,8.615185e-03_rb, & 8.355325e-03_rb,8.110267e-03_rb,7.878778e-03_rb,7.659759e-03_rb, & 7.452224e-03_rb,7.255291e-03_rb,7.068166e-03_rb,6.890130e-03_rb, & 6.720536e-03_rb,6.558794e-03_rb,6.404371e-03_rb/) ! ! band 11 ! absice2(:,11) = (/ & 1.656227e-01_rb,1.032129e-01_rb,7.487359e-02_rb,5.871431e-02_rb, & 4.828355e-02_rb,4.099989e-02_rb,3.562924e-02_rb,3.150755e-02_rb, & 2.824593e-02_rb,2.560156e-02_rb,2.341503e-02_rb,2.157740e-02_rb, & 2.001169e-02_rb,1.866199e-02_rb,1.748669e-02_rb,1.645421e-02_rb, & 1.554015e-02_rb,1.472535e-02_rb,1.399457e-02_rb,1.333553e-02_rb, & 1.273821e-02_rb,1.219440e-02_rb,1.169725e-02_rb,1.124104e-02_rb, & 1.082096e-02_rb,1.043290e-02_rb,1.007336e-02_rb,9.739338e-03_rb, & 9.428223e-03_rb,9.137756e-03_rb,8.865964e-03_rb,8.611115e-03_rb, & 8.371686e-03_rb,8.146330e-03_rb,7.933852e-03_rb,7.733187e-03_rb, & 7.543386e-03_rb,7.363597e-03_rb,7.193056e-03_rb,7.031072e-03_rb, & 6.877024e-03_rb,6.730348e-03_rb,6.590531e-03_rb/) ! ! band 12 ! absice2(:,12) = (/ & 9.194591e-02_rb,6.446867e-02_rb,4.962034e-02_rb,4.042061e-02_rb, & 3.418456e-02_rb,2.968856e-02_rb,2.629900e-02_rb,2.365572e-02_rb, & 2.153915e-02_rb,1.980791e-02_rb,1.836689e-02_rb,1.714979e-02_rb, & 1.610900e-02_rb,1.520946e-02_rb,1.442476e-02_rb,1.373468e-02_rb, & 1.312345e-02_rb,1.257858e-02_rb,1.209010e-02_rb,1.164990e-02_rb, & 1.125136e-02_rb,1.088901e-02_rb,1.055827e-02_rb,1.025531e-02_rb, & 9.976896e-03_rb,9.720255e-03_rb,9.483022e-03_rb,9.263160e-03_rb, & 9.058902e-03_rb,8.868710e-03_rb,8.691240e-03_rb,8.525312e-03_rb, & 8.369886e-03_rb,8.224042e-03_rb,8.086961e-03_rb,7.957917e-03_rb, & 7.836258e-03_rb,7.721400e-03_rb,7.612821e-03_rb,7.510045e-03_rb, & 7.412648e-03_rb,7.320242e-03_rb,7.232476e-03_rb/) ! ! band 13 ! absice2(:,13) = (/ & 1.437021e-01_rb,8.872535e-02_rb,6.392420e-02_rb,4.991833e-02_rb, & 4.096790e-02_rb,3.477881e-02_rb,3.025782e-02_rb,2.681909e-02_rb, & 2.412102e-02_rb,2.195132e-02_rb,2.017124e-02_rb,1.868641e-02_rb, & 1.743044e-02_rb,1.635529e-02_rb,1.542540e-02_rb,1.461388e-02_rb, & 1.390003e-02_rb,1.326766e-02_rb,1.270395e-02_rb,1.219860e-02_rb, & 1.174326e-02_rb,1.133107e-02_rb,1.095637e-02_rb,1.061442e-02_rb, & 1.030126e-02_rb,1.001352e-02_rb,9.748340e-03_rb,9.503256e-03_rb, & 9.276155e-03_rb,9.065205e-03_rb,8.868808e-03_rb,8.685571e-03_rb, & 8.514268e-03_rb,8.353820e-03_rb,8.203272e-03_rb,8.061776e-03_rb, & 7.928578e-03_rb,7.803001e-03_rb,7.684443e-03_rb,7.572358e-03_rb, & 7.466258e-03_rb,7.365701e-03_rb,7.270286e-03_rb/) ! ! band 14 ! absice2(:,14) = (/ & 1.288870e-01_rb,8.160295e-02_rb,5.964745e-02_rb,4.703790e-02_rb, & 3.888637e-02_rb,3.320115e-02_rb,2.902017e-02_rb,2.582259e-02_rb, & 2.330224e-02_rb,2.126754e-02_rb,1.959258e-02_rb,1.819130e-02_rb, & 1.700289e-02_rb,1.598320e-02_rb,1.509942e-02_rb,1.432666e-02_rb, & 1.364572e-02_rb,1.304156e-02_rb,1.250220e-02_rb,1.201803e-02_rb, & 1.158123e-02_rb,1.118537e-02_rb,1.082513e-02_rb,1.049605e-02_rb, & 1.019440e-02_rb,9.916989e-03_rb,9.661116e-03_rb,9.424457e-03_rb, & 9.205005e-03_rb,9.001022e-03_rb,8.810992e-03_rb,8.633588e-03_rb, & 8.467646e-03_rb,8.312137e-03_rb,8.166151e-03_rb,8.028878e-03_rb, & 7.899597e-03_rb,7.777663e-03_rb,7.662498e-03_rb,7.553581e-03_rb, & 7.450444e-03_rb,7.352662e-03_rb,7.259851e-03_rb/) ! ! band 15 ! absice2(:,15) = (/ & 8.254229e-02_rb,5.808787e-02_rb,4.492166e-02_rb,3.675028e-02_rb, & 3.119623e-02_rb,2.718045e-02_rb,2.414450e-02_rb,2.177073e-02_rb, & 1.986526e-02_rb,1.830306e-02_rb,1.699991e-02_rb,1.589698e-02_rb, & 1.495199e-02_rb,1.413374e-02_rb,1.341870e-02_rb,1.278883e-02_rb, & 1.223002e-02_rb,1.173114e-02_rb,1.128322e-02_rb,1.087900e-02_rb, & 1.051254e-02_rb,1.017890e-02_rb,9.873991e-03_rb,9.594347e-03_rb, & 9.337044e-03_rb,9.099589e-03_rb,8.879842e-03_rb,8.675960e-03_rb, & 8.486341e-03_rb,8.309594e-03_rb,8.144500e-03_rb,7.989986e-03_rb, & 7.845109e-03_rb,7.709031e-03_rb,7.581007e-03_rb,7.460376e-03_rb, & 7.346544e-03_rb,7.238978e-03_rb,7.137201e-03_rb,7.040780e-03_rb, & 6.949325e-03_rb,6.862483e-03_rb,6.779931e-03_rb/) ! ! band 16 ! absice2(:,16) = (/ & 1.382062e-01_rb,8.643227e-02_rb,6.282935e-02_rb,4.934783e-02_rb, & 4.063891e-02_rb,3.455591e-02_rb,3.007059e-02_rb,2.662897e-02_rb, & 2.390631e-02_rb,2.169972e-02_rb,1.987596e-02_rb,1.834393e-02_rb, & 1.703924e-02_rb,1.591513e-02_rb,1.493679e-02_rb,1.407780e-02_rb, & 1.331775e-02_rb,1.264061e-02_rb,1.203364e-02_rb,1.148655e-02_rb, & 1.099099e-02_rb,1.054006e-02_rb,1.012807e-02_rb,9.750215e-03_rb, & 9.402477e-03_rb,9.081428e-03_rb,8.784143e-03_rb,8.508107e-03_rb, & 8.251146e-03_rb,8.011373e-03_rb,7.787140e-03_rb,7.577002e-03_rb, & 7.379687e-03_rb,7.194071e-03_rb,7.019158e-03_rb,6.854061e-03_rb, & 6.697986e-03_rb,6.550224e-03_rb,6.410138e-03_rb,6.277153e-03_rb, & 6.150751e-03_rb,6.030462e-03_rb,5.915860e-03_rb/) ! ! iceflag = 3; Fu parameterization. Particle size 5 - 140 micron in ! increments of 3 microns. ! units = m2/g ! Hexagonal Ice Particle Parameterization ! absorption units (abs coef/iwc): [(m^-1)/(g m^-3)] ! ! band 1 ! absice3(:,1) = (/ & 3.110649e-03_rb,4.666352e-02_rb,6.606447e-02_rb,6.531678e-02_rb, & 6.012598e-02_rb,5.437494e-02_rb,4.906411e-02_rb,4.441146e-02_rb, & 4.040585e-02_rb,3.697334e-02_rb,3.403027e-02_rb,3.149979e-02_rb, & 2.931596e-02_rb,2.742365e-02_rb,2.577721e-02_rb,2.433888e-02_rb, & 2.307732e-02_rb,2.196644e-02_rb,2.098437e-02_rb,2.011264e-02_rb, & 1.933561e-02_rb,1.863992e-02_rb,1.801407e-02_rb,1.744812e-02_rb, & 1.693346e-02_rb,1.646252e-02_rb,1.602866e-02_rb,1.562600e-02_rb, & 1.524933e-02_rb,1.489399e-02_rb,1.455580e-02_rb,1.423098e-02_rb, & 1.391612e-02_rb,1.360812e-02_rb,1.330413e-02_rb,1.300156e-02_rb, & 1.269801e-02_rb,1.239127e-02_rb,1.207928e-02_rb,1.176014e-02_rb, & 1.143204e-02_rb,1.109334e-02_rb,1.074243e-02_rb,1.037786e-02_rb, & 9.998198e-03_rb,9.602126e-03_rb/) ! ! band 2 ! absice3(:,2) = (/ & 3.984966e-04_rb,1.681097e-02_rb,2.627680e-02_rb,2.767465e-02_rb, & 2.700722e-02_rb,2.579180e-02_rb,2.448677e-02_rb,2.323890e-02_rb, & 2.209096e-02_rb,2.104882e-02_rb,2.010547e-02_rb,1.925003e-02_rb, & 1.847128e-02_rb,1.775883e-02_rb,1.710358e-02_rb,1.649769e-02_rb, & 1.593449e-02_rb,1.540829e-02_rb,1.491429e-02_rb,1.444837e-02_rb, & 1.400704e-02_rb,1.358729e-02_rb,1.318654e-02_rb,1.280258e-02_rb, & 1.243346e-02_rb,1.207750e-02_rb,1.173325e-02_rb,1.139941e-02_rb, & 1.107487e-02_rb,1.075861e-02_rb,1.044975e-02_rb,1.014753e-02_rb, & 9.851229e-03_rb,9.560240e-03_rb,9.274003e-03_rb,8.992020e-03_rb, & 8.713845e-03_rb,8.439074e-03_rb,8.167346e-03_rb,7.898331e-03_rb, & 7.631734e-03_rb,7.367286e-03_rb,7.104742e-03_rb,6.843882e-03_rb, & 6.584504e-03_rb,6.326424e-03_rb/) ! ! band 3 ! absice3(:,3) = (/ & 6.933163e-02_rb,8.540475e-02_rb,7.701816e-02_rb,6.771158e-02_rb, & 5.986953e-02_rb,5.348120e-02_rb,4.824962e-02_rb,4.390563e-02_rb, & 4.024411e-02_rb,3.711404e-02_rb,3.440426e-02_rb,3.203200e-02_rb, & 2.993478e-02_rb,2.806474e-02_rb,2.638464e-02_rb,2.486516e-02_rb, & 2.348288e-02_rb,2.221890e-02_rb,2.105780e-02_rb,1.998687e-02_rb, & 1.899552e-02_rb,1.807490e-02_rb,1.721750e-02_rb,1.641693e-02_rb, & 1.566773e-02_rb,1.496515e-02_rb,1.430509e-02_rb,1.368398e-02_rb, & 1.309865e-02_rb,1.254634e-02_rb,1.202456e-02_rb,1.153114e-02_rb, & 1.106409e-02_rb,1.062166e-02_rb,1.020224e-02_rb,9.804381e-03_rb, & 9.426771e-03_rb,9.068205e-03_rb,8.727578e-03_rb,8.403876e-03_rb, & 8.096160e-03_rb,7.803564e-03_rb,7.525281e-03_rb,7.260560e-03_rb, & 7.008697e-03_rb,6.769036e-03_rb/) ! ! band 4 ! absice3(:,4) = (/ & 1.765735e-01_rb,1.382700e-01_rb,1.095129e-01_rb,8.987475e-02_rb, & 7.591185e-02_rb,6.554169e-02_rb,5.755500e-02_rb,5.122083e-02_rb, & 4.607610e-02_rb,4.181475e-02_rb,3.822697e-02_rb,3.516432e-02_rb, & 3.251897e-02_rb,3.021073e-02_rb,2.817876e-02_rb,2.637607e-02_rb, & 2.476582e-02_rb,2.331871e-02_rb,2.201113e-02_rb,2.082388e-02_rb, & 1.974115e-02_rb,1.874983e-02_rb,1.783894e-02_rb,1.699922e-02_rb, & 1.622280e-02_rb,1.550296e-02_rb,1.483390e-02_rb,1.421064e-02_rb, & 1.362880e-02_rb,1.308460e-02_rb,1.257468e-02_rb,1.209611e-02_rb, & 1.164628e-02_rb,1.122287e-02_rb,1.082381e-02_rb,1.044725e-02_rb, & 1.009154e-02_rb,9.755166e-03_rb,9.436783e-03_rb,9.135163e-03_rb, & 8.849193e-03_rb,8.577856e-03_rb,8.320225e-03_rb,8.075451e-03_rb, & 7.842755e-03_rb,7.621418e-03_rb/) ! ! band 5 ! absice3(:,5) = (/ & 2.339673e-01_rb,1.692124e-01_rb,1.291656e-01_rb,1.033837e-01_rb, & 8.562949e-02_rb,7.273526e-02_rb,6.298262e-02_rb,5.537015e-02_rb, & 4.927787e-02_rb,4.430246e-02_rb,4.017061e-02_rb,3.669072e-02_rb, & 3.372455e-02_rb,3.116995e-02_rb,2.894977e-02_rb,2.700471e-02_rb, & 2.528842e-02_rb,2.376420e-02_rb,2.240256e-02_rb,2.117959e-02_rb, & 2.007567e-02_rb,1.907456e-02_rb,1.816271e-02_rb,1.732874e-02_rb, & 1.656300e-02_rb,1.585725e-02_rb,1.520445e-02_rb,1.459852e-02_rb, & 1.403419e-02_rb,1.350689e-02_rb,1.301260e-02_rb,1.254781e-02_rb, & 1.210941e-02_rb,1.169468e-02_rb,1.130118e-02_rb,1.092675e-02_rb, & 1.056945e-02_rb,1.022757e-02_rb,9.899560e-03_rb,9.584021e-03_rb, & 9.279705e-03_rb,8.985479e-03_rb,8.700322e-03_rb,8.423306e-03_rb, & 8.153590e-03_rb,7.890412e-03_rb/) ! ! band 6 ! absice3(:,6) = (/ & 1.145369e-01_rb,1.174566e-01_rb,9.917866e-02_rb,8.332990e-02_rb, & 7.104263e-02_rb,6.153370e-02_rb,5.405472e-02_rb,4.806281e-02_rb, & 4.317918e-02_rb,3.913795e-02_rb,3.574916e-02_rb,3.287437e-02_rb, & 3.041067e-02_rb,2.828017e-02_rb,2.642292e-02_rb,2.479206e-02_rb, & 2.335051e-02_rb,2.206851e-02_rb,2.092195e-02_rb,1.989108e-02_rb, & 1.895958e-02_rb,1.811385e-02_rb,1.734245e-02_rb,1.663573e-02_rb, & 1.598545e-02_rb,1.538456e-02_rb,1.482700e-02_rb,1.430750e-02_rb, & 1.382150e-02_rb,1.336499e-02_rb,1.293447e-02_rb,1.252685e-02_rb, & 1.213939e-02_rb,1.176968e-02_rb,1.141555e-02_rb,1.107508e-02_rb, & 1.074655e-02_rb,1.042839e-02_rb,1.011923e-02_rb,9.817799e-03_rb, & 9.522962e-03_rb,9.233688e-03_rb,8.949041e-03_rb,8.668171e-03_rb, & 8.390301e-03_rb,8.114723e-03_rb/) ! ! band 7 ! absice3(:,7) = (/ & 1.222345e-02_rb,5.344230e-02_rb,5.523465e-02_rb,5.128759e-02_rb, & 4.676925e-02_rb,4.266150e-02_rb,3.910561e-02_rb,3.605479e-02_rb, & 3.342843e-02_rb,3.115052e-02_rb,2.915776e-02_rb,2.739935e-02_rb, & 2.583499e-02_rb,2.443266e-02_rb,2.316681e-02_rb,2.201687e-02_rb, & 2.096619e-02_rb,2.000112e-02_rb,1.911044e-02_rb,1.828481e-02_rb, & 1.751641e-02_rb,1.679866e-02_rb,1.612598e-02_rb,1.549360e-02_rb, & 1.489742e-02_rb,1.433392e-02_rb,1.380002e-02_rb,1.329305e-02_rb, & 1.281068e-02_rb,1.235084e-02_rb,1.191172e-02_rb,1.149171e-02_rb, & 1.108936e-02_rb,1.070341e-02_rb,1.033271e-02_rb,9.976220e-03_rb, & 9.633021e-03_rb,9.302273e-03_rb,8.983216e-03_rb,8.675161e-03_rb, & 8.377478e-03_rb,8.089595e-03_rb,7.810986e-03_rb,7.541170e-03_rb, & 7.279706e-03_rb,7.026186e-03_rb/) ! ! band 8 ! absice3(:,8) = (/ & 6.711058e-02_rb,6.918198e-02_rb,6.127484e-02_rb,5.411944e-02_rb, & 4.836902e-02_rb,4.375293e-02_rb,3.998077e-02_rb,3.683587e-02_rb, & 3.416508e-02_rb,3.186003e-02_rb,2.984290e-02_rb,2.805671e-02_rb, & 2.645895e-02_rb,2.501733e-02_rb,2.370689e-02_rb,2.250808e-02_rb, & 2.140532e-02_rb,2.038609e-02_rb,1.944018e-02_rb,1.855918e-02_rb, & 1.773609e-02_rb,1.696504e-02_rb,1.624106e-02_rb,1.555990e-02_rb, & 1.491793e-02_rb,1.431197e-02_rb,1.373928e-02_rb,1.319743e-02_rb, & 1.268430e-02_rb,1.219799e-02_rb,1.173682e-02_rb,1.129925e-02_rb, & 1.088393e-02_rb,1.048961e-02_rb,1.011516e-02_rb,9.759543e-03_rb, & 9.421813e-03_rb,9.101089e-03_rb,8.796559e-03_rb,8.507464e-03_rb, & 8.233098e-03_rb,7.972798e-03_rb,7.725942e-03_rb,7.491940e-03_rb, & 7.270238e-03_rb,7.060305e-03_rb/) ! ! band 9 ! absice3(:,9) = (/ & 1.236780e-01_rb,9.222386e-02_rb,7.383997e-02_rb,6.204072e-02_rb, & 5.381029e-02_rb,4.770678e-02_rb,4.296928e-02_rb,3.916131e-02_rb, & 3.601540e-02_rb,3.335878e-02_rb,3.107493e-02_rb,2.908247e-02_rb, & 2.732282e-02_rb,2.575276e-02_rb,2.433968e-02_rb,2.305852e-02_rb, & 2.188966e-02_rb,2.081757e-02_rb,1.982974e-02_rb,1.891599e-02_rb, & 1.806794e-02_rb,1.727865e-02_rb,1.654227e-02_rb,1.585387e-02_rb, & 1.520924e-02_rb,1.460476e-02_rb,1.403730e-02_rb,1.350416e-02_rb, & 1.300293e-02_rb,1.253153e-02_rb,1.208808e-02_rb,1.167094e-02_rb, & 1.127862e-02_rb,1.090979e-02_rb,1.056323e-02_rb,1.023786e-02_rb, & 9.932665e-03_rb,9.646744e-03_rb,9.379250e-03_rb,9.129409e-03_rb, & 8.896500e-03_rb,8.679856e-03_rb,8.478852e-03_rb,8.292904e-03_rb, & 8.121463e-03_rb,7.964013e-03_rb/) ! ! band 10 ! absice3(:,10) = (/ & 1.655966e-01_rb,1.134205e-01_rb,8.714344e-02_rb,7.129241e-02_rb, & 6.063739e-02_rb,5.294203e-02_rb,4.709309e-02_rb,4.247476e-02_rb, & 3.871892e-02_rb,3.559206e-02_rb,3.293893e-02_rb,3.065226e-02_rb, & 2.865558e-02_rb,2.689288e-02_rb,2.532221e-02_rb,2.391150e-02_rb, & 2.263582e-02_rb,2.147549e-02_rb,2.041476e-02_rb,1.944089e-02_rb, & 1.854342e-02_rb,1.771371e-02_rb,1.694456e-02_rb,1.622989e-02_rb, & 1.556456e-02_rb,1.494415e-02_rb,1.436491e-02_rb,1.382354e-02_rb, & 1.331719e-02_rb,1.284339e-02_rb,1.239992e-02_rb,1.198486e-02_rb, & 1.159647e-02_rb,1.123323e-02_rb,1.089375e-02_rb,1.057679e-02_rb, & 1.028124e-02_rb,1.000607e-02_rb,9.750376e-03_rb,9.513303e-03_rb, & 9.294082e-03_rb,9.092003e-03_rb,8.906412e-03_rb,8.736702e-03_rb, & 8.582314e-03_rb,8.442725e-03_rb/) ! ! band 11 ! absice3(:,11) = (/ & 1.775615e-01_rb,1.180046e-01_rb,8.929607e-02_rb,7.233500e-02_rb, & 6.108333e-02_rb,5.303642e-02_rb,4.696927e-02_rb,4.221206e-02_rb, & 3.836768e-02_rb,3.518576e-02_rb,3.250063e-02_rb,3.019825e-02_rb, & 2.819758e-02_rb,2.643943e-02_rb,2.487953e-02_rb,2.348414e-02_rb, & 2.222705e-02_rb,2.108762e-02_rb,2.004936e-02_rb,1.909892e-02_rb, & 1.822539e-02_rb,1.741975e-02_rb,1.667449e-02_rb,1.598330e-02_rb, & 1.534084e-02_rb,1.474253e-02_rb,1.418446e-02_rb,1.366325e-02_rb, & 1.317597e-02_rb,1.272004e-02_rb,1.229321e-02_rb,1.189350e-02_rb, & 1.151915e-02_rb,1.116859e-02_rb,1.084042e-02_rb,1.053338e-02_rb, & 1.024636e-02_rb,9.978326e-03_rb,9.728357e-03_rb,9.495613e-03_rb, & 9.279327e-03_rb,9.078798e-03_rb,8.893383e-03_rb,8.722488e-03_rb, & 8.565568e-03_rb,8.422115e-03_rb/) ! ! band 12 ! absice3(:,12) = (/ & 9.465447e-02_rb,6.432047e-02_rb,5.060973e-02_rb,4.267283e-02_rb, & 3.741843e-02_rb,3.363096e-02_rb,3.073531e-02_rb,2.842405e-02_rb, & 2.651789e-02_rb,2.490518e-02_rb,2.351273e-02_rb,2.229056e-02_rb, & 2.120335e-02_rb,2.022541e-02_rb,1.933763e-02_rb,1.852546e-02_rb, & 1.777763e-02_rb,1.708528e-02_rb,1.644134e-02_rb,1.584009e-02_rb, & 1.527684e-02_rb,1.474774e-02_rb,1.424955e-02_rb,1.377957e-02_rb, & 1.333549e-02_rb,1.291534e-02_rb,1.251743e-02_rb,1.214029e-02_rb, & 1.178265e-02_rb,1.144337e-02_rb,1.112148e-02_rb,1.081609e-02_rb, & 1.052642e-02_rb,1.025178e-02_rb,9.991540e-03_rb,9.745130e-03_rb, & 9.512038e-03_rb,9.291797e-03_rb,9.083980e-03_rb,8.888195e-03_rb, & 8.704081e-03_rb,8.531306e-03_rb,8.369560e-03_rb,8.218558e-03_rb, & 8.078032e-03_rb,7.947730e-03_rb/) ! ! band 13 ! absice3(:,13) = (/ & 1.560311e-01_rb,9.961097e-02_rb,7.502949e-02_rb,6.115022e-02_rb, & 5.214952e-02_rb,4.578149e-02_rb,4.099731e-02_rb,3.724174e-02_rb, & 3.419343e-02_rb,3.165356e-02_rb,2.949251e-02_rb,2.762222e-02_rb, & 2.598073e-02_rb,2.452322e-02_rb,2.321642e-02_rb,2.203516e-02_rb, & 2.096002e-02_rb,1.997579e-02_rb,1.907036e-02_rb,1.823401e-02_rb, & 1.745879e-02_rb,1.673819e-02_rb,1.606678e-02_rb,1.544003e-02_rb, & 1.485411e-02_rb,1.430574e-02_rb,1.379215e-02_rb,1.331092e-02_rb, & 1.285996e-02_rb,1.243746e-02_rb,1.204183e-02_rb,1.167164e-02_rb, & 1.132567e-02_rb,1.100281e-02_rb,1.070207e-02_rb,1.042258e-02_rb, & 1.016352e-02_rb,9.924197e-03_rb,9.703953e-03_rb,9.502199e-03_rb, & 9.318400e-03_rb,9.152066e-03_rb,9.002749e-03_rb,8.870038e-03_rb, & 8.753555e-03_rb,8.652951e-03_rb/) ! ! band 14 ! absice3(:,14) = (/ & 1.559547e-01_rb,9.896700e-02_rb,7.441231e-02_rb,6.061469e-02_rb, & 5.168730e-02_rb,4.537821e-02_rb,4.064106e-02_rb,3.692367e-02_rb, & 3.390714e-02_rb,3.139438e-02_rb,2.925702e-02_rb,2.740783e-02_rb, & 2.578547e-02_rb,2.434552e-02_rb,2.305506e-02_rb,2.188910e-02_rb, & 2.082842e-02_rb,1.985789e-02_rb,1.896553e-02_rb,1.814165e-02_rb, & 1.737839e-02_rb,1.666927e-02_rb,1.600891e-02_rb,1.539279e-02_rb, & 1.481712e-02_rb,1.427865e-02_rb,1.377463e-02_rb,1.330266e-02_rb, & 1.286068e-02_rb,1.244689e-02_rb,1.205973e-02_rb,1.169780e-02_rb, & 1.135989e-02_rb,1.104492e-02_rb,1.075192e-02_rb,1.048004e-02_rb, & 1.022850e-02_rb,9.996611e-03_rb,9.783753e-03_rb,9.589361e-03_rb, & 9.412924e-03_rb,9.253977e-03_rb,9.112098e-03_rb,8.986903e-03_rb, & 8.878039e-03_rb,8.785184e-03_rb/) ! ! band 15 ! absice3(:,15) = (/ & 1.102926e-01_rb,7.176622e-02_rb,5.530316e-02_rb,4.606056e-02_rb, & 4.006116e-02_rb,3.579628e-02_rb,3.256909e-02_rb,3.001360e-02_rb, & 2.791920e-02_rb,2.615617e-02_rb,2.464023e-02_rb,2.331426e-02_rb, & 2.213817e-02_rb,2.108301e-02_rb,2.012733e-02_rb,1.925493e-02_rb, & 1.845331e-02_rb,1.771269e-02_rb,1.702531e-02_rb,1.638493e-02_rb, & 1.578648e-02_rb,1.522579e-02_rb,1.469940e-02_rb,1.420442e-02_rb, & 1.373841e-02_rb,1.329931e-02_rb,1.288535e-02_rb,1.249502e-02_rb, & 1.212700e-02_rb,1.178015e-02_rb,1.145348e-02_rb,1.114612e-02_rb, & 1.085730e-02_rb,1.058633e-02_rb,1.033263e-02_rb,1.009564e-02_rb, & 9.874895e-03_rb,9.669960e-03_rb,9.480449e-03_rb,9.306014e-03_rb, & 9.146339e-03_rb,9.001138e-03_rb,8.870154e-03_rb,8.753148e-03_rb, & 8.649907e-03_rb,8.560232e-03_rb/) ! ! band 16 ! absice3(:,16) = (/ & 1.688344e-01_rb,1.077072e-01_rb,7.994467e-02_rb,6.403862e-02_rb, & 5.369850e-02_rb,4.641582e-02_rb,4.099331e-02_rb,3.678724e-02_rb, & 3.342069e-02_rb,3.065831e-02_rb,2.834557e-02_rb,2.637680e-02_rb, & 2.467733e-02_rb,2.319286e-02_rb,2.188299e-02_rb,2.071701e-02_rb, & 1.967121e-02_rb,1.872692e-02_rb,1.786931e-02_rb,1.708641e-02_rb, & 1.636846e-02_rb,1.570743e-02_rb,1.509665e-02_rb,1.453052e-02_rb, & 1.400433e-02_rb,1.351407e-02_rb,1.305631e-02_rb,1.262810e-02_rb, & 1.222688e-02_rb,1.185044e-02_rb,1.149683e-02_rb,1.116436e-02_rb, & 1.085153e-02_rb,1.055701e-02_rb,1.027961e-02_rb,1.001831e-02_rb, & 9.772141e-03_rb,9.540280e-03_rb,9.321966e-03_rb,9.116517e-03_rb, & 8.923315e-03_rb,8.741803e-03_rb,8.571472e-03_rb,8.411860e-03_rb, & 8.262543e-03_rb,8.123136e-03_rb/) ! ! For liqflag = 0. ! absliq0 = 0.0903614_rb ! ! For liqflag = 1. In each band, the absorption ! coefficients are listed for a range of effective radii from 2.5 ! to 59.5 microns in increments of 1.0 micron. ! ! band 1 ! absliq1(:, 1) = (/ & 1.64047e-03_rb,6.90533e-02_rb,7.72017e-02_rb,7.78054e-02_rb,7.69523e-02_rb, & 7.58058e-02_rb,7.46400e-02_rb,7.35123e-02_rb,7.24162e-02_rb,7.13225e-02_rb, & 6.99145e-02_rb,6.66409e-02_rb,6.36582e-02_rb,6.09425e-02_rb,5.84593e-02_rb, & 5.61743e-02_rb,5.40571e-02_rb,5.20812e-02_rb,5.02245e-02_rb,4.84680e-02_rb, & 4.67959e-02_rb,4.51944e-02_rb,4.36516e-02_rb,4.21570e-02_rb,4.07015e-02_rb, & 3.92766e-02_rb,3.78747e-02_rb,3.64886e-02_rb,3.53632e-02_rb,3.41992e-02_rb, & 3.31016e-02_rb,3.20643e-02_rb,3.10817e-02_rb,3.01490e-02_rb,2.92620e-02_rb, & 2.84171e-02_rb,2.76108e-02_rb,2.68404e-02_rb,2.61031e-02_rb,2.53966e-02_rb, & 2.47189e-02_rb,2.40678e-02_rb,2.34418e-02_rb,2.28392e-02_rb,2.22586e-02_rb, & 2.16986e-02_rb,2.11580e-02_rb,2.06356e-02_rb,2.01305e-02_rb,1.96417e-02_rb, & 1.91682e-02_rb,1.87094e-02_rb,1.82643e-02_rb,1.78324e-02_rb,1.74129e-02_rb, & 1.70052e-02_rb,1.66088e-02_rb,1.62231e-02_rb/) ! ! band 2 ! absliq1(:, 2) = (/ & 2.19486e-01_rb,1.80687e-01_rb,1.59150e-01_rb,1.44731e-01_rb,1.33703e-01_rb, & 1.24355e-01_rb,1.15756e-01_rb,1.07318e-01_rb,9.86119e-02_rb,8.92739e-02_rb, & 8.34911e-02_rb,7.70773e-02_rb,7.15240e-02_rb,6.66615e-02_rb,6.23641e-02_rb, & 5.85359e-02_rb,5.51020e-02_rb,5.20032e-02_rb,4.91916e-02_rb,4.66283e-02_rb, & 4.42813e-02_rb,4.21236e-02_rb,4.01330e-02_rb,3.82905e-02_rb,3.65797e-02_rb, & 3.49869e-02_rb,3.35002e-02_rb,3.21090e-02_rb,3.08957e-02_rb,2.97601e-02_rb, & 2.86966e-02_rb,2.76984e-02_rb,2.67599e-02_rb,2.58758e-02_rb,2.50416e-02_rb, & 2.42532e-02_rb,2.35070e-02_rb,2.27997e-02_rb,2.21284e-02_rb,2.14904e-02_rb, & 2.08834e-02_rb,2.03051e-02_rb,1.97536e-02_rb,1.92271e-02_rb,1.87239e-02_rb, & 1.82425e-02_rb,1.77816e-02_rb,1.73399e-02_rb,1.69162e-02_rb,1.65094e-02_rb, & 1.61187e-02_rb,1.57430e-02_rb,1.53815e-02_rb,1.50334e-02_rb,1.46981e-02_rb, & 1.43748e-02_rb,1.40628e-02_rb,1.37617e-02_rb/) ! ! band 3 ! absliq1(:, 3) = (/ & 2.95174e-01_rb,2.34765e-01_rb,1.98038e-01_rb,1.72114e-01_rb,1.52083e-01_rb, & 1.35654e-01_rb,1.21613e-01_rb,1.09252e-01_rb,9.81263e-02_rb,8.79448e-02_rb, & 8.12566e-02_rb,7.44563e-02_rb,6.86374e-02_rb,6.36042e-02_rb,5.92094e-02_rb, & 5.53402e-02_rb,5.19087e-02_rb,4.88455e-02_rb,4.60951e-02_rb,4.36124e-02_rb, & 4.13607e-02_rb,3.93096e-02_rb,3.74338e-02_rb,3.57119e-02_rb,3.41261e-02_rb, & 3.26610e-02_rb,3.13036e-02_rb,3.00425e-02_rb,2.88497e-02_rb,2.78077e-02_rb, & 2.68317e-02_rb,2.59158e-02_rb,2.50545e-02_rb,2.42430e-02_rb,2.34772e-02_rb, & 2.27533e-02_rb,2.20679e-02_rb,2.14181e-02_rb,2.08011e-02_rb,2.02145e-02_rb, & 1.96561e-02_rb,1.91239e-02_rb,1.86161e-02_rb,1.81311e-02_rb,1.76673e-02_rb, & 1.72234e-02_rb,1.67981e-02_rb,1.63903e-02_rb,1.59989e-02_rb,1.56230e-02_rb, & 1.52615e-02_rb,1.49138e-02_rb,1.45791e-02_rb,1.42565e-02_rb,1.39455e-02_rb, & 1.36455e-02_rb,1.33559e-02_rb,1.30761e-02_rb/) ! ! band 4 ! absliq1(:, 4) = (/ & 3.00925e-01_rb,2.36949e-01_rb,1.96947e-01_rb,1.68692e-01_rb,1.47190e-01_rb, & 1.29986e-01_rb,1.15719e-01_rb,1.03568e-01_rb,9.30028e-02_rb,8.36658e-02_rb, & 7.71075e-02_rb,7.07002e-02_rb,6.52284e-02_rb,6.05024e-02_rb,5.63801e-02_rb, & 5.27534e-02_rb,4.95384e-02_rb,4.66690e-02_rb,4.40925e-02_rb,4.17664e-02_rb, & 3.96559e-02_rb,3.77326e-02_rb,3.59727e-02_rb,3.43561e-02_rb,3.28662e-02_rb, & 3.14885e-02_rb,3.02110e-02_rb,2.90231e-02_rb,2.78948e-02_rb,2.69109e-02_rb, & 2.59884e-02_rb,2.51217e-02_rb,2.43058e-02_rb,2.35364e-02_rb,2.28096e-02_rb, & 2.21218e-02_rb,2.14700e-02_rb,2.08515e-02_rb,2.02636e-02_rb,1.97041e-02_rb, & 1.91711e-02_rb,1.86625e-02_rb,1.81769e-02_rb,1.77126e-02_rb,1.72683e-02_rb, & 1.68426e-02_rb,1.64344e-02_rb,1.60427e-02_rb,1.56664e-02_rb,1.53046e-02_rb, & 1.49565e-02_rb,1.46214e-02_rb,1.42985e-02_rb,1.39871e-02_rb,1.36866e-02_rb, & 1.33965e-02_rb,1.31162e-02_rb,1.28453e-02_rb/) ! ! band 5 ! absliq1(:, 5) = (/ & 2.64691e-01_rb,2.12018e-01_rb,1.78009e-01_rb,1.53539e-01_rb,1.34721e-01_rb, & 1.19580e-01_rb,1.06996e-01_rb,9.62772e-02_rb,8.69710e-02_rb,7.87670e-02_rb, & 7.29272e-02_rb,6.70920e-02_rb,6.20977e-02_rb,5.77732e-02_rb,5.39910e-02_rb, & 5.06538e-02_rb,4.76866e-02_rb,4.50301e-02_rb,4.26374e-02_rb,4.04704e-02_rb, & 3.84981e-02_rb,3.66948e-02_rb,3.50394e-02_rb,3.35141e-02_rb,3.21038e-02_rb, & 3.07957e-02_rb,2.95788e-02_rb,2.84438e-02_rb,2.73790e-02_rb,2.64390e-02_rb, & 2.55565e-02_rb,2.47263e-02_rb,2.39437e-02_rb,2.32047e-02_rb,2.25056e-02_rb, & 2.18433e-02_rb,2.12149e-02_rb,2.06177e-02_rb,2.00495e-02_rb,1.95081e-02_rb, & 1.89917e-02_rb,1.84984e-02_rb,1.80269e-02_rb,1.75755e-02_rb,1.71431e-02_rb, & 1.67283e-02_rb,1.63303e-02_rb,1.59478e-02_rb,1.55801e-02_rb,1.52262e-02_rb, & 1.48853e-02_rb,1.45568e-02_rb,1.42400e-02_rb,1.39342e-02_rb,1.36388e-02_rb, & 1.33533e-02_rb,1.30773e-02_rb,1.28102e-02_rb/) ! ! band 6 ! absliq1(:, 6) = (/ & 8.81182e-02_rb,1.06745e-01_rb,9.79753e-02_rb,8.99625e-02_rb,8.35200e-02_rb, & 7.81899e-02_rb,7.35939e-02_rb,6.94696e-02_rb,6.56266e-02_rb,6.19148e-02_rb, & 5.83355e-02_rb,5.49306e-02_rb,5.19642e-02_rb,4.93325e-02_rb,4.69659e-02_rb, & 4.48148e-02_rb,4.28431e-02_rb,4.10231e-02_rb,3.93332e-02_rb,3.77563e-02_rb, & 3.62785e-02_rb,3.48882e-02_rb,3.35758e-02_rb,3.23333e-02_rb,3.11536e-02_rb, & 3.00310e-02_rb,2.89601e-02_rb,2.79365e-02_rb,2.70502e-02_rb,2.62618e-02_rb, & 2.55025e-02_rb,2.47728e-02_rb,2.40726e-02_rb,2.34013e-02_rb,2.27583e-02_rb, & 2.21422e-02_rb,2.15522e-02_rb,2.09869e-02_rb,2.04453e-02_rb,1.99260e-02_rb, & 1.94280e-02_rb,1.89501e-02_rb,1.84913e-02_rb,1.80506e-02_rb,1.76270e-02_rb, & 1.72196e-02_rb,1.68276e-02_rb,1.64500e-02_rb,1.60863e-02_rb,1.57357e-02_rb, & 1.53975e-02_rb,1.50710e-02_rb,1.47558e-02_rb,1.44511e-02_rb,1.41566e-02_rb, & 1.38717e-02_rb,1.35960e-02_rb,1.33290e-02_rb/) ! band 7 ! absliq1(:, 7) = (/ & 4.32174e-02_rb,7.36078e-02_rb,6.98340e-02_rb,6.65231e-02_rb,6.41948e-02_rb, & 6.23551e-02_rb,6.06638e-02_rb,5.88680e-02_rb,5.67124e-02_rb,5.38629e-02_rb, & 4.99579e-02_rb,4.86289e-02_rb,4.70120e-02_rb,4.52854e-02_rb,4.35466e-02_rb, & 4.18480e-02_rb,4.02169e-02_rb,3.86658e-02_rb,3.71992e-02_rb,3.58168e-02_rb, & 3.45155e-02_rb,3.32912e-02_rb,3.21390e-02_rb,3.10538e-02_rb,3.00307e-02_rb, & 2.90651e-02_rb,2.81524e-02_rb,2.72885e-02_rb,2.62821e-02_rb,2.55744e-02_rb, & 2.48799e-02_rb,2.42029e-02_rb,2.35460e-02_rb,2.29108e-02_rb,2.22981e-02_rb, & 2.17079e-02_rb,2.11402e-02_rb,2.05945e-02_rb,2.00701e-02_rb,1.95663e-02_rb, & 1.90824e-02_rb,1.86174e-02_rb,1.81706e-02_rb,1.77411e-02_rb,1.73281e-02_rb, & 1.69307e-02_rb,1.65483e-02_rb,1.61801e-02_rb,1.58254e-02_rb,1.54835e-02_rb, & 1.51538e-02_rb,1.48358e-02_rb,1.45288e-02_rb,1.42322e-02_rb,1.39457e-02_rb, & 1.36687e-02_rb,1.34008e-02_rb,1.31416e-02_rb/) ! ! band 8 ! absliq1(:, 8) = (/ & 1.41881e-01_rb,7.15419e-02_rb,6.30335e-02_rb,6.11132e-02_rb,6.01931e-02_rb, & 5.92420e-02_rb,5.78968e-02_rb,5.58876e-02_rb,5.28923e-02_rb,4.84462e-02_rb, & 4.60839e-02_rb,4.56013e-02_rb,4.45410e-02_rb,4.31866e-02_rb,4.17026e-02_rb, & 4.01850e-02_rb,3.86892e-02_rb,3.72461e-02_rb,3.58722e-02_rb,3.45749e-02_rb, & 3.33564e-02_rb,3.22155e-02_rb,3.11494e-02_rb,3.01541e-02_rb,2.92253e-02_rb, & 2.83584e-02_rb,2.75488e-02_rb,2.67925e-02_rb,2.57692e-02_rb,2.50704e-02_rb, & 2.43918e-02_rb,2.37350e-02_rb,2.31005e-02_rb,2.24888e-02_rb,2.18996e-02_rb, & 2.13325e-02_rb,2.07870e-02_rb,2.02623e-02_rb,1.97577e-02_rb,1.92724e-02_rb, & 1.88056e-02_rb,1.83564e-02_rb,1.79241e-02_rb,1.75079e-02_rb,1.71070e-02_rb, & 1.67207e-02_rb,1.63482e-02_rb,1.59890e-02_rb,1.56424e-02_rb,1.53077e-02_rb, & 1.49845e-02_rb,1.46722e-02_rb,1.43702e-02_rb,1.40782e-02_rb,1.37955e-02_rb, & 1.35219e-02_rb,1.32569e-02_rb,1.30000e-02_rb/) ! ! band 9 ! absliq1(:, 9) = (/ & 6.72726e-02_rb,6.61013e-02_rb,6.47866e-02_rb,6.33780e-02_rb,6.18985e-02_rb, & 6.03335e-02_rb,5.86136e-02_rb,5.65876e-02_rb,5.39839e-02_rb,5.03536e-02_rb, & 4.71608e-02_rb,4.63630e-02_rb,4.50313e-02_rb,4.34526e-02_rb,4.17876e-02_rb, & 4.01261e-02_rb,3.85171e-02_rb,3.69860e-02_rb,3.55442e-02_rb,3.41954e-02_rb, & 3.29384e-02_rb,3.17693e-02_rb,3.06832e-02_rb,2.96745e-02_rb,2.87374e-02_rb, & 2.78662e-02_rb,2.70557e-02_rb,2.63008e-02_rb,2.52450e-02_rb,2.45424e-02_rb, & 2.38656e-02_rb,2.32144e-02_rb,2.25885e-02_rb,2.19873e-02_rb,2.14099e-02_rb, & 2.08554e-02_rb,2.03230e-02_rb,1.98116e-02_rb,1.93203e-02_rb,1.88482e-02_rb, & 1.83944e-02_rb,1.79578e-02_rb,1.75378e-02_rb,1.71335e-02_rb,1.67440e-02_rb, & 1.63687e-02_rb,1.60069e-02_rb,1.56579e-02_rb,1.53210e-02_rb,1.49958e-02_rb, & 1.46815e-02_rb,1.43778e-02_rb,1.40841e-02_rb,1.37999e-02_rb,1.35249e-02_rb, & 1.32585e-02_rb,1.30004e-02_rb,1.27502e-02_rb/) ! ! band 10 ! absliq1(:,10) = (/ & 7.97040e-02_rb,7.63844e-02_rb,7.36499e-02_rb,7.13525e-02_rb,6.93043e-02_rb, & 6.72807e-02_rb,6.50227e-02_rb,6.22395e-02_rb,5.86093e-02_rb,5.37815e-02_rb, & 5.14682e-02_rb,4.97214e-02_rb,4.77392e-02_rb,4.56961e-02_rb,4.36858e-02_rb, & 4.17569e-02_rb,3.99328e-02_rb,3.82224e-02_rb,3.66265e-02_rb,3.51416e-02_rb, & 3.37617e-02_rb,3.24798e-02_rb,3.12887e-02_rb,3.01812e-02_rb,2.91505e-02_rb, & 2.81900e-02_rb,2.72939e-02_rb,2.64568e-02_rb,2.54165e-02_rb,2.46832e-02_rb, & 2.39783e-02_rb,2.33017e-02_rb,2.26531e-02_rb,2.20314e-02_rb,2.14359e-02_rb, & 2.08653e-02_rb,2.03187e-02_rb,1.97947e-02_rb,1.92924e-02_rb,1.88106e-02_rb, & 1.83483e-02_rb,1.79043e-02_rb,1.74778e-02_rb,1.70678e-02_rb,1.66735e-02_rb, & 1.62941e-02_rb,1.59286e-02_rb,1.55766e-02_rb,1.52371e-02_rb,1.49097e-02_rb, & 1.45937e-02_rb,1.42885e-02_rb,1.39936e-02_rb,1.37085e-02_rb,1.34327e-02_rb, & 1.31659e-02_rb,1.29075e-02_rb,1.26571e-02_rb/) ! ! band 11 ! absliq1(:,11) = (/ & 1.49438e-01_rb,1.33535e-01_rb,1.21542e-01_rb,1.11743e-01_rb,1.03263e-01_rb, & 9.55774e-02_rb,8.83382e-02_rb,8.12943e-02_rb,7.42533e-02_rb,6.70609e-02_rb, & 6.38761e-02_rb,5.97788e-02_rb,5.59841e-02_rb,5.25318e-02_rb,4.94132e-02_rb, & 4.66014e-02_rb,4.40644e-02_rb,4.17706e-02_rb,3.96910e-02_rb,3.77998e-02_rb, & 3.60742e-02_rb,3.44947e-02_rb,3.30442e-02_rb,3.17079e-02_rb,3.04730e-02_rb, & 2.93283e-02_rb,2.82642e-02_rb,2.72720e-02_rb,2.61789e-02_rb,2.53277e-02_rb, & 2.45237e-02_rb,2.37635e-02_rb,2.30438e-02_rb,2.23615e-02_rb,2.17140e-02_rb, & 2.10987e-02_rb,2.05133e-02_rb,1.99557e-02_rb,1.94241e-02_rb,1.89166e-02_rb, & 1.84317e-02_rb,1.79679e-02_rb,1.75238e-02_rb,1.70983e-02_rb,1.66901e-02_rb, & 1.62983e-02_rb,1.59219e-02_rb,1.55599e-02_rb,1.52115e-02_rb,1.48761e-02_rb, & 1.45528e-02_rb,1.42411e-02_rb,1.39402e-02_rb,1.36497e-02_rb,1.33690e-02_rb, & 1.30976e-02_rb,1.28351e-02_rb,1.25810e-02_rb/) ! ! band 12 ! absliq1(:,12) = (/ & 3.71985e-02_rb,3.88586e-02_rb,3.99070e-02_rb,4.04351e-02_rb,4.04610e-02_rb, & 3.99834e-02_rb,3.89953e-02_rb,3.74886e-02_rb,3.54551e-02_rb,3.28870e-02_rb, & 3.32576e-02_rb,3.22444e-02_rb,3.12384e-02_rb,3.02584e-02_rb,2.93146e-02_rb, & 2.84120e-02_rb,2.75525e-02_rb,2.67361e-02_rb,2.59618e-02_rb,2.52280e-02_rb, & 2.45327e-02_rb,2.38736e-02_rb,2.32487e-02_rb,2.26558e-02_rb,2.20929e-02_rb, & 2.15579e-02_rb,2.10491e-02_rb,2.05648e-02_rb,1.99749e-02_rb,1.95704e-02_rb, & 1.91731e-02_rb,1.87839e-02_rb,1.84032e-02_rb,1.80315e-02_rb,1.76689e-02_rb, & 1.73155e-02_rb,1.69712e-02_rb,1.66362e-02_rb,1.63101e-02_rb,1.59928e-02_rb, & 1.56842e-02_rb,1.53840e-02_rb,1.50920e-02_rb,1.48080e-02_rb,1.45318e-02_rb, & 1.42631e-02_rb,1.40016e-02_rb,1.37472e-02_rb,1.34996e-02_rb,1.32586e-02_rb, & 1.30239e-02_rb,1.27954e-02_rb,1.25728e-02_rb,1.23559e-02_rb,1.21445e-02_rb, & 1.19385e-02_rb,1.17376e-02_rb,1.15417e-02_rb/) ! ! band 13 ! absliq1(:,13) = (/ & 3.11868e-02_rb,4.48357e-02_rb,4.90224e-02_rb,4.96406e-02_rb,4.86806e-02_rb, & 4.69610e-02_rb,4.48630e-02_rb,4.25795e-02_rb,4.02138e-02_rb,3.78236e-02_rb, & 3.74266e-02_rb,3.60384e-02_rb,3.47074e-02_rb,3.34434e-02_rb,3.22499e-02_rb, & 3.11264e-02_rb,3.00704e-02_rb,2.90784e-02_rb,2.81463e-02_rb,2.72702e-02_rb, & 2.64460e-02_rb,2.56698e-02_rb,2.49381e-02_rb,2.42475e-02_rb,2.35948e-02_rb, & 2.29774e-02_rb,2.23925e-02_rb,2.18379e-02_rb,2.11793e-02_rb,2.07076e-02_rb, & 2.02470e-02_rb,1.97981e-02_rb,1.93613e-02_rb,1.89367e-02_rb,1.85243e-02_rb, & 1.81240e-02_rb,1.77356e-02_rb,1.73588e-02_rb,1.69935e-02_rb,1.66392e-02_rb, & 1.62956e-02_rb,1.59624e-02_rb,1.56393e-02_rb,1.53259e-02_rb,1.50219e-02_rb, & 1.47268e-02_rb,1.44404e-02_rb,1.41624e-02_rb,1.38925e-02_rb,1.36302e-02_rb, & 1.33755e-02_rb,1.31278e-02_rb,1.28871e-02_rb,1.26530e-02_rb,1.24253e-02_rb, & 1.22038e-02_rb,1.19881e-02_rb,1.17782e-02_rb/) ! ! band 14 ! absliq1(:,14) = (/ & 1.58988e-02_rb,3.50652e-02_rb,4.00851e-02_rb,4.07270e-02_rb,3.98101e-02_rb, & 3.83306e-02_rb,3.66829e-02_rb,3.50327e-02_rb,3.34497e-02_rb,3.19609e-02_rb, & 3.13712e-02_rb,3.03348e-02_rb,2.93415e-02_rb,2.83973e-02_rb,2.75037e-02_rb, & 2.66604e-02_rb,2.58654e-02_rb,2.51161e-02_rb,2.44100e-02_rb,2.37440e-02_rb, & 2.31154e-02_rb,2.25215e-02_rb,2.19599e-02_rb,2.14282e-02_rb,2.09242e-02_rb, & 2.04459e-02_rb,1.99915e-02_rb,1.95594e-02_rb,1.90254e-02_rb,1.86598e-02_rb, & 1.82996e-02_rb,1.79455e-02_rb,1.75983e-02_rb,1.72584e-02_rb,1.69260e-02_rb, & 1.66013e-02_rb,1.62843e-02_rb,1.59752e-02_rb,1.56737e-02_rb,1.53799e-02_rb, & 1.50936e-02_rb,1.48146e-02_rb,1.45429e-02_rb,1.42782e-02_rb,1.40203e-02_rb, & 1.37691e-02_rb,1.35243e-02_rb,1.32858e-02_rb,1.30534e-02_rb,1.28270e-02_rb, & 1.26062e-02_rb,1.23909e-02_rb,1.21810e-02_rb,1.19763e-02_rb,1.17766e-02_rb, & 1.15817e-02_rb,1.13915e-02_rb,1.12058e-02_rb/) ! ! band 15 ! absliq1(:,15) = (/ & 5.02079e-03_rb,2.17615e-02_rb,2.55449e-02_rb,2.59484e-02_rb,2.53650e-02_rb, & 2.45281e-02_rb,2.36843e-02_rb,2.29159e-02_rb,2.22451e-02_rb,2.16716e-02_rb, & 2.11451e-02_rb,2.05817e-02_rb,2.00454e-02_rb,1.95372e-02_rb,1.90567e-02_rb, & 1.86028e-02_rb,1.81742e-02_rb,1.77693e-02_rb,1.73866e-02_rb,1.70244e-02_rb, & 1.66815e-02_rb,1.63563e-02_rb,1.60477e-02_rb,1.57544e-02_rb,1.54755e-02_rb, & 1.52097e-02_rb,1.49564e-02_rb,1.47146e-02_rb,1.43684e-02_rb,1.41728e-02_rb, & 1.39762e-02_rb,1.37797e-02_rb,1.35838e-02_rb,1.33891e-02_rb,1.31961e-02_rb, & 1.30051e-02_rb,1.28164e-02_rb,1.26302e-02_rb,1.24466e-02_rb,1.22659e-02_rb, & 1.20881e-02_rb,1.19131e-02_rb,1.17412e-02_rb,1.15723e-02_rb,1.14063e-02_rb, & 1.12434e-02_rb,1.10834e-02_rb,1.09264e-02_rb,1.07722e-02_rb,1.06210e-02_rb, & 1.04725e-02_rb,1.03269e-02_rb,1.01839e-02_rb,1.00436e-02_rb,9.90593e-03_rb, & 9.77080e-03_rb,9.63818e-03_rb,9.50800e-03_rb/) ! ! band 16 ! absliq1(:,16) = (/ & 5.64971e-02_rb,9.04736e-02_rb,8.11726e-02_rb,7.05450e-02_rb,6.20052e-02_rb, & 5.54286e-02_rb,5.03503e-02_rb,4.63791e-02_rb,4.32290e-02_rb,4.06959e-02_rb, & 3.74690e-02_rb,3.52964e-02_rb,3.33799e-02_rb,3.16774e-02_rb,3.01550e-02_rb, & 2.87856e-02_rb,2.75474e-02_rb,2.64223e-02_rb,2.53953e-02_rb,2.44542e-02_rb, & 2.35885e-02_rb,2.27894e-02_rb,2.20494e-02_rb,2.13622e-02_rb,2.07222e-02_rb, & 2.01246e-02_rb,1.95654e-02_rb,1.90408e-02_rb,1.84398e-02_rb,1.80021e-02_rb, & 1.75816e-02_rb,1.71775e-02_rb,1.67889e-02_rb,1.64152e-02_rb,1.60554e-02_rb, & 1.57089e-02_rb,1.53751e-02_rb,1.50531e-02_rb,1.47426e-02_rb,1.44428e-02_rb, & 1.41532e-02_rb,1.38734e-02_rb,1.36028e-02_rb,1.33410e-02_rb,1.30875e-02_rb, & 1.28420e-02_rb,1.26041e-02_rb,1.23735e-02_rb,1.21497e-02_rb,1.19325e-02_rb, & 1.17216e-02_rb,1.15168e-02_rb,1.13177e-02_rb,1.11241e-02_rb,1.09358e-02_rb, & 1.07525e-02_rb,1.05741e-02_rb,1.04003e-02_rb/) ! end subroutine lwcldpr !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- end module rrtmg_lw_init_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- ! ! path: $Source: /cvsroot/NWP/WRFV3/phys/module_ra_rrtmg_lw.F,v $ ! author: $Author: trn $ ! revision: $Revision: 1.3 $ ! created: $Date: 2009/04/16 19:54:22 $ ! !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module rrtmg_lw_rad_k !------------------------------------------------------------------------------- ! ! abstract : ! ! -------------------------------------------------------------------------- ! | Copyright 2002-2008, Atmospheric & Environmental Research, Inc. (AER). | ! | This software may be used, copied, or redistributed as long as it is | ! | not sold and this copyright notice is reproduced on each copy made. | ! | This model is provided as is without any express or implied warranties. | ! | (http://www.rtweb.aer.com/) | ! -------------------------------------------------------------------------- ! ! **************************************************************************** ! * * ! * RRTMG_LW * ! * * ! * * ! * * ! * a rapid radiative transfer model * ! * for the longwave region * ! * for application to general circulation models * ! * * ! * * ! * Atmospheric and Environmental Research, Inc. * ! * 131 Hartwell Avenue * ! * Lexington, MA 02421 * ! * * ! * * ! * Eli J. Mlawer * ! * Jennifer S. Delamere * ! * Michael J. Iacono * ! * Shepard A. Clough * ! * * ! * * ! * * ! * * ! * * ! * * ! * email: miacono@aer.com * ! * email: emlawer@aer.com * ! * email: jdelamer@aer.com * ! * * ! * The authors wish to acknowledge the contributions of the * ! * following people: Steven J. Taubman, Karen Cady-Pereira, * ! * Patrick D. Brown, Ronald E. Farren, Luke Chen, Robert Bergstrom. * ! * * ! **************************************************************************** ! !------------------------------------------------------------------------------- use parkind_k, only : im => kind_im, rb => kind_rb use rrlw_vsn_k use mcica_subcol_gen_k, only : mcica_subcol use rrtmg_lw_cldprmc_k, only : cldprmc ! ! *** Move the required call to rrtmg_lw_ini below and the following ! use association to the GCM initialization area *** ! ! use rrtmg_lw_init, only : rrtmg_lw_ini use rrtmg_lw_rtrnmc_k, only : rtrnmc use rrtmg_lw_setcoef_k, only : setcoef use rrtmg_lw_taumol_k, only : taumol ! implicit none ! ! public interfaces/functions/subroutines ! public :: rrtmg_lw, inatm ! contains !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- ! public subroutines !------------------------------------------------------------------------------- subroutine rrtmg_lw & (ncol ,nlay ,icld , & play ,plev ,tlay ,tlev ,tsfc , & h2ovmr ,o3vmr ,co2vmr ,ch4vmr ,n2ovmr ,o2vmr , & cfc11vmr,cfc12vmr,cfc22vmr,ccl4vmr ,emis , & inflglw ,iceflglw,liqflglw,cldfmcl , & taucmcl ,ciwpmcl ,clwpmcl ,reicmcl ,relqmcl , & cswpmcl, resnmcl, & tauaer , & uflx ,dflx ,hr ,uflxc ,dflxc, hrc) !------------------------------------------------------------------------------- ! ! abstract : ! This program is the driver subroutine for RRTMG_LW, the AER LW radiation ! model for application to GCMs, that has been adapted from RRTM_LW for ! improved efficiency. ! ! .not.: The call to RRTMG_LW_INI should be moved to the GCM initialization ! area, since this has to be called only once. ! ! This routine: ! a) calls INATM to read in the atmospheric profile from GCM; ! all layering in RRTMG is ordered from surface to toa. ! b) calls CLDPRMC to set cloud optical depth for McICA based ! on input cloud properties ! c) calls SETCOEF to calculate various quantities needed for ! the radiative transfer algorithm ! d) calls TAUMOL to calculate gaseous optical depths for each ! of the 16 spectral bands ! e) calls RTRNMC (for both clear and cloudy profiles) to perform the ! radiative transfer calculation using McICA, the Monte-Carlo ! Independent Column Approximation, to represent sub-grid scale ! cloud variability ! f) passes the necessary fluxes and cooling rates back to GCM ! ! Two modes of operation are possible: ! The mode is chosen by using either rrtmg_lw.nomcica.f90 (to not use ! McICA) or rrtmg_lw.f90 (to use McICA) to interface with a GCM. ! ! 1) Standard, single forward model calculation (imca = 0) ! 2) Monte Carlo Independent Column Approximation (McICA, Pincus et al., ! JC, 2003) method is applied to the forward model calculation (imca = 1) ! ! This call to RRTMG_LW must be preceeded by a call to the module ! mcica_subcol_gen_lw.f90 to run the McICA sub-column cloud generator, ! which will provide the cloud physical or cloud optical properties ! on the RRTMG quadrature point (ngpt) dimension. ! Two random number generators are available for use when imca = 1. ! This is chosen by setting flag irnd on input to mcica_subcol_gen_lw. ! 1) KISSVEC (irnd = 0) ! 2) Mersenne-Twister (irnd = 1) ! ! Two methods of cloud property input are possible: ! Cloud properties can be input in one of two ways (controlled by input ! flags inflglw, iceflglw, and liqflglw; see text file rrtmg_lw_instructions ! and subroutine rrtmg_lw_cldprop.f90 for further details): ! ! 1) Input cloud fraction and cloud optical depth directly (inflglw = 0) ! 2) Input cloud fraction and cloud physical properties (inflglw = 1 or 2); ! cloud optical properties are calculated by cldprop or cldprmc based ! on input settings of iceflglw and liqflglw. Ice particle size provided ! must be appropriately defined for the ice parameterization selected. ! ! One method of aerosol property input is possible: ! Aerosol properties can be input in only one way (controlled by input ! flag iaer; see text file rrtmg_lw_instructions for further details): ! ! 1) Input aerosol optical depth directly by layer & spectral band (iaer=10); ! band average optical depth at the mid-point of each spectral band. ! RRTMG_LW currently treats only aerosol absorption; ! scattering capability is not presently available. ! ! ------- Modifications ------- ! ! This version of RRTMG_LW has been modified from RRTM_LW to use a reduced ! set of g-points for application to GCMs. ! ! history log : ! 1999 M. J. Iacono, AER, Inc. Original version (derived from ! RRTM_LW), reduction of g-points, ! other revisions for use with GCMs ! 2004-05-01 M. J. Iacono, AER, Inc. Adapted for use with NCAR/CAM ! 2005-11-01 M. J. Iacono, AER, Inc. Revised to add McICA capability ! 2007-02-01 M. J. Iacono, AER, Inc. Conversion to F90 formatting for ! consistency with rrtmg_sw ! 2007-08-01 M. J. Iacono, AER, Inc. Modifications to formatting to use ! assumed-shape arrays ! 2008-04-01 M. J. Iacono, AER, Inc. Modified to add lw aerosol absorption ! ! input : ! ncol - Number of horizontal columns ! nlay - Number of model layers ! icld - Cloud overlap method (0: Clear only, 1: Random ! 2: Maxiumu/random, 4: Maximum) ! play - Layer pressures (hPa, mb) (ncol,nlay) ! plev - Interface pressures (hPa, mb) (ncol,nlay+1) ! tlay - Layer temperature (K) (ncol,nlay) ! tlev - Interface temperature (K) (ncol,nlay+1) ! tsfc - Surface temperature (K) (ncol) ! h2ovmr - H2O volume mixing ratio (ncol,nlay) ! o3vmr - O3 volume mixing ratio (ncol,nlay) ! co2vmr - CO2 volume mixing ratio (ncol,nlay) ! ch4vmr - Methane volume mixing ratio (ncol,nlay) ! n2ovmr - Nitrous oxide volume mixing ratio (ncol,nlay) ! o2vmr - Oxygen volume mixing ratio (ncol,nlay) ! cfc11vmr - CFC11 volume mixing ratio (ncol,nlay) ! cfc12vmr - CFC12 volume mixing ratio (ncol,nlay) ! cfc22vmr - CFC22 volume mixing ratio (ncol,nlay) ! ccl4vmr - CCL4 volume mixing ratio (ncol,nlay) ! emis - Surface emissivity (ncol,nbndlw) ! ! inflglw - Flag for cloud optical properties ! iceflglw - Flag for ice particle specification ! liqflglw - Flag for liquid droplet specification ! ! cldfmcl - Cloud fraction (ngptlw,ncol,nlay) ! ciwpmcl - In-cloud ice water path (g/m2) (ngptlw,ncol,nlay) ! clwpmcl - In-cloud liquid water path (g/m2) (ngptlw,ncol,nlay) ! cswpmcl - In-cloud snow water path (g/m2) (ngptlw,ncol,nlay) ! reicmcl - Cloud ice particle effective size (microns) (ncol,nlay) ! relqmcl - Cloud water drop effective radius (microns) (ncol,nlay) ! resnmcl - Snow effective radius (microns) (ncol,nlay) ! taucmcl - In-cloud optical depth (ngptlw,ncol,nlay) ! ssacmcl - In-cloud single scattering albedo (ngptlw,ncol,nlay) ! for future expansion (lw scattering not yet available) ! asmcmcl - In-cloud asymmetry parameter (ngptlw,ncol,nlay) ! for future expansion (lw scattering not yet available) ! tauaer - aerosol optical depth at mid-point of LW spectral bands ! (ncol,nlay,nbndlw) ! ssaaer - aerosol single scattering albedo (ncol,nlay,nbndlw) ! for future expansion (lw aerosols/scattering not yet available) ! asmaer - aerosol asymmetry parameter (ncol,nlay,nbndlw) ! for future expansion (lw aerosols/scattering not yet available) ! ! output : ! uflx - Total sky longwave upward flux (W/m2) (ncol,nlay+1) ! dflx - Total sky longwave downward flux (W/m2) (ncol,nlay+1) ! hr - Total sky longwave radiative heating rate (K/d) (ncol,nlay) ! uflxc - Clear sky longwave upward flux (W/m2) (ncol,nlay+1) ! dflxc - Clear sky longwave downward flux (W/m2) (ncol,nlay+1) ! hrc - Clear sky longwave radiative heating rate (K/d) (ncol,nlay) ! ! local variable : ! nlayers - total number of layers ! istart - beginning band of calculation ! iend - ending band of calculation ! iout - output option flag (inactive) ! iaer - aerosol option flag ! iplon - column loop index ! imca - flag for mcica [0=off, 1=on] ! ims - value for changing mcica permute seed ! k - layer loop index ! ig - g-point loop index ! ! pavel - layer pressures (mb) ! tavel - layer temperatures (K) ! pz - level (interface) pressures (hPa, mb) ! tz - level (interface) temperatures (K) ! tbound - surface temperature (K) ! coldry - dry air column density (mol/cm2) ! wbrodl - broadening gas column density (mol/cm2) ! wkl - molecular amounts (mol/cm-2) ! wx - cross-section amounts (mol/cm-2) ! pwvcm - precipitable water vapor (cm) ! semiss - lw surface emissivity ! taug - gaseous optical depths ! taut - gaseous + aerosol optical depths ! taua - aerosol optical depth ! ssaa - aerosol single scattering albedo ! for future expansion (lw aerosols/scattering not yet available) ! asma - aerosol asymmetry parameter ! for future expansion (lw aerosols/scattering not yet available) ! ! laytrop - tropopause layer index ! jp - lookup table index ! jt - lookup table index ! jt1 - lookup table index ! colh2o - column amount (h2o) ! colco2 - column amount (co2) ! colo3 - column amount (o3) ! coln2o - column amount (n2o) ! colco - column amount (co) ! colch4 - column amount (ch4) ! colo2 - column amount (o2) ! colbrd - column amount (broadening gases) ! ! ncbands - number of cloud spectral bands ! inflag - flag for cloud property method ! iceflag - flag for ice cloud properties ! liqflag - flag for liquid cloud properties ! ! cldfmc - cloud fraction [mcica] ! ciwpmc - in-cloud ice water path [mcica] ! clwpmc - in-cloud liquid water path [mcica] ! cswpmc - in-cloud snow path [mcica] ! relqmc - liquid particle effective radius (microns) ! reicmc - ice particle effective size (microns) ! resnmc - snow particle effective size (microns) ! taucmc - in-cloud optical depth [mcica] ! ssacmc - in-cloud single scattering albedo [mcica] ! for future expansion (lw scattering not yet available) ! asmcmc - in-cloud asymmetry parameter [mcica] ! for future expansion (lw scattering not yet available) ! ! totuflux - upward longwave flux (w/m2) ! totdflux - downward longwave flux (w/m2) ! fnet - net longwave flux (w/m2) ! htr - longwave heating rate (k/day) ! totuclfl - clear sky upward longwave flux (w/m2) ! totdclfl - clear sky downward longwave flux (w/m2) ! fnetc - clear sky net longwave flux (w/m2) ! htrc - lear sky longwave heating rate (k/day) ! !------------------------------------------------------------------------------- use parrrtm_k, only : nbndlw, ngptlw, maxxsec, mxmol use rrlw_con_k, only : fluxfac, heatfac, oneminus, pi use rrlw_wvn_k, only : ng, ngb, nspa, nspb, wavenum1, wavenum2, delwave ! ! ----- Input ----- ! integer(kind=im), intent(in ) :: ncol integer(kind=im), intent(in ) :: nlay integer(kind=im), intent(inout) :: icld ! real(kind=rb), dimension(:,:), intent(in ) :: play real(kind=rb), dimension(:,:), intent(in ) :: plev ! nlay+1 real(kind=rb), dimension(:,:), intent(in ) :: tlay real(kind=rb), dimension(:,:), intent(in ) :: tlev ! nlay+1 real(kind=rb), dimension(:), intent(in ) :: tsfc real(kind=rb), dimension(:,:), intent(in ) :: h2ovmr real(kind=rb), dimension(:,:), intent(in ) :: o3vmr real(kind=rb), dimension(:,:), intent(in ) :: co2vmr real(kind=rb), dimension(:,:), intent(in ) :: ch4vmr real(kind=rb), dimension(:,:), intent(in ) :: n2ovmr real(kind=rb), dimension(:,:), intent(in ) :: o2vmr real(kind=rb), dimension(:,:), intent(in ) :: cfc11vmr real(kind=rb), dimension(:,:), intent(in ) :: cfc12vmr real(kind=rb), dimension(:,:), intent(in ) :: cfc22vmr real(kind=rb), dimension(:,:), intent(in ) :: ccl4vmr real(kind=rb), dimension(:,:), intent(in ) :: emis ! nbndlw ! integer(kind=im), intent(in ) :: inflglw integer(kind=im), intent(in ) :: iceflglw integer(kind=im), intent(in ) :: liqflglw ! real(kind=rb), dimension(:,:,:), intent(in ) :: cldfmcl real(kind=rb), dimension(:,:,:), intent(in ) :: ciwpmcl real(kind=rb), dimension(:,:,:), intent(in ) :: clwpmcl real(kind=rb), dimension(:,:,:), intent(in ) :: cswpmcl real(kind=rb), dimension(:,:), intent(in ) :: reicmcl real(kind=rb), dimension(:,:), intent(in ) :: relqmcl real(kind=rb), dimension(:,:), intent(in ) :: resnmcl real(kind=rb), dimension(:,:,:), intent(in ) :: taucmcl ! real(kind=rb), dimension(:,:,:), intent(in ) :: ssacmcl ! real(kind=rb), dimension(:,:,:), intent(in ) :: asmcmcl real(kind=rb), dimension(:,:,:), intent(in ) :: tauaer ! real(kind=rb), dimension(:,:,:), intent(in ) :: ssaaer ! real(kind=rb), dimension(:,:,:), intent(in ) :: asmaer ! ! ----- Output ----- ! real(kind=rb), dimension(:,:), intent( out) :: uflx ! nlay+1 real(kind=rb), dimension(:,:), intent( out) :: dflx ! nlay+1 real(kind=rb), dimension(:,:), intent( out) :: hr real(kind=rb), dimension(:,:), intent( out) :: uflxc ! nlay+1 real(kind=rb), dimension(:,:), intent( out) :: dflxc ! nlay+1 real(kind=rb), dimension(:,:), intent( out) :: hrc ! ! ----- Local ----- ! ! Control ! integer(kind=im) :: nlayers integer(kind=im) :: istart integer(kind=im) :: iend integer(kind=im) :: iout integer(kind=im) :: iaer integer(kind=im) :: iplon integer(kind=im) :: imca integer(kind=im) :: ims integer(kind=im) :: k integer(kind=im) :: ig ! ! Atmosphere ! real(kind=rb), dimension(nlay+1) :: pavel real(kind=rb), dimension(nlay+1) :: tavel real(kind=rb), dimension(0:nlay+1) :: pz real(kind=rb), dimension(0:nlay+1) :: tz real(kind=rb) :: tbound real(kind=rb), dimension(nlay+1) :: coldry real(kind=rb), dimension(nlay+1) :: wbrodl real(kind=rb), dimension(mxmol,nlay+1) :: wkl real(kind=rb), dimension(maxxsec,nlay+1) :: wx real(kind=rb) :: pwvcm real(kind=rb), dimension(nbndlw) :: semiss real(kind=rb), dimension(nlay+1,ngptlw) :: fracs real(kind=rb), dimension(nlay+1,ngptlw) :: taug real(kind=rb), dimension(nlay+1,ngptlw) :: taut real(kind=rb), dimension(nlay+1,nbndlw) :: taua ! real(kind=rb), dimension(nlay+1,nbndlw) :: ssaa ! real(kind=rb), dimension(nlay+1,nbndlw) :: asma ! ! Atmosphere - setcoef ! integer(kind=im) :: laytrop integer(kind=im), dimension(nlay+1) :: jp integer(kind=im), dimension(nlay+1) :: jt integer(kind=im), dimension(nlay+1) :: jt1 real(kind=rb), dimension(nlay+1,nbndlw) :: planklay real(kind=rb), dimension(0:nlay+1,nbndlw) :: planklev real(kind=rb), dimension(nbndlw) :: plankbnd ! real(kind=rb), dimension(nlay+1) :: colh2o real(kind=rb), dimension(nlay+1) :: colco2 real(kind=rb), dimension(nlay+1) :: colo3 real(kind=rb), dimension(nlay+1) :: coln2o real(kind=rb), dimension(nlay+1) :: colco real(kind=rb), dimension(nlay+1) :: colch4 real(kind=rb), dimension(nlay+1) :: colo2 real(kind=rb), dimension(nlay+1) :: colbrd ! integer(kind=im), dimension(nlay+1) :: indself integer(kind=im), dimension(nlay+1) :: indfor real(kind=rb), dimension(nlay+1) :: selffac real(kind=rb), dimension(nlay+1) :: selffrac real(kind=rb), dimension(nlay+1) :: forfac real(kind=rb), dimension(nlay+1) :: forfrac ! integer(kind=im), dimension(nlay+1) :: indminor real(kind=rb), dimension(nlay+1) :: minorfrac real(kind=rb), dimension(nlay+1) :: scaleminor real(kind=rb), dimension(nlay+1) :: scaleminorn2 ! real(kind=rb), dimension(nlay+1) :: fac00, fac01, fac10, fac11 real(kind=rb), dimension(nlay+1) :: rat_h2oco2, rat_h2oco2_1, & rat_h2oo3, rat_h2oo3_1, & rat_h2on2o, rat_h2on2o_1, & rat_h2och4, rat_h2och4_1, & rat_n2oco2, rat_n2oco2_1, & rat_o3co2, rat_o3co2_1 ! ! Atmosphere/clouds - cldprop ! integer(kind=im) :: ncbands integer(kind=im) :: inflag integer(kind=im) :: iceflag integer(kind=im) :: liqflag ! ! Atmosphere/clouds - cldprmc [mcica] ! real(kind=rb), dimension(ngptlw,nlay+1) :: cldfmc real(kind=rb), dimension(ngptlw,nlay+1) :: ciwpmc real(kind=rb), dimension(ngptlw,nlay+1) :: clwpmc real(kind=rb), dimension(ngptlw,nlay+1) :: cswpmc real(kind=rb), dimension(nlay+1) :: relqmc real(kind=rb), dimension(nlay+1) :: reicmc real(kind=rb), dimension(nlay+1) :: resnmc real(kind=rb), dimension(ngptlw,nlay+1) :: taucmc ! real(kind=rb), dimension(ngptlw,nlay+1) :: ssacmc ! real(kind=rb), dimension(ngptlw,nlay+1) :: asmcmc ! ! Output ! real(kind=rb), dimension(0:nlay+1) :: totuflux real(kind=rb), dimension(0:nlay+1) :: totdflux real(kind=rb), dimension(0:nlay+1) :: fnet real(kind=rb), dimension(0:nlay+1) :: htr real(kind=rb), dimension(0:nlay+1) :: totuclfl real(kind=rb), dimension(0:nlay+1) :: totdclfl real(kind=rb), dimension(0:nlay+1) :: fnetc real(kind=rb), dimension(0:nlay+1) :: htrc !------------------------------------------------------------------------------- ! ! Initializations ! oneminus = 1._rb - 1.e-6_rb pi = 2._rb * asin(1._rb) fluxfac = pi * 2.e4_rb ! orig: fluxfac = pi * 2.d4 istart = 1 iend = 16 iout = 0 ims = 1 ! ! Set imca to select calculation type: ! imca = 0, use standard forward model calculation ! imca = 1, use McICA for Monte Carlo treatment of sub-grid cloud variability ! ! *** This version uses McICA (imca = 1) *** ! ! Set icld to select of clear or cloud calculation and cloud overlap method ! icld = 0, clear only ! icld = 1, with clouds using random cloud overlap ! icld = 2, with clouds using maximum/random cloud overlap ! icld = 3, with clouds using maximum cloud overlap (McICA only) ! if (icld.lt.0.or.icld.gt.3) icld = 2 ! ! Set iaer to select aerosol option ! iaer = 0, no aerosols ! icld = 10, input total aerosol optical depth (tauaer) directly ! iaer = 10 ! ! Call model and data initialization, compute lookup tables, perform ! reduction of g-points from 256 to 140 for input absorption coefficient ! data and other arrays. ! ! In a GCM this call should be placed in the model initialization ! area, since this has to be called only once. ! ! call rrtmg_lw_ini(cpdair) ! ! This is the main longitude/column loop within RRTMG. ! do iplon = 1,ncol ! ! Prepare atmospheric profile from GCM for use in RRTMG, and define ! other input parameters. ! call inatm (iplon, nlay, icld, iaer, & play, plev, tlay, tlev, tsfc, h2ovmr, & o3vmr, co2vmr, ch4vmr, n2ovmr, o2vmr, cfc11vmr, cfc12vmr, & cfc22vmr, ccl4vmr, emis, inflglw, iceflglw, liqflglw, & cldfmcl, taucmcl, & ciwpmcl, clwpmcl, reicmcl, relqmcl, tauaer, & cswpmcl, resnmcl, & nlayers, pavel, pz, tavel, tz, tbound, semiss, coldry, & wkl, wbrodl, wx, pwvcm, inflag, iceflag, liqflag, & cldfmc, taucmc, ciwpmc, clwpmc, reicmc, relqmc, & cswpmc, resnmc, & taua) ! ! For cloudy atmosphere, use cldprop to set cloud optical properties based on ! input cloud physical properties. Select method based on choices described ! in cldprop. Cloud fraction, water path, liquid droplet and ice particle ! effective radius must be passed into cldprop. Cloud fraction and cloud ! optical depth are transferred to rrtmg_lw arrays in cldprop. ! call cldprmc(nlayers, inflag, iceflag, liqflag, cldfmc, ciwpmc, & clwpmc, reicmc, relqmc, & cswpmc, resnmc, & ncbands, taucmc) ! ! Calculate information needed by the radiative transfer routine ! that is specific to this atmosphere, especially some of the ! coefficients and indices needed to compute the optical depths ! by interpolating data from stored reference atmospheres. ! call setcoef(nlayers, istart, pavel, tavel, tz, tbound, semiss, & coldry, wkl, wbrodl, & laytrop, jp, jt, jt1, planklay, planklev, plankbnd, & colh2o, colco2, colo3, coln2o, colco, colch4, colo2, & colbrd, fac00, fac01, fac10, fac11, & rat_h2oco2, rat_h2oco2_1, rat_h2oo3, rat_h2oo3_1, & rat_h2on2o, rat_h2on2o_1, rat_h2och4, rat_h2och4_1, & rat_n2oco2, rat_n2oco2_1, rat_o3co2, rat_o3co2_1, & selffac, selffrac, indself, forfac, forfrac, indfor, & minorfrac, scaleminor, scaleminorn2, indminor) ! ! Calculate the gaseous optical depths and Planck fractions for ! each longwave spectral band. ! call taumol(nlayers, pavel, wx, coldry, & laytrop, jp, jt, jt1, planklay, planklev, plankbnd, & colh2o, colco2, colo3, coln2o, colco, colch4, colo2, & colbrd, fac00, fac01, fac10, fac11, & rat_h2oco2, rat_h2oco2_1, rat_h2oo3, rat_h2oo3_1, & rat_h2on2o, rat_h2on2o_1, rat_h2och4, rat_h2och4_1, & rat_n2oco2, rat_n2oco2_1, rat_o3co2, rat_o3co2_1, & selffac, selffrac, indself, forfac, forfrac, indfor, & minorfrac, scaleminor, scaleminorn2, indminor, & fracs, taug) ! ! Combine gaseous and aerosol optical depths, if aerosol active ! if (iaer .eq. 0) then do k = 1,nlayers do ig = 1,ngptlw taut(k,ig) = taug(k,ig) enddo enddo else if (iaer .eq. 10) then do k = 1,nlayers do ig = 1,ngptlw taut(k,ig) = taug(k,ig) + taua(k,ngb(ig)) enddo enddo endif ! ! Call the radiative transfer routine. ! Either routine can be called to do clear sky calculation. If clouds ! are present, then select routine based on cloud overlap assumption ! to be used. Clear sky calculation is done simultaneously. ! For McICA, RTRNMC is called for clear and cloudy calculations. ! call rtrnmc(nlayers, istart, iend, iout, pz, semiss, ncbands, & cldfmc, taucmc, planklay, planklev, plankbnd, & pwvcm, fracs, taut, & totuflux, totdflux, fnet, htr, & totuclfl, totdclfl, fnetc, htrc ) ! ! Transfer up and down fluxes and heating rate to output arrays. ! Vertical indexing goes from bottom to top; reverse here for GCM if necessary. ! do k = 0,nlayers uflx(iplon,k+1) = totuflux(k) dflx(iplon,k+1) = totdflux(k) uflxc(iplon,k+1) = totuclfl(k) dflxc(iplon,k+1) = totdclfl(k) enddo ! do k = 0,nlayers-1 hr(iplon,k+1) = htr(k) hrc(iplon,k+1) = htrc(k) enddo enddo ! end subroutine rrtmg_lw !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine inatm (iplon, nlay, icld, iaer, & play, plev, tlay, tlev, tsfc, h2ovmr, & o3vmr, co2vmr, ch4vmr, n2ovmr, o2vmr, cfc11vmr, cfc12vmr, & cfc22vmr, ccl4vmr, emis, inflglw, iceflglw, liqflglw, & cldfmcl, taucmcl, ciwpmcl, clwpmcl, reicmcl, relqmcl, tauaer, & cswpmcl, resnmcl, & nlayers, pavel, pz, tavel, tz, tbound, semiss, coldry, & wkl, wbrodl, wx, pwvcm, inflag, iceflag, liqflag, & cldfmc, taucmc, ciwpmc, clwpmc, reicmc, relqmc, & cswpmc, resnmc, & taua) !------------------------------------------------------------------------------- ! ! abstract : ! Input atmospheric profile from GCM, and prepare it for use in RRTMG_LW. ! Set other RRTMG_LW input parameters. ! ! input : ! iplon - Column loop index ! nlay - Number of model layers ! icld - Cloud overlap method (0: Clear only, 1: Random ! 2: Maxiumu/random, 4: Maximum) ! iaer - Aerosol option flag ! ! play - Layer pressures (hPa, mb) (ncol,nlay) ! plev - Interface pressures (hPa, mb) (ncol,nlay+1) ! tlay - Layer temperature (K) (ncol,nlay) ! tlev - Interface temperature (K) (ncol,nlay+1) ! tsfc - Surface temperature (K) (ncol) ! h2ovmr - H2O volume mixing ratio (ncol,nlay) ! o3vmr - O3 volume mixing ratio (ncol,nlay) ! co2vmr - CO2 volume mixing ratio (ncol,nlay) ! ch4vmr - Methane volume mixing ratio (ncol,nlay) ! n2ovmr - Nitrous oxide volume mixing ratio (ncol,nlay) ! o2vmr - Oxygen volume mixing ratio (ncol,nlay) ! cfc11vmr - CFC11 volume mixing ratio (ncol,nlay) ! cfc12vmr - CFC12 volume mixing ratio (ncol,nlay) ! cfc22vmr - CFC22 volume mixing ratio (ncol,nlay) ! ccl4vmr - CCL4 volume mixing ratio (ncol,nlay) ! emis - Surface emissivity (ncol,nbndlw) ! ! inflglw - Flag for cloud optical properties ! iceflglw - Flag for ice particle specification ! liqflglw - Flag for liquid droplet specification ! ! cldfmcl - Cloud fraction (ngptlw,ncol,nlay) ! ciwpmcl - In-cloud ice water path (g/m2) (ngptlw,ncol,nlay) ! clwpmcl - In-cloud liquid water path (g/m2) (ngptlw,ncol,nlay) ! cswpmcl - In-cloud snow water path (g/m2) (ngptlw,ncol,nlay) ! reicmcl - Cloud ice particle effective size (microns) (ncol,nlay) ! relqmcl - Cloud water drop effective radius (microns) (ncol,nlay) ! resnmcl - Snow effective radius (microns) (ncol,nlay) ! taucmcl - In-cloud optical depth (ngptlw,ncol,nlay) ! tauaer - aerosol optical depth (ncol,nlay,nbndlw) ! ! output : ! nlayers - number of layers ! pavel - layer pressures (mb) ! tavel - layer temperatures (K) ! pz - level (interface) pressures (hPa, mb) ! tz - level (interface) temperatures (K) ! tbound - surface temperature (K) ! coldry - dry air column density (mol/cm2) ! wbrodl - broadening gas column density (mol/cm2) ! wkl - molecular amounts (mol/cm-2) ! wx - cross-section amounts (mol/cm-2) ! pwvcm - precipitable water vapor (cm) ! semiss - lw surface emissivity ! ! inflag - flag for cloud property method ! iceflag - flag for ice cloud properties ! liqflag - flag for liquid cloud properties ! cldfmc - cloud fraction [mcica] ! ciwpmc - in-cloud ice water path [mcica] ! clwpmc - in-cloud liquid water path [mcica] ! cswpmc - in-cloud snow path [mcica] ! relqmc - liquid particle effective radius (microns) ! reicmc - ice particle effective size (microns) ! resnmc - snow particle effective size (microns) ! taucmc - in-cloud optical depth [mcica] ! taua - aerosol optical depth ! ! local variable : ! amd - Effective molecular weight of dry air (g/mol) ! amw - Molecular weight of water vapor (g/mol) ! amc - Molecular weight of carbon dioxide (g/mol) ! amo - Molecular weight of ozone (g/mol) ! amo2 - Molecular weight of oxygen (g/mol) ! amch4 - Molecular weight of methane (g/mol) ! amn2o - Molecular weight of nitrous oxide (g/mol) ! amc11 - Molecular weight of CFC11 (g/mol) - CCL3F ! amc12 - Molecular weight of CFC12 (g/mol) - CCL2F2 ! amc22 - Molecular weight of CFC22 (g/mol) - CHCLF2 ! amc14 - Molecular weight of CCL4 (g/mol) - CCL4 ! ! amdw - Molecular weight of dry air / water vapor ! amdc - Molecular weight of dry air / carbon dioxide ! amdo - Molecular weight of dry air / ozone ! amdm - Molecular weight of dry air / methane ! amdn - Molecular weight of dry air / nitrous oxide ! amdo2 - Molecular weight of dry air / oxygen ! amdc1 - Molecular weight of dry air / CFC11 ! amdc2 - Molecular weight of dry air / CFC12 ! !------------------------------------------------------------------------------- use parrrtm_k, only : nbndlw, ngptlw, nmol, maxxsec, mxmol use rrlw_con_k, only : fluxfac, heatfac, oneminus, pi, grav, avogad use rrlw_wvn_k, only : ng, nspa, nspb, wavenum1, wavenum2, delwave, ixindx ! ! ----- Input ----- ! integer(kind=im), intent(in ) :: iplon integer(kind=im), intent(in ) :: nlay integer(kind=im), intent(in ) :: icld integer(kind=im), intent(in ) :: iaer ! real(kind=rb), dimension(:,:), intent(in ) :: play real(kind=rb), dimension(:,:), intent(in ) :: plev ! nlay+1 real(kind=rb), dimension(:,:), intent(in ) :: tlay real(kind=rb), dimension(:,:), intent(in ) :: tlev ! nlay+1 real(kind=rb), dimension(:), intent(in ) :: tsfc real(kind=rb), dimension(:,:), intent(in ) :: h2ovmr real(kind=rb), dimension(:,:), intent(in ) :: o3vmr real(kind=rb), dimension(:,:), intent(in ) :: co2vmr real(kind=rb), dimension(:,:), intent(in ) :: ch4vmr real(kind=rb), dimension(:,:), intent(in ) :: n2ovmr real(kind=rb), dimension(:,:), intent(in ) :: o2vmr real(kind=rb), dimension(:,:), intent(in ) :: cfc11vmr real(kind=rb), dimension(:,:), intent(in ) :: cfc12vmr real(kind=rb), dimension(:,:), intent(in ) :: cfc22vmr real(kind=rb), dimension(:,:), intent(in ) :: ccl4vmr real(kind=rb), dimension(:,:), intent(in ) :: emis ! nbndlw ! integer(kind=im), intent(in ) :: inflglw integer(kind=im), intent(in ) :: iceflglw integer(kind=im), intent(in ) :: liqflglw ! real(kind=rb), dimension(:,:,:), intent(in ) :: cldfmcl real(kind=rb), dimension(:,:,:), intent(in ) :: ciwpmcl real(kind=rb), dimension(:,:,:), intent(in ) :: clwpmcl real(kind=rb), dimension(:,:,:), intent(in ) :: cswpmcl real(kind=rb), dimension(:,:), intent(in ) :: reicmcl real(kind=rb), dimension(:,:), intent(in ) :: relqmcl real(kind=rb), dimension(:,:), intent(in ) :: resnmcl real(kind=rb), dimension(:,:,:), intent(in ) :: taucmcl real(kind=rb), dimension(:,:,:), intent(in ) :: tauaer ! ! ----- Output ----- ! ! Atmosphere ! integer(kind=im), intent( out) :: nlayers real(kind=rb), dimension(:), intent( out) :: pavel real(kind=rb), dimension(:), intent( out) :: tavel real(kind=rb), dimension(0:), intent( out) :: pz real(kind=rb), dimension(0:), intent( out) :: tz real(kind=rb), intent( out) :: tbound real(kind=rb), dimension(:), intent( out) :: coldry real(kind=rb), dimension(:), intent( out) :: wbrodl real(kind=rb), dimension(:,:), intent( out) :: wkl real(kind=rb), dimension(:,:), intent( out) :: wx real(kind=rb), intent( out) :: pwvcm real(kind=rb), dimension(:), intent( out) :: semiss ! ! Atmosphere/clouds - cldprop ! integer(kind=im), intent( out) :: inflag integer(kind=im), intent( out) :: iceflag integer(kind=im), intent( out) :: liqflag real(kind=rb), dimension(:,:), intent( out) :: cldfmc real(kind=rb), dimension(:,:), intent( out) :: ciwpmc real(kind=rb), dimension(:,:), intent( out) :: clwpmc real(kind=rb), dimension(:,:), intent( out) :: cswpmc real(kind=rb), dimension(:), intent( out) :: relqmc real(kind=rb), dimension(:), intent( out) :: reicmc real(kind=rb), dimension(:), intent( out) :: resnmc real(kind=rb), dimension(:,:), intent( out) :: taucmc real(kind=rb), dimension(:,:), intent( out) :: taua ! ! ----- Local ----- ! real(kind=rb), parameter :: amd = 28.9660_rb real(kind=rb), parameter :: amw = 18.0160_rb ! real(kind=rb), parameter :: amc = 44.0098_rb ! real(kind=rb), parameter :: amo = 47.9998_rb ! real(kind=rb), parameter :: amo2 = 31.9999_rb ! real(kind=rb), parameter :: amch4 = 16.0430_rb ! real(kind=rb), parameter :: amn2o = 44.0128_rb ! real(kind=rb), parameter :: amc11 = 137.3684_rb ! real(kind=rb), parameter :: amc12 = 120.9138_rb ! real(kind=rb), parameter :: amc22 = 86.4688_rb ! real(kind=rb), parameter :: amcl4 = 153.823_rb ! ! Set molecular weight ratios (for converting mmr to vmr) ! e.g. h2ovmr = h2ommr * amdw) ! real(kind=rb), parameter :: amdw = 1.607793_rb real(kind=rb), parameter :: amdc = 0.658114_rb real(kind=rb), parameter :: amdo = 0.603428_rb real(kind=rb), parameter :: amdm = 1.805423_rb real(kind=rb), parameter :: amdn = 0.658090_rb real(kind=rb), parameter :: amdo2 = 0.905140_rb real(kind=rb), parameter :: amdc1 = 0.210852_rb real(kind=rb), parameter :: amdc2 = 0.239546_rb ! integer(kind=im) :: isp, l, ix, n, imol, ib, ig ! Loop indices real(kind=rb) :: amm, amttl, wvttl, wvsh, summol !------------------------------------------------------------------------------- ! ! Add one to nlayers here to include extra model layer at top of atmosphere ! nlayers = nlay ! ! Initialize all molecular amounts and cloud properties to zero here, ! then pass input amounts into RRTM arrays below. ! wkl = 0.0_rb ; wx = 0.0_rb ; cldfmc = 0.0_rb taucmc = 0.0_rb ; ciwpmc = 0.0_rb ; clwpmc = 0.0_rb cswpmc = 0.0_rb reicmc = 0.0_rb ; relqmc = 0.0_rb resnmc = 0.0_rb taua = 0.0_rb ; amttl = 0.0_rb ; wvttl = 0.0_rb ! ! Set surface temperature. ! tbound = tsfc(iplon) ! ! Install input GCM arrays into RRTMG_LW arrays for pressure, temperature, ! and molecular amounts. ! Pressures are input in mb, or are converted to mb here. ! Molecular amounts are input in volume mixing ratio, or are converted from ! mass mixing ratio (or specific humidity for h2o) to volume mixing ratio ! here. These are then converted to molecular amount (molec/cm2) below. ! The dry air column COLDRY (in molec/cm2) is calculated from the level ! pressures, pz (in mb), based on the hydrostatic equation and includes a ! correction to account for h2o in the layer. The molecular weight of moist ! air (amm) is calculated for each layer. ! Note: In RRTMG, layer indexing goes from bottom to top, and coding below ! assumes GCM input fields are also bottom to top. Input layer indexing ! from GCM fields should be reversed here if necessary. ! pz(0) = plev(iplon,1) tz(0) = tlev(iplon,1) ! do l = 1,nlayers pavel(l) = play(iplon,l) tavel(l) = tlay(iplon,l) pz(l) = plev(iplon,l+1) tz(l) = tlev(iplon,l+1) ! ! For h2o input in vmr: ! wkl(1,l) = h2ovmr(iplon,l) ! ! For h2o input in mmr: ! ! wkl(1,l) = h2o(iplon,l)*amdw ! ! For h2o input in specific humidity; ! ! wkl(1,l) = (h2o(iplon,l)/(1._rb - h2o(iplon,l)))*amdw ! wkl(2,l) = co2vmr(iplon,l) wkl(3,l) = o3vmr(iplon,l) wkl(4,l) = n2ovmr(iplon,l) wkl(6,l) = ch4vmr(iplon,l) wkl(7,l) = o2vmr(iplon,l) amm = (1._rb - wkl(1,l)) * amd + wkl(1,l) * amw coldry(l) = (pz(l-1)-pz(l)) * 1.e3_rb * avogad / & (1.e2_rb * grav * amm * (1._rb + wkl(1,l))) enddo ! ! Set cross section molecule amounts from input; convert to vmr if necessary ! do l = 1,nlayers wx(1,l) = ccl4vmr(iplon,l) wx(2,l) = cfc11vmr(iplon,l) wx(3,l) = cfc12vmr(iplon,l) wx(4,l) = cfc22vmr(iplon,l) enddo ! ! The following section can be used to set values for an additional layer (from ! the GCM top level to 1.e-4 mb) for improved calculation of TOA fluxes. ! Temperature and molecular amounts in the extra model layer are set to ! their values in the top GCM model layer, though these can be modified ! here if necessary. ! If this feature is utilized, increase nlayers by one above, limit the two ! loops above to (nlayers-1), and set the top most (extra) layer values here. ! ! pavel(nlayers) = 0.5_rb * pz(nlayers-1) ! tavel(nlayers) = tavel(nlayers-1) ! pz(nlayers) = 1.e-4_rb ! tz(nlayers-1) = 0.5_rb * (tavel(nlayers)+tavel(nlayers-1)) ! tz(nlayers) = tz(nlayers-1) ! wkl(1,nlayers) = wkl(1,nlayers-1) ! wkl(2,nlayers) = wkl(2,nlayers-1) ! wkl(3,nlayers) = wkl(3,nlayers-1) ! wkl(4,nlayers) = wkl(4,nlayers-1) ! wkl(6,nlayers) = wkl(6,nlayers-1) ! wkl(7,nlayers) = wkl(7,nlayers-1) ! amm = (1._rb - wkl(1,nlayers-1)) * amd + wkl(1,nlayers-1) * amw ! coldry(nlayers) = (pz(nlayers-1)) * 1.e3_rb * avogad / & ! (1.e2_rb * grav * amm * (1._rb + wkl(1,nlayers-1))) ! wx(1,nlayers) = wx(1,nlayers-1) ! wx(2,nlayers) = wx(2,nlayers-1) ! wx(3,nlayers) = wx(3,nlayers-1) ! wx(4,nlayers) = wx(4,nlayers-1) ! ! At this point all molecular amounts in wkl and wx are in volume mixing ratio; ! convert to molec/cm2 based on coldry for use in rrtm. also, compute ! precipitable water vapor for diffusivity angle adjustments in rtrn and rtrnmr. ! do l = 1,nlayers summol = 0.0_rb do imol = 2,nmol summol = summol + wkl(imol,l) enddo ! wbrodl(l) = coldry(l) * (1._rb - summol) do imol = 1,nmol wkl(imol,l) = coldry(l) * wkl(imol,l) enddo ! amttl = amttl + coldry(l)+wkl(1,l) wvttl = wvttl + wkl(1,l) do ix = 1,maxxsec if (ixindx(ix) .ne. 0) then wx(ixindx(ix),l) = coldry(l) * wx(ix,l) * 1.e-20_rb endif enddo enddo ! wvsh = (amw * wvttl) / (amd * amttl) pwvcm = wvsh * (1.e3_rb * pz(0)) / (1.e2_rb * grav) ! ! Set spectral surface emissivity for each longwave band. ! do n = 1,nbndlw semiss(n) = emis(iplon,n) ! semiss(n) = 1.0_rb enddo ! ! Transfer aerosol optical properties to RRTM variable; ! modify to reverse layer indexing here if necessary. ! if (iaer .ge. 1) then do l = 1,nlayers do ib = 1,nbndlw taua(l,ib) = tauaer(iplon,l,ib) enddo enddo endif ! ! Transfer cloud fraction and cloud optical properties to RRTM variables, ! modify to reverse layer indexing here if necessary. ! if (icld .ge. 1) then inflag = inflglw iceflag = iceflglw liqflag = liqflglw ! ! Move incoming GCM cloud arrays to RRTMG cloud arrays. ! For GCM input, incoming reicmcl is defined based on selected ice ! parameterization (inflglw) ! do l = 1,nlayers do ig = 1,ngptlw cldfmc(ig,l) = cldfmcl(ig,iplon,l) taucmc(ig,l) = taucmcl(ig,iplon,l) ciwpmc(ig,l) = ciwpmcl(ig,iplon,l) clwpmc(ig,l) = clwpmcl(ig,iplon,l) cswpmc(ig,l) = cswpmcl(ig,iplon,l) enddo reicmc(l) = reicmcl(iplon,l) relqmc(l) = relqmcl(iplon,l) resnmc(l) = resnmcl(iplon,l) enddo ! ! If an extra layer is being used in RRTMG, ! set all cloud properties to zero in the extra layer. ! ! cldfmc(:,nlayers) = 0.0_rb ! taucmc(:,nlayers) = 0.0_rb ! ciwpmc(:,nlayers) = 0.0_rb ! clwpmc(:,nlayers) = 0.0_rb ! reicmc(nlayers) = 0.0_rb ! relqmc(nlayers) = 0.0_rb ! taua(nlayers,:) = 0.0_rb ! endif ! end subroutine inatm !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- end module rrtmg_lw_rad_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- module module_ra_rrtmg_lwk !------------------------------------------------------------------------------- ! use rad_effective_radius, only : effectRad_wdm, cldf_to_qcqi ! use comio use parrrtm_k, only : nbndlw, ngptlw use rrtmg_lw_init_k, only : rrtmg_lw_ini use rrtmg_lw_rad_k, only : rrtmg_lw use mcica_subcol_gen_k, only : mcica_subcol ! real retab(95) data retab / & 5.92779, 6.26422, 6.61973, 6.99539, 7.39234, & 7.81177, 8.25496, 8.72323, 9.21800, 9.74075, 10.2930, & 10.8765, 11.4929, 12.1440, 12.8317, 13.5581, 14.2319, & 15.0351, 15.8799, 16.7674, 17.6986, 18.6744, 19.6955, & 20.7623, 21.8757, 23.0364, 24.2452, 25.5034, 26.8125, & 27.7895, 28.6450, 29.4167, 30.1088, 30.7306, 31.2943, & 31.8151, 32.3077, 32.7870, 33.2657, 33.7540, 34.2601, & 34.7892, 35.3442, 35.9255, 36.5316, 37.1602, 37.8078, & 38.4720, 39.1508, 39.8442, 40.5552, 41.2912, 42.0635, & 42.8876, 43.7863, 44.7853, 45.9170, 47.2165, 48.7221, & 50.4710, 52.4980, 54.8315, 57.4898, 60.4785, 63.7898, & 65.5604, 71.2885, 75.4113, 79.7368, 84.2351, 88.8833, & 93.6658, 98.5739, 103.603, 108.752, 114.025, 119.424, & 124.954, 130.630, 136.457, 142.446, 148.608, 154.956, & 161.503, 168.262, 175.248, 182.473, 189.952, 197.699, & 205.728, 214.055, 222.694, 231.661, 240.971, 250.639/ ! save retab ! ! For buffer layer adjustment. Steven Cavallo, Dec 2010. ! real, parameter :: qmin=0., cp=1.0046e+3, t0c=2.7315e+2, rd=2.8705e+2 integer, save :: nlayers real, parameter :: deltap = 4. ! Pressure interval for buffer layer in mb !------------------------------------------------------------------------------- contains !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- subroutine inirad (o3prof, plev, kts, kte) !------------------------------------------------------------------------------- ! ! abstract : compute ozone mixing ratio distribution ! !------------------------------------------------------------------------------- ! implicit none ! integer, intent(in ) :: kts, kte real, dimension( kts:kte+1 ), intent(inout) :: o3prof real, dimension( kts:kte+2 ), intent(in ) :: plev ! ! local var ! integer :: k !------------------------------------------------------------------------------- ! do k = kts,kte+1 o3prof(k) = 0. enddo ! call o3data(o3prof, plev, kts, kte) ! end subroutine inirad !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine o3data (o3prof, plev, kts, kte) !------------------------------------------------------------------------------- ! implicit none ! integer, intent(in ) :: kts, kte real, dimension( kts:kte+1 ), intent(inout) :: o3prof real, dimension( kts:kte+2 ), intent(in ) :: plev ! ! local var ! integer :: k, jj real, dimension(kts:kte+2) :: prlevh real, dimension(32) :: ppwrkh real, dimension(31) :: o3wrk, ppwrk, o3sum, ppsum, & o3win, ppwin, o3ann, ppann real :: pb1, pb2, pt1, pt2 ! data o3sum /5.297e-8,5.852e-8,6.579e-8,7.505e-8, & 8.577e-8,9.895e-8,1.175e-7,1.399e-7,1.677e-7,2.003e-7, & 2.571e-7,3.325e-7,4.438e-7,6.255e-7,8.168e-7,1.036e-6, & 1.366e-6,1.855e-6,2.514e-6,3.240e-6,4.033e-6,4.854e-6, & 5.517e-6,6.089e-6,6.689e-6,1.106e-5,1.462e-5,1.321e-5, & 9.856e-6,5.960e-6,5.960e-6/ ! data ppsum /955.890,850.532,754.599,667.742,589.841, & 519.421,455.480,398.085,347.171,301.735,261.310,225.360, & 193.419,165.490,141.032,120.125,102.689, 87.829, 75.123, & 64.306, 55.086, 47.209, 40.535, 34.795, 29.865, 19.122, & 9.277, 4.660, 2.421, 1.294, 0.647/ ! data o3win /4.629e-8,4.686e-8,5.017e-8,5.613e-8, & 6.871e-8,8.751e-8,1.138e-7,1.516e-7,2.161e-7,3.264e-7, & 4.968e-7,7.338e-7,1.017e-6,1.308e-6,1.625e-6,2.011e-6, & 2.516e-6,3.130e-6,3.840e-6,4.703e-6,5.486e-6,6.289e-6, & 6.993e-6,7.494e-6,8.197e-6,9.632e-6,1.113e-5,1.146e-5, & 9.389e-6,6.135e-6,6.135e-6/ ! data ppwin /955.747,841.783,740.199,649.538,568.404, & 495.815,431.069,373.464,322.354,277.190,237.635,203.433, & 174.070,148.949,127.408,108.915, 93.114, 79.551, 67.940, & 58.072, 49.593, 42.318, 36.138, 30.907, 26.362, 16.423, & 7.583, 3.620, 1.807, 0.938, 0.469/ !------------------------------------------------------------------------------- ! do k = 1,31 ppann(k) = ppsum(k) enddo ! o3ann(1) = 0.5*(o3sum(1)+o3win(1)) ! do k = 2,31 o3ann(k) = o3win(k-1)+(o3win(k)-o3win(k-1))/(ppwin(k)-ppwin(k-1))* & (ppsum(k)-ppwin(k-1)) enddo ! do k = 2,31 o3ann(k) = 0.5*(o3ann(k)+o3sum(k)) enddo ! do k = 1,31 o3wrk(k) = o3ann(k) ppwrk(k) = ppann(k) enddo ! ! calculate half pressure levels for model.and.data levels ! ! plev is total P at model levels, from bottom to top ! plev is in mb ! do k = kts,kte+2 prlevh(k) = plev(k) enddo ! ppwrkh(1) = 1100. do k = 2,31 ppwrkh(k) = (ppwrk(k)+ppwrk(k-1))/2. enddo ! ppwrkh(32) = 0. do k = kts,kte+1 do 25 jj = 1,31 if ((-(prlevh(k)-ppwrkh(jj))).ge.0.) then pb1 = 0. else pb1 = prlevh(k)-ppwrkh(jj) endif ! if ((-(prlevh(k)-ppwrkh(jj+1))).ge.0.) then pb2 = 0. else pb2 = prlevh(k)-ppwrkh(jj+1) endif ! if ((-(prlevh(k+1)-ppwrkh(jj))).ge.0.) then pt1 = 0. else pt1 = prlevh(k+1)-ppwrkh(jj) endif ! if ((-(prlevh(k+1)-ppwrkh(jj+1))).ge.0.) then pt2 = 0. else pt2 = prlevh(k+1)-ppwrkh(jj+1) endif ! o3prof(k) = o3prof(k)+(pb2-pb1-pt2+pt1)*o3wrk(jj) 25 continue o3prof(k) = o3prof(k)/(prlevh(k)-prlevh(k+1)) enddo ! end subroutine o3data !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine rrtmg_lwinit_k( & allowed_to_read , & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !------------------------------------------------------------------------------- ! implicit none ! logical , intent(in ) :: allowed_to_read integer , intent(in ) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte !------------------------------------------------------------------------------- ! nlayers = kte ! changed, shbaek ! ! Read in absorption coefficients and other data ! if (allowed_to_read) then call rrtmg_lwlookuptable endif ! ! Perform g-point reduction and other initializations ! Specific heat of dry air (cp) used in flux to heating rate conversion factor. ! call rrtmg_lw_ini(cp) ! end subroutine rrtmg_lwinit_k !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine rrtmg_lwlookuptable !------------------------------------------------------------------------------- ! implicit none ! ! Local ! integer :: i logical :: opened logical , external :: wrf_dm_on_monitor ! character*80 :: errmess integer :: rrtmg_unit !------------------------------------------------------------------------------- ! if (wrf_dm_on_monitor()) then do i = 10,99 inquire ( i , opened = opened ) if ( .not. opened ) then rrtmg_unit = i goto 2010 endif enddo rrtmg_unit = -1 2010 continue endif ! CALL wrf_dm_bcast_bytes ( rrtmg_unit , 4 ) IF ( rrtmg_unit < 0 ) THEN CALL wrf_error_fatal ( 'module_ra_rrtmg_lw: rrtm_lwlookuptable: Can not '// & 'find unused fortran unit to read in lookup table.' ) ENDIF if ( wrf_dm_on_monitor() ) then open(rrtmg_unit,file='RRTMG_LW_DATA', & form='unformatted',status='old',err=9009) endif ! call lw_kgb01(rrtmg_unit) call lw_kgb02(rrtmg_unit) call lw_kgb03(rrtmg_unit) call lw_kgb04(rrtmg_unit) call lw_kgb05(rrtmg_unit) call lw_kgb06(rrtmg_unit) call lw_kgb07(rrtmg_unit) call lw_kgb08(rrtmg_unit) call lw_kgb09(rrtmg_unit) call lw_kgb10(rrtmg_unit) call lw_kgb11(rrtmg_unit) call lw_kgb12(rrtmg_unit) call lw_kgb13(rrtmg_unit) call lw_kgb14(rrtmg_unit) call lw_kgb15(rrtmg_unit) call lw_kgb16(rrtmg_unit) ! if ( wrf_dm_on_monitor() ) close (rrtmg_unit) ! return 9009 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error opening RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine rrtmg_lwlookuptable !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- ! ! RRTMG Longwave Radiative Transfer Model ! Atmospheric and Environmental Research, Inc., Cambridge, MA ! ! Original version: E. J. Mlawer, et al. ! Revision for GCMs: Michael J. Iacono; October, 2002 ! Revision for F90 formatting: Michael J. Iacono; June 2006 ! ! This file contains 16 READ statements that include the ! absorption coefficients and other data for each of the 16 longwave ! spectral bands used in RRTMG_LW. Here, the data are defined for 16 ! g-points, or sub-intervals, per band. These data are combined and ! weighted using a mapping procedure in module RRTMG_LW_INIT to reduce ! the total number of g-points from 256 to 140 for use in the GCM. ! !------------------------------------------------------------------------------- subroutine lw_kgb01(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: P = 212.7250 mbar, T = 223.06 K ! ! The array KAO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The arrays kao_mn2 and kbo_mn2 contain the coefficients of the ! nitrogen continuum for the upper and lower atmosphere. ! Minor gas mapping levels: ! Lower - n2: P = 142.5490 mbar, T = 215.70 K ! Upper - n2: P = 142.5490 mbar, T = 215.70 K ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg01_k, only : fracrefao, fracrefbo, kao, kbo, kao_mn2, kbo_mn2, & absa, absb, selfrefo, forrefo ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, fracrefbo, kao, kbo, kao_mn2, kbo_mn2, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( fracrefbo , size ( fracrefbo ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kbo , size ( kbo ) * 4 ) call wrf_dm_bcast_bytes ( kao_mn2 , size ( kao_mn2 ) * 4 ) call wrf_dm_bcast_bytes ( kbo_mn2 , size ( kbo_mn2 ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb01 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb02(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 1053.630 mbar, T = 294.2 K ! Upper: P = 3.206e-2 mb, T = 197.92 K ! ! The array KAO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg02_k, only : fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( fracrefbo , size ( fracrefbo ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kbo , size ( kbo ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb02 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb03(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 212.7250 mbar, T = 223.06 K ! Upper: P = 95.8 mbar, T = 215.7 k ! ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The third index ! runs over the g-channel (1 to 16). ! ! The array KBO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level above 100~ mb. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amounts ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 to ! that of gas2. The second index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The third index ! runs over the g-channel (1 to 16). ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg03_k, only : fracrefao, fracrefbo, kao, kbo, kao_mn2o, & kbo_mn2o, selfrefo, forrefo ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, fracrefbo, kao, kbo, kao_mn2o, kbo_mn2o, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( fracrefbo , size ( fracrefbo ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kbo , size ( kbo ) * 4 ) call wrf_dm_bcast_bytes ( kao_mn2o , size ( kao_mn2o ) * 4 ) call wrf_dm_bcast_bytes ( kbo_mn2o , size ( kbo_mn2o ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb03 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb04(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower : P = 142.5940 mbar, T = 215.70 K ! Upper : P = 95.58350 mb, T = 215.70 K ! ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array KBO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels < ~100mb, temperatures, and ratios ! of H2O to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index, JT, which ! runs from 1 to 5, corresponds to different temperatures. More ! specifically, JT = 3 means that the data are for the corresponding ! reference temperature TREF for this pressure level, JT = 2 refers ! to the TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and ! JT = 5 is for TREF+30. The third index, JP, runs from 13 to 59 and ! refers to the corresponding pressure level in PREF (e.g. JP = 13 is ! for a pressure of 95.5835 mb). The fourth index, IG, goes from 1 to ! 16, and tells us which g-interval the absorption coefficients are for. ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg04_k, only : fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( fracrefbo , size ( fracrefbo ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kbo , size ( kbo ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb04 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb05(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 473.42 mb, T = 259.83 ! Upper: P = 0.2369280 mbar, T = 253.60 K ! ! The arrays kao_mo3 and ccl4o contain the coefficients for ! ozone and ccl4 in the lower atmosphere. ! Minor gas mapping level: ! Lower - o3: P = 317.34 mbar, T = 240.77 k ! Lower - ccl4: ! ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array KBO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels < ~100mb, temperatures, and ratios ! of H2O to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index, JT, which ! runs from 1 to 5, corresponds to different temperatures. More ! specifically, JT = 3 means that the data are for the corresponding ! reference temperature TREF for this pressure level, JT = 2 refers ! to the TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and ! JT = 5 is for TREF+30. The third index, JP, runs from 13 to 59 and ! refers to the corresponding pressure level in PREF (e.g. JP = 13 is ! for a pressure of 95.5835 mb). The fourth index, IG, goes from 1 to ! 16, and tells us which g-interval the absorption coefficients are for. ! ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The third index ! runs over the g-channel (1 to 16). ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg05_k, only : fracrefao, fracrefbo, kao, kbo, kao_mo3, & selfrefo, forrefo, ccl4o ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, fracrefbo, kao, kbo, kao_mo3, ccl4o, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( fracrefbo , size ( fracrefbo ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kbo , size ( kbo ) * 4 ) call wrf_dm_bcast_bytes ( kao_mo3 , size ( kao_mo3 ) * 4 ) call wrf_dm_bcast_bytes ( ccl4o , size ( ccl4o ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb05 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb06(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: : P = 473.4280 mb, T = 259.83 K ! ! The arrays kao_mco2, cfc11adjo and cfc12o contain the coefficients for ! carbon dioxide in the lower atmosphere and cfc11 and cfc12 in the upper ! atmosphere. ! Original cfc11 is multiplied by 1.385 to account for the 1060-1107 cm-1 band. ! Minor gas mapping level: ! Lower - co2: P = 706.2720 mb, T = 294.2 k ! Upper - cfc11, cfc12 ! ! The array KAO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg06_k ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, kao, kao_mco2, cfc11adjo, cfc12o, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kao_mco2 , size ( kao_mco2 ) * 4 ) call wrf_dm_bcast_bytes ( cfc11adjo , size ( cfc11adjo ) * 4 ) call wrf_dm_bcast_bytes ( cfc12o , size ( cfc12o ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb06 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb07(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower : P = 706.27 mb, T = 278.94 K ! Upper : P = 95.58 mbar, T= 215.70 K ! ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The third index ! runs over the g-channel (1 to 16). ! ! The array KBO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level above 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296_rb,260_rb,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg07_k, only : fracrefao, fracrefbo, kao, kbo, kao_mco2, & kbo_mco2, selfrefo, forrefo ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, fracrefbo, kao, kbo, kao_mco2, kbo_mco2, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( fracrefbo , size ( fracrefbo ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kbo , size ( kbo ) * 4 ) call wrf_dm_bcast_bytes ( kao_mco2 , size ( kao_mco2 ) * 4 ) call wrf_dm_bcast_bytes ( kbo_mco2 , size ( kbo_mco2 ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb07 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb08(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P=473.4280 mb, T = 259.83 K ! Upper: P=95.5835 mb, T= 215.7 K ! The arrays kao_mco2, kbo_mco2, kao_mn2o, kbo_mn2o contain the coefficients ! for carbon dioxide and n2o in the lower and upper atmosphere. ! The array kao_mo3 contains the coefficients for ozone in the lower atmosphere ! , and arrays cfc12o & cfc12adjo contain the coefficients for cfc12 & cfc22. ! Original cfc22 is multiplied by 1.485 to account for the 780-850 cm-1 ! and 1290-1335 cm-1 bands. ! Minor gas mapping level: ! Lower - co2: P = 1053.63 mb, T = 294.2 k ! Lower - o3: P = 317.348 mb, T = 240.77 k ! Lower - n2o: P = 706.2720 mb, T= 278.94 k ! Lower - cfc12, cfc22 ! Upper - co2: P = 35.1632 mb, T = 223.28 k ! Upper - n2o: P = 8.716e-2 mb, T = 226.03 k ! The array KAO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! The array KBO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level above 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg08_k, only : fracrefao, fracrefbo, kao, kao_mco2, kao_mn2o, & kao_mo3, kbo, kbo_mco2, kbo_mn2o, selfrefo, forrefo, & cfc12o, cfc22adjo ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, fracrefbo, kao, kbo, kao_mco2, kbo_mco2, kao_mn2o, & kbo_mn2o, kao_mo3, cfc12o, cfc22adjo, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( fracrefbo , size ( fracrefbo ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kbo , size ( kbo ) * 4 ) call wrf_dm_bcast_bytes ( kao_mco2 , size ( kao_mco2 ) * 4 ) call wrf_dm_bcast_bytes ( kbo_mco2 , size ( kbo_mco2 ) * 4 ) call wrf_dm_bcast_bytes ( kao_mn2o , size ( kao_mn2o ) * 4 ) call wrf_dm_bcast_bytes ( kbo_mn2o , size ( kbo_mn2o ) * 4 ) call wrf_dm_bcast_bytes ( kao_mo3 , size ( kao_mo3 ) * 4 ) call wrf_dm_bcast_bytes ( cfc12o , size ( cfc12o ) * 4 ) call wrf_dm_bcast_bytes ( cfc22adjo , size ( cfc22adjo ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb08 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb09(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P=212.7250 mb, T = 223.06 K ! Upper: P=3.20e-2 mb, T = 197.92 k ! ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The third index ! runs over the g-channel (1 to 16). ! ! The array KBO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level above 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg09_k, only : fracrefao, fracrefbo, kao, kbo, kao_mn2o, & kbo_mn2o, selfrefo, forrefo ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, fracrefbo, kao, kbo, kao_mn2o, kbo_mn2o, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( fracrefbo , size ( fracrefbo ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kbo , size ( kbo ) * 4 ) call wrf_dm_bcast_bytes ( kao_mn2o , size ( kao_mn2o ) * 4 ) call wrf_dm_bcast_bytes ( kbo_mn2o , size ( kbo_mn2o ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb09 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb10(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 212.7250 mb, T = 223.06 K ! Upper: P = 95.58350 mb, T = 215.70 K ! ! The array KAO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg10_k, only : fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( fracrefbo , size ( fracrefbo ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kbo , size ( kbo ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb10 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb11(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P=1053.63 mb, T= 294.2 K ! Upper: P=0.353 mb, T = 262.11 K ! ! The array KAO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! ! The array KBO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level above 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg11_k, only : fracrefao, fracrefbo, kao, kbo, kao_mo2, & kbo_mo2, selfrefo, forrefo ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, fracrefbo, kao, kbo, kao_mo2, kbo_mo2, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( fracrefbo , size ( fracrefbo ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kbo , size ( kbo ) * 4 ) call wrf_dm_bcast_bytes ( kao_mo2 , size ( kao_mo2 ) * 4 ) call wrf_dm_bcast_bytes ( kbo_mo2 , size ( kbo_mo2 ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb11 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb12(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 174.1640 mbar, T= 215.78 K ! ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg12_k, only : fracrefao, kao, selfrefo, forrefo ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, kao, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb12 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb13(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P=473.4280 mb, T = 259.83 K ! Upper: P=4.758820 mb, T = 250.85 K ! ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The third index ! runs over the g-channel (1 to 16). ! ! The array KBO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level above 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg13_k, only : fracrefao, fracrefbo, kao, kao_mco2, kao_mco, & kbo_mo3, selfrefo, forrefo ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, fracrefbo, kao, kao_mco2, kao_mco, kbo_mo3, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( fracrefbo , size ( fracrefbo ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kao_mco2 , size ( kao_mco2 ) * 4 ) call wrf_dm_bcast_bytes ( kao_mco , size ( kao_mco ) * 4 ) call wrf_dm_bcast_bytes ( kbo_mo3 , size ( kbo_mo3 ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb13 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb14(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 142.5940 mb, T = 215.70 K ! Upper: P = 4.758820 mb, T = 250.85 K ! ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg14_k, only : fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( fracrefbo , size ( fracrefbo ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kbo , size ( kbo ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb14 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb15(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 1053. mb, T = 294.2 K ! ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array KA_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The third index ! runs over the g-channel (1 to 16). ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg15_k, only : fracrefao, kao, kao_mn2, selfrefo, forrefo ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, kao, kao_mn2, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kao_mn2 , size ( kao_mn2 ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb15 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine lw_kgb16(rrtmg_unit) !------------------------------------------------------------------------------- ! ! abstract : ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 387.6100 mbar, T = 250.17 K ! Upper: P=95.58350 mb, T = 215.70 K ! ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). ! !------------------------------------------------------------------------------- use rrlw_kg16_k, only : fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo ! implicit none ! save ! ! Input ! integer, intent(in ) :: rrtmg_unit ! ! Local ! character*80 :: errmess logical, external :: wrf_dm_on_monitor !------------------------------------------------------------------------------- ! if ( wrf_dm_on_monitor() ) read (rrtmg_unit,err=9010) & fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo call wrf_dm_bcast_bytes ( fracrefao , size ( fracrefao ) * 4 ) call wrf_dm_bcast_bytes ( fracrefbo , size ( fracrefbo ) * 4 ) call wrf_dm_bcast_bytes ( kao , size ( kao ) * 4 ) call wrf_dm_bcast_bytes ( kbo , size ( kbo ) * 4 ) call wrf_dm_bcast_bytes ( selfrefo , size ( selfrefo ) * 4 ) call wrf_dm_bcast_bytes ( forrefo , size ( forrefo ) * 4 ) ! return 9010 continue write( errmess , '(a,i4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_'// & 'DATA on unit ',rrtmg_unit ! end subroutine lw_kgb16 !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine relcalc(ncol, pcols, pver, t, landfrac, landm, icefrac, rel,snowh) !------------------------------------------------------------------------------- ! ! abstract : ! ! Purpose: ! Compute cloud water size ! ! Method: ! analytic formula following the formulation originally developed by J.T. Kiehl ! ! Author: Phil Rasch ! ! input : ! landfrac - Land fraction ! icefrac - Ice fraction ! snowh - Snow depth over land, water equivalent (m) ! landm - Land fraction ramping to zero over ocean ! t - Temperature ! ! output : ! rel - Liquid effective drop size (microns) ! !------------------------------------------------------------------------------- ! implicit none ! ! Input arguments ! integer, intent(in ) :: ncol integer, intent(in ) :: pcols, pver real, dimension(pcols), intent(in ) :: landfrac real, dimension(pcols), intent(in ) :: icefrac real, dimension(pcols), intent(in ) :: snowh real, dimension(pcols), intent(in ) :: landm real, dimension(pcols,pver), intent(in ) :: t ! ! Output arguments ! real, dimension(pcols,pver), intent( out) :: rel ! ! Local ! integer :: i, k ! lon, lev indices real :: tmelt ! freezing temperature of fresh water (K) real :: rliqland ! liquid drop size if over land real :: rliqocean ! liquid drop size if over ocean real :: rliqice ! liquid drop size if over sea ice !------------------------------------------------------------------------------- ! tmelt = 273.16 rliqocean = 14.0 rliqice = 14.0 rliqland = 8.0 ! do k = 1,pver do i = 1,ncol ! ! jrm Reworked effective radius algorithm ! Start with temperature-dependent value appropriate for continental air ! Note: findmcnew has a pressure dependence here ! rel(i,k) = rliqland + (rliqocean-rliqland) & *min(1.0,max(0.0,(tmelt-t(i,k))*0.05)) ! ! Modify for snow depth over land ! rel(i,k) = rel(i,k) + (rliqocean-rel(i,k))*min(1.0,max(0.0,snowh(i)*10.)) ! ! Ramp between polluted value over land to clean value over ocean. ! rel(i,k) = rel(i,k) + (rliqocean-rel(i,k))*min(1.0,max(0.0,1.0-landm(i))) ! ! Ramp between the resultant value and a sea ice value in the presence of ice. ! rel(i,k) = rel(i,k) + (rliqice-rel(i,k))*min(1.0,max(0.0,icefrac(i))) ! ! end jrm ! enddo enddo ! end subroutine relcalc !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- subroutine reicalc(ncol, pcols, pver, t, re) !------------------------------------------------------------------------------- ! integer, intent(in ) :: ncol, pcols, pver real, dimension(pcols,pver), intent(in ) :: t real, dimension(pcols,pver), intent( out) :: re ! ! local variables ! real :: corr integer :: i, k, index !------------------------------------------------------------------------------- ! ! Tabulated values of re(T) in the temperature interval ! 180 K -- 274 K; hexagonal columns assumed: ! do k = 1,pver do i = 1,ncol index = int(t(i,k)-179.) index = min(max(index,1),94) corr = t(i,k) - int(t(i,k)) re(i,k) = retab(index)*(1.-corr) + retab(index+1)*corr ! re(i,k) = amax1(amin1(re(i,k),30.),10.) enddo enddo ! return end subroutine reicalc !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- !------------------------------------------------------------------------------- ! ! !------------------------------------------------------------------------------- end module module_ra_rrtmg_lwk !------------------------------------------------------------------------------- #endif