!MODULE module_ra_rrtmg_lw module parkind ! implicit none save !------------------------------------------------------------------ ! rrtmg kinds ! Define integer and real kinds for various types. ! ! Initial version: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !------------------------------------------------------------------ ! ! integer kinds ! ------------- ! ! integer, parameter :: kind_ib = selected_int_kind(13) ! 8 byte integer ! integer, parameter :: kind_im = selected_int_kind(6) ! 4 byte integer integer, parameter :: kind_ib = kind(1) integer, parameter :: kind_im = kind(1) integer, parameter :: kind_in = kind(1) ! native integer ! ! real kinds ! ---------- ! ! integer, parameter :: kind_rb = selected_real_kind(12) ! 8 byte real ! integer, parameter :: kind_rm = selected_real_kind(6) ! 4 byte real ! integer, parameter :: kind_rn = kind(1.0) ! native real #if 0 ! Modified for WRF: #if (RWORDSIZE == 8) integer, parameter :: kind_rb = selected_real_kind(12) ! 8 byte real #endif #if (RWORDSIZE == 4) integer, parameter :: kind_rb = selected_real_kind(6) ! 4 byte real #endif #else integer, parameter :: kind_rb = kind(1.0) ! native real #endif end module parkind module parrrtm use parkind ,only : im => kind_im ! implicit none save !------------------------------------------------------------------ ! rrtmg_lw main parameters ! ! Initial version: JJMorcrette, ECMWF, Jul 1998 ! Revised: MJIacono, AER, Jun 2006 ! Revised: MJIacono, AER, Aug 2007 ! Revised: MJIacono, AER, Aug 2008 !------------------------------------------------------------------ ! name type purpose ! ----- : ---- : ---------------------------------------------- ! mxlay : integer: maximum number of layers ! mg : integer: number of original g-intervals per spectral band ! nbndlw : integer: number of spectral bands ! maxxsec: integer: maximum number of cross-section molecules ! (e.g. cfcs) ! maxinpx: integer: ! ngptlw : integer: total number of reduced g-intervals for rrtmg_lw ! ngNN : integer: number of reduced g-intervals per spectral band ! ngsNN : integer: cumulative number of g-intervals per band !------------------------------------------------------------------ integer(kind=im), parameter :: mxlay = 203 integer(kind=im), parameter :: mg = 16 integer(kind=im), parameter :: nbndlw = 16 integer(kind=im), parameter :: maxxsec= 4 integer(kind=im), parameter :: mxmol = 38 integer(kind=im), parameter :: maxinpx= 38 integer(kind=im), parameter :: nmol = 7 ! Use for 140 g-point model integer(kind=im), parameter :: ngptlw = 140 ! Use for 256 g-point model ! integer(kind=im), parameter :: ngptlw = 256 ! Use for 140 g-point model integer(kind=im), parameter :: ng1 = 10 integer(kind=im), parameter :: ng2 = 12 integer(kind=im), parameter :: ng3 = 16 integer(kind=im), parameter :: ng4 = 14 integer(kind=im), parameter :: ng5 = 16 integer(kind=im), parameter :: ng6 = 8 integer(kind=im), parameter :: ng7 = 12 integer(kind=im), parameter :: ng8 = 8 integer(kind=im), parameter :: ng9 = 12 integer(kind=im), parameter :: ng10 = 6 integer(kind=im), parameter :: ng11 = 8 integer(kind=im), parameter :: ng12 = 8 integer(kind=im), parameter :: ng13 = 4 integer(kind=im), parameter :: ng14 = 2 integer(kind=im), parameter :: ng15 = 2 integer(kind=im), parameter :: ng16 = 2 integer(kind=im), parameter :: ngs1 = 10 integer(kind=im), parameter :: ngs2 = 22 integer(kind=im), parameter :: ngs3 = 38 integer(kind=im), parameter :: ngs4 = 52 integer(kind=im), parameter :: ngs5 = 68 integer(kind=im), parameter :: ngs6 = 76 integer(kind=im), parameter :: ngs7 = 88 integer(kind=im), parameter :: ngs8 = 96 integer(kind=im), parameter :: ngs9 = 108 integer(kind=im), parameter :: ngs10 = 114 integer(kind=im), parameter :: ngs11 = 122 integer(kind=im), parameter :: ngs12 = 130 integer(kind=im), parameter :: ngs13 = 134 integer(kind=im), parameter :: ngs14 = 136 integer(kind=im), parameter :: ngs15 = 138 ! Use for 256 g-point model ! integer(kind=im), parameter :: ng1 = 16 ! integer(kind=im), parameter :: ng2 = 16 ! integer(kind=im), parameter :: ng3 = 16 ! integer(kind=im), parameter :: ng4 = 16 ! integer(kind=im), parameter :: ng5 = 16 ! integer(kind=im), parameter :: ng6 = 16 ! integer(kind=im), parameter :: ng7 = 16 ! integer(kind=im), parameter :: ng8 = 16 ! integer(kind=im), parameter :: ng9 = 16 ! integer(kind=im), parameter :: ng10 = 16 ! integer(kind=im), parameter :: ng11 = 16 ! integer(kind=im), parameter :: ng12 = 16 ! integer(kind=im), parameter :: ng13 = 16 ! integer(kind=im), parameter :: ng14 = 16 ! integer(kind=im), parameter :: ng15 = 16 ! integer(kind=im), parameter :: ng16 = 16 ! integer(kind=im), parameter :: ngs1 = 16 ! integer(kind=im), parameter :: ngs2 = 32 ! integer(kind=im), parameter :: ngs3 = 48 ! integer(kind=im), parameter :: ngs4 = 64 ! integer(kind=im), parameter :: ngs5 = 80 ! integer(kind=im), parameter :: ngs6 = 96 ! integer(kind=im), parameter :: ngs7 = 112 ! integer(kind=im), parameter :: ngs8 = 128 ! integer(kind=im), parameter :: ngs9 = 144 ! integer(kind=im), parameter :: ngs10 = 160 ! integer(kind=im), parameter :: ngs11 = 176 ! integer(kind=im), parameter :: ngs12 = 192 ! integer(kind=im), parameter :: ngs13 = 208 ! integer(kind=im), parameter :: ngs14 = 224 ! integer(kind=im), parameter :: ngs15 = 240 ! integer(kind=im), parameter :: ngs16 = 256 end module parrrtm module rrlw_cld use parkind, only : rb => kind_rb ! implicit none save !------------------------------------------------------------------ ! rrtmg_lw cloud property coefficients ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !------------------------------------------------------------------ ! name type purpose ! ----- : ---- : ---------------------------------------------- ! abscld1: real : ! absice0: real : ! absice1: real : ! absice2: real : ! absice3: real : ! absliq0: real : ! absliq1: real : !------------------------------------------------------------------ real(kind=rb) :: abscld1 real(kind=rb) , dimension(2) :: absice0 real(kind=rb) , dimension(2,5) :: absice1 real(kind=rb) , dimension(43,16) :: absice2 real(kind=rb) , dimension(46,16) :: absice3 real(kind=rb) :: absliq0 real(kind=rb) , dimension(58,16) :: absliq1 end module rrlw_cld module rrlw_con use parkind, only : rb => kind_rb ! implicit none save !------------------------------------------------------------------ ! rrtmg_lw constants ! Initial version: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !------------------------------------------------------------------ ! name type purpose ! ----- : ---- : ---------------------------------------------- ! fluxfac: real : radiance to flux conversion factor ! heatfac: real : flux to heating rate conversion factor !oneminus: real : 1.-1.e-6 ! pi : real : pi ! grav : real : acceleration of gravity ! planck : real : planck constant ! boltz : real : boltzmann constant ! clight : real : speed of light ! avogad : real : avogadro constant ! alosmt : real : loschmidt constant ! gascon : real : molar gas constant ! radcn1 : real : first radiation constant ! radcn2 : real : second radiation constant ! sbcnst : real : stefan-boltzmann constant ! secdy : real : seconds per day !------------------------------------------------------------------ real(kind=rb) :: fluxfac, heatfac real(kind=rb) :: oneminus, pi, grav real(kind=rb) :: planck, boltz, clight real(kind=rb) :: avogad, alosmt, gascon real(kind=rb) :: radcn1, radcn2 real(kind=rb) :: sbcnst, secdy end module rrlw_con module rrlw_kg01 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 1 ! band 1: 10-250 cm-1 (low - h2o; high - h2o) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real !fracrefbo: real ! kao : real ! kbo : real ! kao_mn2 : real ! kbo_mn2 : real ! selfrefo: real ! forrefo : real !----------------------------------------------------------------- integer(kind=im), parameter :: no1 = 16 real(kind=rb) :: fracrefao(no1) , fracrefbo(no1) real(kind=rb) :: kao(5,13,no1) real(kind=rb) :: kbo(5,13:59,no1) real(kind=rb) :: kao_mn2(19,no1) , kbo_mn2(19,no1) real(kind=rb) :: selfrefo(10,no1), forrefo(4,no1) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 1 ! band 1: 10-250 cm-1 (low - h2o; high - h2o) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefa : real !fracrefb : real ! ka : real ! kb : real ! absa : real ! absb : real ! ka_mn2 : real ! kb_mn2 : real ! selfref : real ! forref : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng1 = 10 real(kind=rb) :: fracrefa(ng1) , fracrefb(ng1) real(kind=rb) :: ka(5,13,ng1) , absa(65,ng1) real(kind=rb) :: kb(5,13:59,ng1), absb(235,ng1) real(kind=rb) :: ka_mn2(19,ng1) , kb_mn2(19,ng1) real(kind=rb) :: selfref(10,ng1), forref(4,ng1) equivalence (ka(1,1,1),absa(1,1)), (kb(1,13,1),absb(1,1)) end module rrlw_kg01 module rrlw_kg02 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 2 ! band 2: 250-500 cm-1 (low - h2o; high - h2o) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real !fracrefbo: real ! kao : real ! kbo : real ! selfrefo: real ! forrefo : real !----------------------------------------------------------------- integer(kind=im), parameter :: no2 = 16 real(kind=rb) :: fracrefao(no2) , fracrefbo(no2) real(kind=rb) :: kao(5,13,no2) real(kind=rb) :: kbo(5,13:59,no2) real(kind=rb) :: selfrefo(10,no2) , forrefo(4,no2) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 2 ! band 2: 250-500 cm-1 (low - h2o; high - h2o) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefa : real !fracrefb : real ! ka : real ! kb : real ! absa : real ! absb : real ! selfref : real ! forref : real ! ! refparam: real !----------------------------------------------------------------- integer(kind=im), parameter :: ng2 = 12 real(kind=rb) :: fracrefa(ng2) , fracrefb(ng2) real(kind=rb) :: ka(5,13,ng2) , absa(65,ng2) real(kind=rb) :: kb(5,13:59,ng2), absb(235,ng2) real(kind=rb) :: selfref(10,ng2), forref(4,ng2) real(kind=rb) :: refparam(13) equivalence (ka(1,1,1),absa(1,1)),(kb(1,13,1),absb(1,1)) end module rrlw_kg02 module rrlw_kg03 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 3 ! band 3: 500-630 cm-1 (low - h2o,co2; high - h2o,co2) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real !fracrefbo: real ! kao : real ! kbo : real ! kao_mn2o: real ! kbo_mn2o: real ! selfrefo: real ! forrefo : real !----------------------------------------------------------------- integer(kind=im), parameter :: no3 = 16 real(kind=rb) :: fracrefao(no3,9) ,fracrefbo(no3,5) real(kind=rb) :: kao(9,5,13,no3) real(kind=rb) :: kbo(5,5,13:59,no3) real(kind=rb) :: kao_mn2o(9,19,no3), kbo_mn2o(5,19,no3) real(kind=rb) :: selfrefo(10,no3) real(kind=rb) :: forrefo(4,no3) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 3 ! band 3: 500-630 cm-1 (low - h2o,co2; high - h2o,co2) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefa : real !fracrefb : real ! ka : real ! kb : real ! ka_mn2o : real ! kb_mn2o : real ! selfref : real ! forref : real ! ! absa : real ! absb : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng3 = 16 real(kind=rb) :: fracrefa(ng3,9) ,fracrefb(ng3,5) real(kind=rb) :: ka(9,5,13,ng3) ,absa(585,ng3) real(kind=rb) :: kb(5,5,13:59,ng3),absb(1175,ng3) real(kind=rb) :: ka_mn2o(9,19,ng3), kb_mn2o(5,19,ng3) real(kind=rb) :: selfref(10,ng3) real(kind=rb) :: forref(4,ng3) equivalence (ka(1,1,1,1),absa(1,1)),(kb(1,1,13,1),absb(1,1)) end module rrlw_kg03 module rrlw_kg04 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 4 ! band 4: 630-700 cm-1 (low - h2o,co2; high - o3,co2) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real !fracrefbo: real ! kao : real ! kbo : real ! selfrefo: real ! forrefo : real !----------------------------------------------------------------- integer(kind=im), parameter :: no4 = 16 real(kind=rb) :: fracrefao(no4,9) ,fracrefbo(no4,5) real(kind=rb) :: kao(9,5,13,no4) real(kind=rb) :: kbo(5,5,13:59,no4) real(kind=rb) :: selfrefo(10,no4) ,forrefo(4,no4) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 4 ! band 4: 630-700 cm-1 (low - h2o,co2; high - o3,co2) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- ! absa : real ! absb : real !fracrefa : real !fracrefb : real ! ka : real ! kb : real ! selfref : real ! forref : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng4 = 14 real(kind=rb) :: fracrefa(ng4,9) ,fracrefb(ng4,5) real(kind=rb) :: ka(9,5,13,ng4) ,absa(585,ng4) real(kind=rb) :: kb(5,5,13:59,ng4),absb(1175,ng4) real(kind=rb) :: selfref(10,ng4) ,forref(4,ng4) equivalence (ka(1,1,1,1),absa(1,1)),(kb(1,1,13,1),absb(1,1)) end module rrlw_kg04 module rrlw_kg05 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 5 ! band 5: 700-820 cm-1 (low - h2o,co2; high - o3,co2) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real !fracrefbo: real ! kao : real ! kbo : real ! kao_mo3 : real ! selfrefo: real ! forrefo : real ! ccl4o : real !----------------------------------------------------------------- integer(kind=im), parameter :: no5 = 16 real(kind=rb) :: fracrefao(no5,9) ,fracrefbo(no5,5) real(kind=rb) :: kao(9,5,13,no5) real(kind=rb) :: kbo(5,5,13:59,no5) real(kind=rb) :: kao_mo3(9,19,no5) real(kind=rb) :: selfrefo(10,no5) real(kind=rb) :: forrefo(4,no5) real(kind=rb) :: ccl4o(no5) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 5 ! band 5: 700-820 cm-1 (low - h2o,co2; high - o3,co2) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefa : real !fracrefb : real ! ka : real ! kb : real ! ka_mo3 : real ! selfref : real ! forref : real ! ccl4 : real ! ! absa : real ! absb : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng5 = 16 real(kind=rb) :: fracrefa(ng5,9) ,fracrefb(ng5,5) real(kind=rb) :: ka(9,5,13,ng5) ,absa(585,ng5) real(kind=rb) :: kb(5,5,13:59,ng5),absb(1175,ng5) real(kind=rb) :: ka_mo3(9,19,ng5) real(kind=rb) :: selfref(10,ng5) real(kind=rb) :: forref(4,ng5) real(kind=rb) :: ccl4(ng5) equivalence (ka(1,1,1,1),absa(1,1)),(kb(1,1,13,1),absb(1,1)) end module rrlw_kg05 module rrlw_kg06 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 6 ! band 6: 820-980 cm-1 (low - h2o; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real ! kao : real ! kao_mco2: real ! selfrefo: real ! forrefo : real !cfc11adjo: real ! cfc12o : real !----------------------------------------------------------------- integer(kind=im), parameter :: no6 = 16 real(kind=rb) , dimension(no6) :: fracrefao real(kind=rb) :: kao(5,13,no6) real(kind=rb) :: kao_mco2(19,no6) real(kind=rb) :: selfrefo(10,no6) real(kind=rb) :: forrefo(4,no6) real(kind=rb) , dimension(no6) :: cfc11adjo real(kind=rb) , dimension(no6) :: cfc12o !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 6 ! band 6: 820-980 cm-1 (low - h2o; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefa : real ! ka : real ! ka_mco2 : real ! selfref : real ! forref : real !cfc11adj : real ! cfc12 : real ! ! absa : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng6 = 8 real(kind=rb) , dimension(ng6) :: fracrefa real(kind=rb) :: ka(5,13,ng6),absa(65,ng6) real(kind=rb) :: ka_mco2(19,ng6) real(kind=rb) :: selfref(10,ng6) real(kind=rb) :: forref(4,ng6) real(kind=rb) , dimension(ng6) :: cfc11adj real(kind=rb) , dimension(ng6) :: cfc12 equivalence (ka(1,1,1),absa(1,1)) end module rrlw_kg06 module rrlw_kg07 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 7 ! band 7: 980-1080 cm-1 (low - h2o,o3; high - o3) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real !fracrefbo: real ! kao : real ! kbo : real ! kao_mco2: real ! kbo_mco2: real ! selfrefo: real ! forrefo : real !----------------------------------------------------------------- integer(kind=im), parameter :: no7 = 16 real(kind=rb) , dimension(no7) :: fracrefbo real(kind=rb) :: fracrefao(no7,9) real(kind=rb) :: kao(9,5,13,no7) real(kind=rb) :: kbo(5,13:59,no7) real(kind=rb) :: kao_mco2(9,19,no7) real(kind=rb) :: kbo_mco2(19,no7) real(kind=rb) :: selfrefo(10,no7) real(kind=rb) :: forrefo(4,no7) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 7 ! band 7: 980-1080 cm-1 (low - h2o,o3; high - o3) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefa : real !fracrefb : real ! ka : real ! kb : real ! ka_mco2 : real ! kb_mco2 : real ! selfref : real ! forref : real ! ! absa : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng7 = 12 real(kind=rb) , dimension(ng7) :: fracrefb real(kind=rb) :: fracrefa(ng7,9) real(kind=rb) :: ka(9,5,13,ng7) ,absa(585,ng7) real(kind=rb) :: kb(5,13:59,ng7),absb(235,ng7) real(kind=rb) :: ka_mco2(9,19,ng7) real(kind=rb) :: kb_mco2(19,ng7) real(kind=rb) :: selfref(10,ng7) real(kind=rb) :: forref(4,ng7) equivalence (ka(1,1,1,1),absa(1,1)),(kb(1,13,1),absb(1,1)) end module rrlw_kg07 module rrlw_kg08 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 8 ! band 8: 1080-1180 cm-1 (low (i.e.>~300mb) - h2o; high - o3) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real !fracrefbo: real ! kao : real ! kbo : real ! kao_mco2: real ! kbo_mco2: real ! kao_mn2o: real ! kbo_mn2o: real ! kao_mo3 : real ! selfrefo: real ! forrefo : real ! cfc12o : real !cfc22adjo: real !----------------------------------------------------------------- integer(kind=im), parameter :: no8 = 16 real(kind=rb) , dimension(no8) :: fracrefao real(kind=rb) , dimension(no8) :: fracrefbo real(kind=rb) , dimension(no8) :: cfc12o real(kind=rb) , dimension(no8) :: cfc22adjo real(kind=rb) :: kao(5,13,no8) real(kind=rb) :: kao_mco2(19,no8) real(kind=rb) :: kao_mn2o(19,no8) real(kind=rb) :: kao_mo3(19,no8) real(kind=rb) :: kbo(5,13:59,no8) real(kind=rb) :: kbo_mco2(19,no8) real(kind=rb) :: kbo_mn2o(19,no8) real(kind=rb) :: selfrefo(10,no8) real(kind=rb) :: forrefo(4,no8) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 8 ! band 8: 1080-1180 cm-1 (low (i.e.>~300mb) - h2o; high - o3) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefa : real !fracrefb : real ! ka : real ! kb : real ! ka_mco2 : real ! kb_mco2 : real ! ka_mn2o : real ! kb_mn2o : real ! ka_mo3 : real ! selfref : real ! forref : real ! cfc12 : real ! cfc22adj: real ! ! absa : real ! absb : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng8 = 8 real(kind=rb) , dimension(ng8) :: fracrefa real(kind=rb) , dimension(ng8) :: fracrefb real(kind=rb) , dimension(ng8) :: cfc12 real(kind=rb) , dimension(ng8) :: cfc22adj real(kind=rb) :: ka(5,13,ng8) ,absa(65,ng8) real(kind=rb) :: kb(5,13:59,ng8) ,absb(235,ng8) real(kind=rb) :: ka_mco2(19,ng8) real(kind=rb) :: ka_mn2o(19,ng8) real(kind=rb) :: ka_mo3(19,ng8) real(kind=rb) :: kb_mco2(19,ng8) real(kind=rb) :: kb_mn2o(19,ng8) real(kind=rb) :: selfref(10,ng8) real(kind=rb) :: forref(4,ng8) equivalence (ka(1,1,1),absa(1,1)),(kb(1,13,1),absb(1,1)) end module rrlw_kg08 module rrlw_kg09 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 9 ! band 9: 1180-1390 cm-1 (low - h2o,ch4; high - ch4) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real !fracrefbo: real ! kao : real ! kbo : real ! kao_mn2o: real ! kbo_mn2o: real ! selfrefo: real ! forrefo : real !----------------------------------------------------------------- integer(kind=im), parameter :: no9 = 16 real(kind=rb) , dimension(no9) :: fracrefbo real(kind=rb) :: fracrefao(no9,9) real(kind=rb) :: kao(9,5,13,no9) real(kind=rb) :: kbo(5,13:59,no9) real(kind=rb) :: kao_mn2o(9,19,no9) real(kind=rb) :: kbo_mn2o(19,no9) real(kind=rb) :: selfrefo(10,no9) real(kind=rb) :: forrefo(4,no9) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 9 ! band 9: 1180-1390 cm-1 (low - h2o,ch4; high - ch4) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefa : real !fracrefb : real ! ka : real ! kb : real ! ka_mn2o : real ! kb_mn2o : real ! selfref : real ! forref : real ! ! absa : real ! absb : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng9 = 12 real(kind=rb) , dimension(ng9) :: fracrefb real(kind=rb) :: fracrefa(ng9,9) real(kind=rb) :: ka(9,5,13,ng9) ,absa(585,ng9) real(kind=rb) :: kb(5,13:59,ng9) ,absb(235,ng9) real(kind=rb) :: ka_mn2o(9,19,ng9) real(kind=rb) :: kb_mn2o(19,ng9) real(kind=rb) :: selfref(10,ng9) real(kind=rb) :: forref(4,ng9) equivalence (ka(1,1,1,1),absa(1,1)),(kb(1,13,1),absb(1,1)) end module rrlw_kg09 module rrlw_kg10 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 10 ! band 10: 1390-1480 cm-1 (low - h2o; high - h2o) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real !fracrefbo: real ! kao : real ! kbo : real ! selfrefo: real ! forrefo : real !----------------------------------------------------------------- integer(kind=im), parameter :: no10 = 16 real(kind=rb) , dimension(no10) :: fracrefao real(kind=rb) , dimension(no10) :: fracrefbo real(kind=rb) :: kao(5,13,no10) real(kind=rb) :: kbo(5,13:59,no10) real(kind=rb) :: selfrefo(10,no10) real(kind=rb) :: forrefo(4,no10) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 10 ! band 10: 1390-1480 cm-1 (low - h2o; high - h2o) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real !fracrefbo: real ! kao : real ! kbo : real ! selfref : real ! forref : real ! ! absa : real ! absb : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng10 = 6 real(kind=rb) , dimension(ng10) :: fracrefa real(kind=rb) , dimension(ng10) :: fracrefb real(kind=rb) :: ka(5,13,ng10) , absa(65,ng10) real(kind=rb) :: kb(5,13:59,ng10), absb(235,ng10) real(kind=rb) :: selfref(10,ng10) real(kind=rb) :: forref(4,ng10) equivalence (ka(1,1,1),absa(1,1)),(kb(1,13,1),absb(1,1)) end module rrlw_kg10 module rrlw_kg11 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 11 ! band 11: 1480-1800 cm-1 (low - h2o; high - h2o) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real !fracrefbo: real ! kao : real ! kbo : real ! kao_mo2 : real ! kbo_mo2 : real ! selfrefo: real ! forrefo : real !----------------------------------------------------------------- integer(kind=im), parameter :: no11 = 16 real(kind=rb) , dimension(no11) :: fracrefao real(kind=rb) , dimension(no11) :: fracrefbo real(kind=rb) :: kao(5,13,no11) real(kind=rb) :: kbo(5,13:59,no11) real(kind=rb) :: kao_mo2(19,no11) real(kind=rb) :: kbo_mo2(19,no11) real(kind=rb) :: selfrefo(10,no11) real(kind=rb) :: forrefo(4,no11) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 11 ! band 11: 1480-1800 cm-1 (low - h2o; high - h2o) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefa : real !fracrefb : real ! ka : real ! kb : real ! ka_mo2 : real ! kb_mo2 : real ! selfref : real ! forref : real ! ! absa : real ! absb : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng11 = 8 real(kind=rb) , dimension(ng11) :: fracrefa real(kind=rb) , dimension(ng11) :: fracrefb real(kind=rb) :: ka(5,13,ng11) , absa(65,ng11) real(kind=rb) :: kb(5,13:59,ng11), absb(235,ng11) real(kind=rb) :: ka_mo2(19,ng11) real(kind=rb) :: kb_mo2(19,ng11) real(kind=rb) :: selfref(10,ng11) real(kind=rb) :: forref(4,ng11) equivalence (ka(1,1,1),absa(1,1)),(kb(1,13,1),absb(1,1)) end module rrlw_kg11 module rrlw_kg12 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 12 ! band 12: 1800-2080 cm-1 (low - h2o,co2; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real ! kao : real ! selfrefo: real ! forrefo : real !----------------------------------------------------------------- integer(kind=im), parameter :: no12 = 16 real(kind=rb) :: fracrefao(no12,9) real(kind=rb) :: kao(9,5,13,no12) real(kind=rb) :: selfrefo(10,no12) real(kind=rb) :: forrefo(4,no12) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 12 ! band 12: 1800-2080 cm-1 (low - h2o,co2; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefa : real ! ka : real ! selfref : real ! forref : real ! ! absa : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng12 = 8 real(kind=rb) :: fracrefa(ng12,9) real(kind=rb) :: ka(9,5,13,ng12) ,absa(585,ng12) real(kind=rb) :: selfref(10,ng12) real(kind=rb) :: forref(4,ng12) equivalence (ka(1,1,1,1),absa(1,1)) end module rrlw_kg12 module rrlw_kg13 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 13 ! band 13: 2080-2250 cm-1 (low - h2o,n2o; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real ! kao : real ! kao_mco2: real ! kao_mco : real ! kbo_mo3 : real ! selfrefo: real ! forrefo : real !----------------------------------------------------------------- integer(kind=im), parameter :: no13 = 16 real(kind=rb) , dimension(no13) :: fracrefbo real(kind=rb) :: fracrefao(no13,9) real(kind=rb) :: kao(9,5,13,no13) real(kind=rb) :: kao_mco2(9,19,no13) real(kind=rb) :: kao_mco(9,19,no13) real(kind=rb) :: kbo_mo3(19,no13) real(kind=rb) :: selfrefo(10,no13) real(kind=rb) :: forrefo(4,no13) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 13 ! band 13: 2080-2250 cm-1 (low - h2o,n2o; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefa : real ! ka : real ! ka_mco2 : real ! ka_mco : real ! kb_mo3 : real ! selfref : real ! forref : real ! ! absa : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng13 = 4 real(kind=rb) , dimension(ng13) :: fracrefb real(kind=rb) :: fracrefa(ng13,9) real(kind=rb) :: ka(9,5,13,ng13) ,absa(585,ng13) real(kind=rb) :: ka_mco2(9,19,ng13) real(kind=rb) :: ka_mco(9,19,ng13) real(kind=rb) :: kb_mo3(19,ng13) real(kind=rb) :: selfref(10,ng13) real(kind=rb) :: forref(4,ng13) equivalence (ka(1,1,1,1),absa(1,1)) end module rrlw_kg13 module rrlw_kg14 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 14 ! band 14: 2250-2380 cm-1 (low - co2; high - co2) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real !fracrefbo: real ! kao : real ! kbo : real ! selfrefo: real ! forrefo : real !----------------------------------------------------------------- integer(kind=im), parameter :: no14 = 16 real(kind=rb) , dimension(no14) :: fracrefao real(kind=rb) , dimension(no14) :: fracrefbo real(kind=rb) :: kao(5,13,no14) real(kind=rb) :: kbo(5,13:59,no14) real(kind=rb) :: selfrefo(10,no14) real(kind=rb) :: forrefo(4,no14) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 14 ! band 14: 2250-2380 cm-1 (low - co2; high - co2) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefa : real !fracrefb : real ! ka : real ! kb : real ! selfref : real ! forref : real ! ! absa : real ! absb : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng14 = 2 real(kind=rb) , dimension(ng14) :: fracrefa real(kind=rb) , dimension(ng14) :: fracrefb real(kind=rb) :: ka(5,13,ng14) ,absa(65,ng14) real(kind=rb) :: kb(5,13:59,ng14),absb(235,ng14) real(kind=rb) :: selfref(10,ng14) real(kind=rb) :: forref(4,ng14) equivalence (ka(1,1,1),absa(1,1)), (kb(1,13,1),absb(1,1)) end module rrlw_kg14 module rrlw_kg15 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 15 ! band 15: 2380-2600 cm-1 (low - n2o,co2; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real ! kao : real ! kao_mn2 : real ! selfrefo: real ! forrefo : real !----------------------------------------------------------------- integer(kind=im), parameter :: no15 = 16 real(kind=rb) :: fracrefao(no15,9) real(kind=rb) :: kao(9,5,13,no15) real(kind=rb) :: kao_mn2(9,19,no15) real(kind=rb) :: selfrefo(10,no15) real(kind=rb) :: forrefo(4,no15) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 15 ! band 15: 2380-2600 cm-1 (low - n2o,co2; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefa : real ! ka : real ! ka_mn2 : real ! selfref : real ! forref : real ! ! absa : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng15 = 2 real(kind=rb) :: fracrefa(ng15,9) real(kind=rb) :: ka(9,5,13,ng15) ,absa(585,ng15) real(kind=rb) :: ka_mn2(9,19,ng15) real(kind=rb) :: selfref(10,ng15) real(kind=rb) :: forref(4,ng15) equivalence (ka(1,1,1,1),absa(1,1)) end module rrlw_kg15 module rrlw_kg16 use parkind ,only : im => kind_im, rb => kind_rb ! implicit none save !----------------------------------------------------------------- ! rrtmg_lw ORIGINAL abs. coefficients for interval 16 ! band 16: 2600-3000 cm-1 (low - h2o,ch4; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefao: real ! kao : real ! kbo : real ! selfrefo: real ! forrefo : real !----------------------------------------------------------------- integer(kind=im), parameter :: no16 = 16 real(kind=rb) , dimension(no16) :: fracrefbo real(kind=rb) :: fracrefao(no16,9) real(kind=rb) :: kao(9,5,13,no16) real(kind=rb) :: kbo(5,13:59,no16) real(kind=rb) :: selfrefo(10,no16) real(kind=rb) :: forrefo(4,no16) !----------------------------------------------------------------- ! rrtmg_lw COMBINED abs. coefficients for interval 16 ! band 16: 2600-3000 cm-1 (low - h2o,ch4; high - nothing) ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !----------------------------------------------------------------- ! ! name type purpose ! ---- : ---- : --------------------------------------------- !fracrefa : real ! ka : real ! kb : real ! selfref : real ! forref : real ! ! absa : real ! absb : real !----------------------------------------------------------------- integer(kind=im), parameter :: ng16 = 2 real(kind=rb) , dimension(ng16) :: fracrefb real(kind=rb) :: fracrefa(ng16,9) real(kind=rb) :: ka(9,5,13,ng16) ,absa(585,ng16) real(kind=rb) :: kb(5,13:59,ng16), absb(235,ng16) real(kind=rb) :: selfref(10,ng16) real(kind=rb) :: forref(4,ng16) equivalence (ka(1,1,1,1),absa(1,1)), (kb(1,13,1),absb(1,1)) end module rrlw_kg16 module rrlw_ref use parkind, only : im => kind_im, rb => kind_rb ! implicit none save !------------------------------------------------------------------ ! rrtmg_lw reference atmosphere ! Based on standard mid-latitude summer profile ! ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !------------------------------------------------------------------ ! name type purpose ! ----- : ---- : ---------------------------------------------- ! pref : real : Reference pressure levels ! preflog: real : Reference pressure levels, ln(pref) ! tref : real : Reference temperature levels for MLS profile ! chi_mls: real : !------------------------------------------------------------------ real(kind=rb) , dimension(59) :: pref real(kind=rb) , dimension(59) :: preflog real(kind=rb) , dimension(59) :: tref real(kind=rb) :: chi_mls(7,59) end module rrlw_ref module rrlw_tbl use parkind, only : im => kind_im, rb => kind_rb ! implicit none save !------------------------------------------------------------------ ! rrtmg_lw exponential lookup table arrays ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, Jun 2006 ! Revised: MJIacono, AER, Aug 2007 ! Revised: MJIacono, AER, Aug 2008 !------------------------------------------------------------------ ! name type purpose ! ----- : ---- : ---------------------------------------------- ! ntbl : integer: Lookup table dimension ! tblint : real : Lookup table conversion factor ! tau_tbl: real : Clear-sky optical depth (used in cloudy radiative ! transfer) ! exp_tbl: real : Transmittance lookup table ! tfn_tbl: real : Tau transition function; i.e. the transition of ! the Planck function from that for the mean layer ! temperature to that for the layer boundary ! temperature as a function of optical depth. ! The "linear in tau" method is used to make ! the table. ! pade : real : Pade constant ! bpade : real : Inverse of Pade constant !------------------------------------------------------------------ integer(kind=im), parameter :: ntbl = 10000 real(kind=rb), parameter :: tblint = 10000.0_rb real(kind=rb) , dimension(0:ntbl) :: tau_tbl real(kind=rb) , dimension(0:ntbl) :: exp_tbl real(kind=rb) , dimension(0:ntbl) :: tfn_tbl real(kind=rb), parameter :: pade = 0.278_rb real(kind=rb) :: bpade end module rrlw_tbl module rrlw_vsn ! implicit none save !------------------------------------------------------------------ ! rrtmg_lw version information ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !------------------------------------------------------------------ ! name type purpose ! ----- : ---- : ---------------------------------------------- !hnamrtm :character: !hnamini :character: !hnamcld :character: !hnamclc :character: !hnamrtr :character: !hnamrtx :character: !hnamrtc :character: !hnamset :character: !hnamtau :character: !hnamatm :character: !hnamutl :character: !hnamext :character: !hnamkg :character: ! ! hvrrtm :character: ! hvrini :character: ! hvrcld :character: ! hvrclc :character: ! hvrrtr :character: ! hvrrtx :character: ! hvrrtc :character: ! hvrset :character: ! hvrtau :character: ! hvratm :character: ! hvrutl :character: ! hvrext :character: ! hvrkg :character: !------------------------------------------------------------------ character*18 hvrrtm,hvrini,hvrcld,hvrclc,hvrrtr,hvrrtx, & hvrrtc,hvrset,hvrtau,hvratm,hvrutl,hvrext character*20 hnamrtm,hnamini,hnamcld,hnamclc,hnamrtr,hnamrtx, & hnamrtc,hnamset,hnamtau,hnamatm,hnamutl,hnamext character*18 hvrkg character*20 hnamkg end module rrlw_vsn module rrlw_wvn use parkind, only : im => kind_im, rb => kind_rb use parrrtm, only : nbndlw, mg, ngptlw, maxinpx ! implicit none save !------------------------------------------------------------------ ! rrtmg_lw spectral information ! Initial version: JJMorcrette, ECMWF, jul1998 ! Revised: MJIacono, AER, jun2006 ! Revised: MJIacono, AER, aug2008 !------------------------------------------------------------------ ! name type purpose ! ----- : ---- : ---------------------------------------------- ! ng : integer: Number of original g-intervals in each spectral band ! nspa : integer: For the lower atmosphere, the number of reference ! atmospheres that are stored for each spectral band ! per pressure level and temperature. Each of these ! atmospheres has different relative amounts of the ! key species for the band (i.e. different binary ! species parameters). ! nspb : integer: Same as nspa for the upper atmosphere !wavenum1: real : Spectral band lower boundary in wavenumbers !wavenum2: real : Spectral band upper boundary in wavenumbers ! delwave: real : Spectral band width in wavenumbers ! totplnk: real : Integrated Planck value for each band; (band 16 ! includes total from 2600 cm-1 to infinity) ! Used for calculation across total spectrum !totplk16: real : Integrated Planck value for band 16 (2600-3250 cm-1) ! Used for calculation in band 16 only if ! individual band output requested ! ! ngc : integer: The number of new g-intervals in each band ! ngs : integer: The cumulative sum of new g-intervals for each band ! ngm : integer: The index of each new g-interval relative to the ! original 16 g-intervals in each band ! ngn : integer: The number of original g-intervals that are ! combined to make each new g-intervals in each band ! ngb : integer: The band index for each new g-interval ! wt : real : RRTM weights for the original 16 g-intervals ! rwgt : real : Weights for combining original 16 g-intervals ! (256 total) into reduced set of g-intervals ! (140 total) ! nxmol : integer: Number of cross-section molecules ! ixindx : integer: Flag for active cross-sections in calculation !------------------------------------------------------------------ integer(kind=im) :: ng(nbndlw) integer(kind=im) :: nspa(nbndlw) integer(kind=im) :: nspb(nbndlw) real(kind=rb) :: wavenum1(nbndlw) real(kind=rb) :: wavenum2(nbndlw) real(kind=rb) :: delwave(nbndlw) real(kind=rb) :: totplnk(181,nbndlw) real(kind=rb) :: totplk16(181) integer(kind=im) :: ngc(nbndlw) integer(kind=im) :: ngs(nbndlw) integer(kind=im) :: ngn(ngptlw) integer(kind=im) :: ngb(ngptlw) integer(kind=im) :: ngm(nbndlw*mg) real(kind=rb) :: wt(mg) real(kind=rb) :: rwgt(nbndlw*mg) integer(kind=im) :: nxmol integer(kind=im) :: ixindx(maxinpx) end module rrlw_wvn ! path: $Source: /cvsroot/NWP/WRFV3/phys/module_ra_rrtmg_lw.F,v $ ! author: $Author: trn $ ! revision: $Revision: 1.3 $ ! created: $Date: 2009/04/16 19:54:22 $ ! ! Fortran-95 implementation of the Mersenne Twister 19937, following ! the C implementation described below (code mt19937ar-cok.c, dated 2002/2/10), ! adapted cosmetically by making the names more general. ! Users must declare one or more variables of type randomNumberSequence in the calling ! procedure which are then initialized using a required seed. If the ! variable is not initialized the random numbers will all be 0. ! For example: ! program testRandoms ! use RandomNumbers ! type(randomNumberSequence) :: randomNumbers ! integer :: i ! ! randomNumbers = new_RandomNumberSequence(seed = 100) ! do i = 1, 10 ! print ('(f12.10, 2x)'), getRandomReal(randomNumbers) ! end do ! end program testRandoms ! ! Fortran-95 implementation by ! Robert Pincus ! NOAA-CIRES Climate Diagnostics Center ! Boulder, CO 80305 ! email: Robert.Pincus@colorado.edu ! ! This documentation in the original C program reads: ! ------------------------------------------------------------- ! A C-program for MT19937, with initialization improved 2002/2/10. ! Coded by Takuji Nishimura and Makoto Matsumoto. ! This is a faster version by taking Shawn Cokus's optimization, ! Matthe Bellew's simplification, Isaku Wada's real version. ! ! Before using, initialize the state by using init_genrand(seed) ! or init_by_array(init_key, key_length). ! ! Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, ! All rights reserved. ! ! Redistribution and use in source and binary forms, with or without ! modification, are permitted provided that the following conditions ! are met: ! ! 1. Redistributions of source code must retain the above copyright ! notice, this list of conditions and the following disclaimer. ! ! 2. Redistributions in binary form must reproduce the above copyright ! notice, this list of conditions and the following disclaimer in the ! documentation and/or other materials provided with the distribution. ! ! 3. The names of its contributors may not be used to endorse or promote ! products derived from this software without specific prior written ! permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ! "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ! LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ! A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR ! CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ! EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ! PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ! PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ! LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ! NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ! SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ! ! Any feedback is very welcome. ! http://www.math.keio.ac.jp/matumoto/emt.html ! email: matumoto@math.keio.ac.jp ! ------------------------------------------------------------- module MersenneTwister ! ------------------------------------------------------------- use parkind, only : im => kind_im, rb => kind_rb implicit none private ! Algorithm parameters ! ------- ! Period parameters integer(kind=im), parameter :: blockSize = 624, & M = 397, & MATRIX_A = -1727483681, & ! constant vector a (0x9908b0dfUL) UMASK = -2147483647-1, & ! most significant w-r bits (0x80000000UL) LMASK = 2147483647 ! least significant r bits (0x7fffffffUL) ! Tempering parameters integer(kind=im), parameter :: TMASKB= -1658038656, & ! (0x9d2c5680UL) TMASKC= -272236544 ! (0xefc60000UL) ! ------- ! The type containing the state variable type randomNumberSequence integer(kind=im) :: currentElement ! = blockSize integer(kind=im), dimension(0:blockSize -1) :: state ! = 0 end type randomNumberSequence interface new_RandomNumberSequence module procedure initialize_scalar, initialize_vector end interface new_RandomNumberSequence public :: randomNumberSequence public :: new_RandomNumberSequence, finalize_RandomNumberSequence, & getRandomInt, getRandomPositiveInt, getRandomReal ! ------------------------------------------------------------- contains ! ------------------------------------------------------------- ! Private functions ! --------------------------- function mixbits(u, v) integer(kind=im), intent( in) :: u, v integer(kind=im) :: mixbits mixbits = ior(iand(u, UMASK), iand(v, LMASK)) end function mixbits ! --------------------------- function twist(u, v) integer(kind=im), intent( in) :: u, v integer(kind=im) :: twist ! Local variable integer(kind=im), parameter, dimension(0:1) :: t_matrix = (/ 0_im, MATRIX_A /) twist = ieor(ishft(mixbits(u, v), -1_im), t_matrix(iand(v, 1_im))) twist = ieor(ishft(mixbits(u, v), -1_im), t_matrix(iand(v, 1_im))) end function twist ! --------------------------- subroutine nextState(twister) type(randomNumberSequence), intent(inout) :: twister ! Local variables integer(kind=im) :: k do k = 0, blockSize - M - 1 twister%state(k) = ieor(twister%state(k + M), & twist(twister%state(k), twister%state(k + 1_im))) end do do k = blockSize - M, blockSize - 2 twister%state(k) = ieor(twister%state(k + M - blockSize), & twist(twister%state(k), twister%state(k + 1_im))) end do twister%state(blockSize - 1_im) = ieor(twister%state(M - 1_im), & twist(twister%state(blockSize - 1_im), twister%state(0_im))) twister%currentElement = 0_im end subroutine nextState ! --------------------------- elemental function temper(y) integer(kind=im), intent(in) :: y integer(kind=im) :: temper integer(kind=im) :: x ! Tempering x = ieor(y, ishft(y, -11)) x = ieor(x, iand(ishft(x, 7), TMASKB)) x = ieor(x, iand(ishft(x, 15), TMASKC)) temper = ieor(x, ishft(x, -18)) end function temper ! ------------------------------------------------------------- ! Public (but hidden) functions ! -------------------- function initialize_scalar(seed) result(twister) integer(kind=im), intent(in ) :: seed type(randomNumberSequence) :: twister integer(kind=im) :: i ! See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. In the previous versions, ! MSBs of the seed affect only MSBs of the array state[]. ! 2002/01/09 modified by Makoto Matsumoto twister%state(0) = iand(seed, -1_im) do i = 1, blockSize - 1 ! ubound(twister%state) twister%state(i) = 1812433253_im * ieor(twister%state(i-1), & ishft(twister%state(i-1), -30_im)) + i twister%state(i) = iand(twister%state(i), -1_im) ! for >32 bit machines end do twister%currentElement = blockSize end function initialize_scalar ! ------------------------------------------------------------- function initialize_vector(seed) result(twister) integer(kind=im), dimension(0:), intent(in) :: seed type(randomNumberSequence) :: twister integer(kind=im) :: i, j, k, nFirstLoop, nWraps nWraps = 0 twister = initialize_scalar(19650218_im) nFirstLoop = max(blockSize, size(seed)) do k = 1, nFirstLoop i = mod(k + nWraps, blockSize) j = mod(k - 1, size(seed)) if(i == 0) then twister%state(i) = twister%state(blockSize - 1) twister%state(1) = ieor(twister%state(1), & ieor(twister%state(1-1), & ishft(twister%state(1-1), -30_im)) * 1664525_im) + & seed(j) + j ! Non-linear twister%state(i) = iand(twister%state(i), -1_im) ! for >32 bit machines nWraps = nWraps + 1 else twister%state(i) = ieor(twister%state(i), & ieor(twister%state(i-1), & ishft(twister%state(i-1), -30_im)) * 1664525_im) + & seed(j) + j ! Non-linear twister%state(i) = iand(twister%state(i), -1_im) ! for >32 bit machines end if end do ! ! Walk through the state array, beginning where we left off in the block above ! do i = mod(nFirstLoop, blockSize) + nWraps + 1, blockSize - 1 twister%state(i) = ieor(twister%state(i), & ieor(twister%state(i-1), & ishft(twister%state(i-1), -30_im)) * 1566083941_im) - i ! Non-linear twister%state(i) = iand(twister%state(i), -1_im) ! for >32 bit machines end do twister%state(0) = twister%state(blockSize - 1) do i = 1, mod(nFirstLoop, blockSize) + nWraps twister%state(i) = ieor(twister%state(i), & ieor(twister%state(i-1), & ishft(twister%state(i-1), -30_im)) * 1566083941_im) - i ! Non-linear twister%state(i) = iand(twister%state(i), -1_im) ! for >32 bit machines end do twister%state(0) = UMASK twister%currentElement = blockSize end function initialize_vector ! ------------------------------------------------------------- ! Public functions ! -------------------- function getRandomInt(twister) type(randomNumberSequence), intent(inout) :: twister integer(kind=im) :: getRandomInt ! Generate a random integer on the interval [0,0xffffffff] ! Equivalent to genrand_int32 in the C code. ! Fortran doesn't have a type that's unsigned like C does, ! so this is integers in the range -2**31 - 2**31 ! All functions for getting random numbers call this one, ! then manipulate the result if(twister%currentElement >= blockSize) call nextState(twister) getRandomInt = temper(twister%state(twister%currentElement)) twister%currentElement = twister%currentElement + 1 end function getRandomInt ! -------------------- function getRandomPositiveInt(twister) type(randomNumberSequence), intent(inout) :: twister integer(kind=im) :: getRandomPositiveInt ! Generate a random integer on the interval [0,0x7fffffff] ! or [0,2**31] ! Equivalent to genrand_int31 in the C code. ! Local integers integer(kind=im) :: localInt localInt = getRandomInt(twister) getRandomPositiveInt = ishft(localInt, -1) end function getRandomPositiveInt ! -------------------- !! mji - modified Jan 2007, double converted to rrtmg real kind type function getRandomReal(twister) type(randomNumberSequence), intent(inout) :: twister ! double precision :: getRandomReal real(kind=rb) :: getRandomReal ! Generate a random number on [0,1] ! Equivalent to genrand_real1 in the C code ! The result is stored as double precision but has 32 bit resolution integer(kind=im) :: localInt localInt = getRandomInt(twister) if(localInt < 0) then ! getRandomReal = dble(localInt + 2.0d0**32)/(2.0d0**32 - 1.0d0) getRandomReal = (localInt + 2.0**32_rb)/(2.0**32_rb - 1.0_rb) else ! getRandomReal = dble(localInt )/(2.0d0**32 - 1.0d0) getRandomReal = (localInt )/(2.0**32_rb - 1.0_rb) end if end function getRandomReal ! -------------------- subroutine finalize_RandomNumberSequence(twister) type(randomNumberSequence), intent(inout) :: twister twister%currentElement = blockSize twister%state(:) = 0_im end subroutine finalize_RandomNumberSequence ! -------------------- end module MersenneTwister module mcica_random_numbers ! Generic module to wrap random number generators. ! The module defines a type that identifies the particular stream of random ! numbers, and has procedures for initializing it and getting real numbers ! in the range 0 to 1. ! This version uses the Mersenne Twister to generate random numbers on [0, 1]. ! use MersenneTwister, only: randomNumberSequence, & ! The random number engine. new_RandomNumberSequence, getRandomReal !! mji !! use time_manager_mod, only: time_type, get_date use parkind, only : im => kind_im, rb => kind_rb implicit none private type randomNumberStream type(randomNumberSequence) :: theNumbers end type randomNumberStream interface getRandomNumbers module procedure getRandomNumber_Scalar, getRandomNumber_1D, getRandomNumber_2D end interface getRandomNumbers interface initializeRandomNumberStream module procedure initializeRandomNumberStream_S, initializeRandomNumberStream_V end interface initializeRandomNumberStream public :: randomNumberStream, & initializeRandomNumberStream, getRandomNumbers !! mji !! initializeRandomNumberStream, getRandomNumbers, & !! constructSeed contains ! --------------------------------------------------------- ! Initialization ! --------------------------------------------------------- function initializeRandomNumberStream_S(seed) result(new) integer(kind=im), intent( in) :: seed type(randomNumberStream) :: new new%theNumbers = new_RandomNumberSequence(seed) end function initializeRandomNumberStream_S ! --------------------------------------------------------- function initializeRandomNumberStream_V(seed) result(new) integer(kind=im), dimension(:), intent( in) :: seed type(randomNumberStream) :: new new%theNumbers = new_RandomNumberSequence(seed) end function initializeRandomNumberStream_V ! --------------------------------------------------------- ! Procedures for drawing random numbers ! --------------------------------------------------------- subroutine getRandomNumber_Scalar(stream, number) type(randomNumberStream), intent(inout) :: stream real(kind=rb), intent( out) :: number number = getRandomReal(stream%theNumbers) end subroutine getRandomNumber_Scalar ! --------------------------------------------------------- subroutine getRandomNumber_1D(stream, numbers) type(randomNumberStream), intent(inout) :: stream real(kind=rb), dimension(:), intent( out) :: numbers ! Local variables integer(kind=im) :: i do i = 1, size(numbers) numbers(i) = getRandomReal(stream%theNumbers) end do end subroutine getRandomNumber_1D ! --------------------------------------------------------- subroutine getRandomNumber_2D(stream, numbers) type(randomNumberStream), intent(inout) :: stream real(kind=rb), dimension(:, :), intent( out) :: numbers ! Local variables integer(kind=im) :: i do i = 1, size(numbers, 2) call getRandomNumber_1D(stream, numbers(:, i)) end do end subroutine getRandomNumber_2D ! mji ! ! --------------------------------------------------------- ! ! Constructing a unique seed from grid cell index and model date/time ! ! Once we have the GFDL stuff we'll add the year, month, day, hour, minute ! ! --------------------------------------------------------- ! function constructSeed(i, j, time) result(seed) ! integer(kind=im), intent( in) :: i, j ! type(time_type), intent( in) :: time ! integer(kind=im), dimension(8) :: seed ! ! ! Local variables ! integer(kind=im) :: year, month, day, hour, minute, second ! ! ! call get_date(time, year, month, day, hour, minute, second) ! seed = (/ i, j, year, month, day, hour, minute, second /) ! end function constructSeed end module mcica_random_numbers ! path: $Source: /cvsroot/NWP/WRFV3/phys/module_ra_rrtmg_lw.F,v $ ! author: $Author: trn $ ! revision: $Revision: 1.3 $ ! created: $Date: 2009/04/16 19:54:22 $ ! module mcica_subcol_gen_lw ! -------------------------------------------------------------------------- ! | | ! | Copyright 2006-2008, Atmospheric & Environmental Research, Inc. (AER). | ! | This software may be used, copied, or redistributed as long as it is | ! | not sold and this copyright notice is reproduced on each copy made. | ! | This model is provided as is without any express or implied warranties. | ! | (http://www.rtweb.aer.com/) | ! | | ! -------------------------------------------------------------------------- ! Purpose: Create McICA stochastic arrays for cloud physical or optical properties. ! Two options are possible: ! 1) Input cloud physical properties: cloud fraction, ice and liquid water ! paths, ice fraction, and particle sizes. Output will be stochastic ! arrays of these variables. (inflag = 1) ! 2) Input cloud optical properties directly: cloud optical depth, single ! scattering albedo and asymmetry parameter. Output will be stochastic ! arrays of these variables. (inflag = 0; longwave scattering is not ! yet available, ssac and asmc are for future expansion) ! --------- Modules ---------- use parkind, only : im => kind_im, rb => kind_rb use parrrtm, only : nbndlw, ngptlw use rrlw_con, only: grav use rrlw_wvn, only: ngb use rrlw_vsn implicit none ! public interfaces/functions/subroutines public :: mcica_subcol_lw, generate_stochastic_clouds contains !------------------------------------------------------------------ ! Public subroutines !------------------------------------------------------------------ subroutine mcica_subcol_lw(iplon, ncol, nlay, icld, permuteseed, irng, play, hgt, & cldfrac, ciwp, clwp, cswp, rei, rel, res, tauc, cldfmcl, & ciwpmcl, clwpmcl, cswpmcl, reicmcl, relqmcl, resnmcl, taucmcl) ! ----- Input ----- ! Control integer(kind=im), intent(in) :: iplon ! column/longitude index integer(kind=im), intent(in) :: ncol ! number of columns integer(kind=im), intent(in) :: nlay ! number of model layers integer(kind=im), intent(in) :: icld ! clear/cloud, cloud overlap flag integer(kind=im), intent(in) :: permuteseed ! if the cloud generator is called multiple times, ! permute the seed between each call. ! between calls for LW and SW, recommended ! permuteseed differes by 'ngpt' integer(kind=im), intent(inout) :: irng ! flag for random number generator ! 0 = kissvec ! 1 = Mersenne Twister ! Atmosphere real(kind=rb), intent(in) :: play(:,:) ! layer pressures (mb) ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: hgt(:,:) ! layer height (m) ! Dimensions: (ncol,nlay) ! Atmosphere/clouds - cldprop real(kind=rb), intent(in) :: cldfrac(:,:) ! layer cloud fraction ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: tauc(:,:,:) ! in-cloud optical depth ! Dimensions: (nbndlw,ncol,nlay) ! real(kind=rb), intent(in) :: ssac(:,:,:) ! in-cloud single scattering albedo ! Dimensions: (nbndlw,ncol,nlay) ! real(kind=rb), intent(in) :: asmc(:,:,:) ! in-cloud asymmetry parameter ! Dimensions: (nbndlw,ncol,nlay) real(kind=rb), intent(in) :: ciwp(:,:) ! in-cloud ice water path ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: clwp(:,:) ! in-cloud liquid water path ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: cswp(:,:) ! in-cloud snow path ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: rei(:,:) ! cloud ice particle size ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: rel(:,:) ! cloud liquid particle size ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: res(:,:) ! snow particle size ! Dimensions: (ncol,nlay) ! ----- Output ----- ! Atmosphere/clouds - cldprmc [mcica] real(kind=rb), intent(out) :: cldfmcl(:,:,:) ! cloud fraction [mcica] ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(out) :: ciwpmcl(:,:,:) ! in-cloud ice water path [mcica] ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(out) :: clwpmcl(:,:,:) ! in-cloud liquid water path [mcica] ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(out) :: cswpmcl(:,:,:) ! in-cloud snow path [mcica] ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(out) :: relqmcl(:,:) ! liquid particle size (microns) ! Dimensions: (ncol,nlay) real(kind=rb), intent(out) :: reicmcl(:,:) ! ice partcle size (microns) ! Dimensions: (ncol,nlay) real(kind=rb), intent(out) :: resnmcl(:,:) ! snow partcle size (microns) ! Dimensions: (ncol,nlay) real(kind=rb), intent(out) :: taucmcl(:,:,:) ! in-cloud optical depth [mcica] ! Dimensions: (ngptlw,ncol,nlay) ! real(kind=rb), intent(out) :: ssacmcl(:,:,:) ! in-cloud single scattering albedo [mcica] ! Dimensions: (ngptlw,ncol,nlay) ! real(kind=rb), intent(out) :: asmcmcl(:,:,:) ! in-cloud asymmetry parameter [mcica] ! Dimensions: (ngptlw,ncol,nlay) ! ----- Local ----- ! Stochastic cloud generator variables [mcica] integer(kind=im), parameter :: nsubclw = ngptlw ! number of sub-columns (g-point intervals) integer(kind=im) :: ilev ! loop index real(kind=rb) :: pmid(ncol, nlay) ! layer pressures (Pa) ! real(kind=rb) :: pdel(ncol, nlay) ! layer pressure thickness (Pa) ! real(kind=rb) :: qi(ncol, nlay) ! ice water (specific humidity) ! real(kind=rb) :: ql(ncol, nlay) ! liq water (specific humidity) ! Return if clear sky; or stop if icld out of range if (icld.eq.0) return if (icld.lt.0.or.icld.gt.5) then stop 'MCICA_SUBCOL: INVALID ICLD' endif ! NOTE: For GCM mode, permuteseed must be offset between LW and SW by at least the number of subcolumns ! Pass particle sizes to new arrays, no subcolumns for these properties yet ! Convert pressures from mb to Pa reicmcl(:ncol,:nlay) = rei(:ncol,:nlay) relqmcl(:ncol,:nlay) = rel(:ncol,:nlay) resnmcl(:ncol,:nlay) = res(:ncol,:nlay) pmid(:ncol,:nlay) = play(:ncol,:nlay)*1.e2_rb ! Convert input ice and liquid cloud water paths to specific humidity ice and liquid components ! cwp = (q * pdel * 1000.) / gravit) ! = (kg/kg * kg m-1 s-2 *1000.) / m s-2 ! = (g m-2) ! ! q = (cwp * gravit) / (pdel *1000.) ! = (g m-2 * m s-2) / (kg m-1 s-2 * 1000.) ! = kg/kg ! do ilev = 1, nlay ! qi(ilev) = (ciwp(ilev) * grav) / (pdel(ilev) * 1000._rb) ! ql(ilev) = (clwp(ilev) * grav) / (pdel(ilev) * 1000._rb) ! enddo ! Generate the stochastic subcolumns of cloud optical properties for the longwave; call generate_stochastic_clouds (ncol, nlay, nsubclw, icld, irng, pmid, hgt, cldfrac, clwp, ciwp, cswp, tauc, & cldfmcl, clwpmcl, ciwpmcl, cswpmcl, taucmcl, permuteseed) end subroutine mcica_subcol_lw !------------------------------------------------------------------------------------------------- subroutine generate_stochastic_clouds(ncol, nlay, nsubcol, icld, irng, pmid, hgt, cld, clwp, ciwp, cswp, tauc, & cld_stoch, clwp_stoch, ciwp_stoch, cswp_stoch, tauc_stoch, changeSeed) !------------------------------------------------------------------------------------------------- !---------------------------------------------------------------------------------------------------------------- ! --------------------- ! Contact: Cecile Hannay (hannay@ucar.edu) ! ! Original code: Based on Raisanen et al., QJRMS, 2004. ! ! Modifications: ! 1) Generalized for use with RRTMG and added Mersenne Twister as the default ! random number generator, which can be changed to the optional kissvec random number generator ! with flag 'irng'. Some extra functionality has been commented or removed. ! Michael J. Iacono, AER, Inc., February 2007 ! 2) Activated exponential and exponential/random cloud overlap method ! Michael J. Iacono, AER, November 2017 ! ! Given a profile of cloud fraction, cloud water and cloud ice, we produce a set of subcolumns. ! Each layer within each subcolumn is homogeneous, with cloud fraction equal to zero or one ! and uniform cloud liquid and cloud ice concentration. ! The ensemble as a whole reproduces the probability function of cloud liquid and ice within each layer ! and obeys an overlap assumption in the vertical. ! ! Overlap assumption: ! The cloud are consistent with 5 overlap assumptions: random, maximum, maximum-random, exponential and exponential random. ! The default option is maximum-random (option 2) ! The options are: 1=random overlap, 2=max/random, 3=maximum overlap, 4=exponential overlap, 5=exp/random ! This is set with the variable "overlap" ! The exponential overlap uses also a length scale, Zo. (real, parameter :: Zo = 2500. ) ! ! Seed: ! If the stochastic cloud generator is called several times during the same timestep, ! one should change the seed between the call to insure that the subcolumns are different. ! This is done by changing the argument 'changeSeed' ! For example, if one wants to create a set of columns for the shortwave and another set for the longwave , ! use 'changeSeed = 1' for the first call and'changeSeed = 2' for the second call ! ! PDF assumption: ! We can use arbitrary complicated PDFS. ! In the present version, we produce homogeneuous clouds (the simplest case). ! Future developments include using the PDF scheme of Ben Johnson. ! ! History file: ! Option to add diagnostics variables in the history file. (using FINCL in the namelist) ! nsubcol = number of subcolumns ! overlap = overlap type (1-3) ! Zo = length scale ! CLOUD_S = mean of the subcolumn cloud fraction ('_S" means Stochastic) ! CLDLIQ_S = mean of the subcolumn cloud water ! CLDICE_S = mean of the subcolumn cloud ice ! ! Note: ! Here: we force that the cloud condensate to be consistent with the cloud fraction ! i.e we only have cloud condensate when the cell is cloudy. ! In CAM: The cloud condensate and the cloud fraction are obtained from 2 different equations ! and the 2 quantities can be inconsistent (i.e. CAM can produce cloud fraction ! without cloud condensate or the opposite). !--------------------------------------------------------------------------------------------------------------- use mcica_random_numbers ! The Mersenne Twister random number engine use MersenneTwister, only: randomNumberSequence, & new_RandomNumberSequence, getRandomReal type(randomNumberSequence) :: randomNumbers ! -- Arguments integer(kind=im), intent(in) :: ncol ! number of columns integer(kind=im), intent(in) :: nlay ! number of layers integer(kind=im), intent(in) :: icld ! clear/cloud, cloud overlap flag integer(kind=im), intent(inout) :: irng ! flag for random number generator ! 0 = kissvec ! 1 = Mersenne Twister integer(kind=im), intent(in) :: nsubcol ! number of sub-columns (g-point intervals) integer(kind=im), optional, intent(in) :: changeSeed ! allows permuting seed ! Column state (cloud fraction, cloud water, cloud ice) + variables needed to read physics state real(kind=rb), intent(in) :: pmid(:,:) ! layer pressure (Pa) ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: hgt(:,:) ! layer height (m) ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: cld(:,:) ! cloud fraction ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: clwp(:,:) ! in-cloud liquid water path ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: ciwp(:,:) ! in-cloud ice water path ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: cswp(:,:) ! in-cloud snow path ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: tauc(:,:,:) ! in-cloud optical depth ! Dimensions: (nbndlw,ncol,nlay) ! real(kind=rb), intent(in) :: ssac(:,:,:) ! in-cloud single scattering albedo ! Dimensions: (nbndlw,ncol,nlay) ! inactive - for future expansion ! real(kind=rb), intent(in) :: asmc(:,:,:) ! in-cloud asymmetry parameter ! Dimensions: (nbndlw,ncol,nlay) ! inactive - for future expansion real(kind=rb), intent(out) :: cld_stoch(:,:,:) ! subcolumn cloud fraction ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(out) :: clwp_stoch(:,:,:) ! subcolumn in-cloud liquid water path ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(out) :: ciwp_stoch(:,:,:) ! subcolumn in-cloud ice water path ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(out) :: cswp_stoch(:,:,:) ! subcolumn in-cloud snow path ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(out) :: tauc_stoch(:,:,:) ! subcolumn in-cloud optical depth ! Dimensions: (ngptlw,ncol,nlay) ! real(kind=rb), intent(out) :: ssac_stoch(:,:,:)! subcolumn in-cloud single scattering albedo ! Dimensions: (ngptlw,ncol,nlay) ! inactive - for future expansion ! real(kind=rb), intent(out) :: asmc_stoch(:,:,:)! subcolumn in-cloud asymmetry parameter ! Dimensions: (ngptlw,ncol,nlay) ! inactive - for future expansion ! -- Local variables real(kind=rb) :: cldf(ncol,nlay) ! cloud fraction ! Mean over the subcolumns (cloud fraction, cloud water , cloud ice) - inactive ! real(kind=rb) :: mean_cld_stoch(ncol, nlay) ! cloud fraction ! real(kind=rb) :: mean_clwp_stoch(ncol, nlay) ! cloud water ! real(kind=rb) :: mean_ciwp_stoch(ncol, nlay) ! cloud ice ! real(kind=rb) :: mean_tauc_stoch(ncol, nlay) ! cloud optical depth ! real(kind=rb) :: mean_ssac_stoch(ncol, nlay) ! cloud single scattering albedo ! real(kind=rb) :: mean_asmc_stoch(ncol, nlay) ! cloud asymmetry parameter ! Set overlap integer(kind=im) :: overlap ! 1 = random overlap, 2 = maximum-random, ! 3 = maximum overlap, 4 = exponential, ! 5 = exponential-random real(kind=rb), parameter :: Zo = 2500._rb ! length scale (m) real(kind=rb), dimension(ncol,nlay) :: alpha ! overlap parameter ! Constants (min value for cloud fraction and cloud water and ice) real(kind=rb), parameter :: cldmin = 1.0e-20_rb ! min cloud fraction ! real(kind=rb), parameter :: qmin = 1.0e-10_rb ! min cloud water and cloud ice (not used) ! Variables related to random number and seed real(kind=rb), dimension(nsubcol, ncol, nlay) :: CDF, CDF2 ! random numbers integer(kind=im), dimension(ncol) :: seed1, seed2, seed3, seed4 ! seed to create random number (kissvec) real(kind=rb), dimension(ncol) :: rand_num ! random number (kissvec) integer(kind=im) :: iseed ! seed to create random number (Mersenne Teister) real(kind=rb) :: rand_num_mt ! random number (Mersenne Twister) ! Flag to identify cloud fraction in subcolumns logical, dimension(nsubcol, ncol, nlay) :: iscloudy ! flag that says whether a gridbox is cloudy ! Indices integer(kind=im) :: ilev, isubcol, i, n ! indices !------------------------------------------------------------------------------------------ ! Check that irng is in bounds; if not, set to default if (irng .ne. 0) irng = 1 ! Pass input cloud overlap setting to local variable overlap = icld ! Ensure that cloud fractions are in bounds do ilev = 1, nlay do i = 1, ncol cldf(i,ilev) = cld(i,ilev) if (cldf(i,ilev) < cldmin) then cldf(i,ilev) = 0._rb endif enddo enddo ! ----- Create seed -------- ! Advance randum number generator by changeseed values if (irng.eq.0) then ! For kissvec, create a seed that depends on the state of the columns. Maybe not the best way, but it works. ! Must use pmid from bottom four layers. do i=1,ncol if (pmid(i,1).lt.pmid(i,2)) then stop 'MCICA_SUBCOL: KISSVEC SEED GENERATOR REQUIRES PMID FROM BOTTOM FOUR LAYERS.' endif seed1(i) = (pmid(i,1) - int(pmid(i,1))) * 1000000000_im seed2(i) = (pmid(i,2) - int(pmid(i,2))) * 1000000000_im seed3(i) = (pmid(i,3) - int(pmid(i,3))) * 1000000000_im seed4(i) = (pmid(i,4) - int(pmid(i,4))) * 1000000000_im enddo do i=1,changeSeed call kissvec(seed1, seed2, seed3, seed4, rand_num) enddo elseif (irng.eq.1) then randomNumbers = new_RandomNumberSequence(seed = changeSeed) endif ! ------ Apply overlap assumption -------- ! generate the random numbers select case (overlap) case(1) ! Random overlap ! i) pick a random value at every level if (irng.eq.0) then do isubcol = 1,nsubcol do ilev = 1,nlay call kissvec(seed1, seed2, seed3, seed4, rand_num) ! we get different random number for each level CDF(isubcol,:,ilev) = rand_num enddo enddo elseif (irng.eq.1) then do isubcol = 1, nsubcol do i = 1, ncol do ilev = 1, nlay rand_num_mt = getRandomReal(randomNumbers) CDF(isubcol,i,ilev) = rand_num_mt enddo enddo enddo endif case(2) ! Maximum-Random overlap ! i) pick a random number for top layer. ! ii) walk down the column: ! - if the layer above is cloudy, we use the same random number than in the layer above ! - if the layer above is clear, we use a new random number if (irng.eq.0) then do isubcol = 1,nsubcol do ilev = 1,nlay call kissvec(seed1, seed2, seed3, seed4, rand_num) CDF(isubcol,:,ilev) = rand_num enddo enddo elseif (irng.eq.1) then do isubcol = 1, nsubcol do i = 1, ncol do ilev = 1, nlay rand_num_mt = getRandomReal(randomNumbers) CDF(isubcol,i,ilev) = rand_num_mt enddo enddo enddo endif do ilev = 2,nlay do i = 1, ncol do isubcol = 1, nsubcol if (CDF(isubcol, i, ilev-1) > 1._rb - cldf(i,ilev-1) ) then CDF(isubcol,i,ilev) = CDF(isubcol,i,ilev-1) else CDF(isubcol,i,ilev) = CDF(isubcol,i,ilev) * (1._rb - cldf(i,ilev-1)) endif enddo enddo enddo case(3) ! Maximum overlap ! i) pick the same random numebr at every level if (irng.eq.0) then do isubcol = 1,nsubcol call kissvec(seed1, seed2, seed3, seed4, rand_num) do ilev = 1,nlay CDF(isubcol,:,ilev) = rand_num enddo enddo elseif (irng.eq.1) then do isubcol = 1, nsubcol do i = 1, ncol rand_num_mt = getRandomReal(randomNumbers) do ilev = 1, nlay CDF(isubcol,i,ilev) = rand_num_mt enddo enddo enddo endif case(4) ! Exponential overlap: weighting between maximum and random overlap increases with the distance. ! The random numbers for exponential overlap verify: ! j=1 RAN(j)=RND1 ! j>1 if RND1 < alpha(j,j-1) => RAN(j) = RAN(j-1) ! RAN(j) = RND2 ! alpha is obtained from the equation ! alpha = exp(-(Z(j)-Z(j-1))/Zo) where Zo is a characteristic length scale ! compute alpha do i = 1, ncol alpha(i, 1) = 0._rb do ilev = 2,nlay alpha(i, ilev) = exp( -( hgt (i, ilev) - hgt (i, ilev-1)) / Zo) enddo enddo ! generate 2 streams of random numbers if (irng.eq.0) then do isubcol = 1,nsubcol do ilev = 1,nlay call kissvec(seed1, seed2, seed3, seed4, rand_num) CDF(isubcol, :, ilev) = rand_num call kissvec(seed1, seed2, seed3, seed4, rand_num) CDF2(isubcol, :, ilev) = rand_num enddo enddo elseif (irng.eq.1) then do isubcol = 1, nsubcol do i = 1, ncol do ilev = 1, nlay rand_num_mt = getRandomReal(randomNumbers) CDF(isubcol,i,ilev) = rand_num_mt rand_num_mt = getRandomReal(randomNumbers) CDF2(isubcol,i,ilev) = rand_num_mt enddo enddo enddo endif ! generate random numbers do ilev = 2,nlay where (CDF2(:, :, ilev) < spread(alpha (:,ilev), dim=1, nCopies=nsubcol) ) CDF(:,:,ilev) = CDF(:,:,ilev-1) end where end do case(5) ! Exponential-random overlap: call wrf_error_fatal("Cloud Overlap case 5: ER has not yet been implemented. Stopping...") end select ! -- generate subcolumns for homogeneous clouds ----- do ilev = 1,nlay iscloudy(:,:,ilev) = (CDF(:,:,ilev) >= 1._rb - spread(cldf(:,ilev), dim=1, nCopies=nsubcol) ) enddo ! where the subcolumn is cloudy, the subcolumn cloud fraction is 1; ! where the subcolumn is not cloudy, the subcolumn cloud fraction is 0; ! where there is a cloud, define the subcolumn cloud properties, ! otherwise set these to zero do ilev = 1,nlay do i = 1, ncol do isubcol = 1, nsubcol if (iscloudy(isubcol,i,ilev) ) then cld_stoch(isubcol,i,ilev) = 1._rb clwp_stoch(isubcol,i,ilev) = clwp(i,ilev) ciwp_stoch(isubcol,i,ilev) = ciwp(i,ilev) cswp_stoch(isubcol,i,ilev) = cswp(i,ilev) n = ngb(isubcol) tauc_stoch(isubcol,i,ilev) = tauc(n,i,ilev) ! ssac_stoch(isubcol,i,ilev) = ssac(n,i,ilev) ! asmc_stoch(isubcol,i,ilev) = asmc(n,i,ilev) else cld_stoch(isubcol,i,ilev) = 0._rb clwp_stoch(isubcol,i,ilev) = 0._rb ciwp_stoch(isubcol,i,ilev) = 0._rb cswp_stoch(isubcol,i,ilev) = 0._rb tauc_stoch(isubcol,i,ilev) = 0._rb ! ssac_stoch(isubcol,i,ilev) = 1._rb ! asmc_stoch(isubcol,i,ilev) = 1._rb endif enddo enddo enddo ! -- compute the means of the subcolumns --- ! mean_cld_stoch(:,:) = 0._rb ! mean_clwp_stoch(:,:) = 0._rb ! mean_ciwp_stoch(:,:) = 0._rb ! mean_tauc_stoch(:,:) = 0._rb ! mean_ssac_stoch(:,:) = 0._rb ! mean_asmc_stoch(:,:) = 0._rb ! do i = 1, nsubcol ! mean_cld_stoch(:,:) = cld_stoch(i,:,:) + mean_cld_stoch(:,:) ! mean_clwp_stoch(:,:) = clwp_stoch( i,:,:) + mean_clwp_stoch(:,:) ! mean_ciwp_stoch(:,:) = ciwp_stoch( i,:,:) + mean_ciwp_stoch(:,:) ! mean_tauc_stoch(:,:) = tauc_stoch( i,:,:) + mean_tauc_stoch(:,:) ! mean_ssac_stoch(:,:) = ssac_stoch( i,:,:) + mean_ssac_stoch(:,:) ! mean_asmc_stoch(:,:) = asmc_stoch( i,:,:) + mean_asmc_stoch(:,:) ! end do ! mean_cld_stoch(:,:) = mean_cld_stoch(:,:) / nsubcol ! mean_clwp_stoch(:,:) = mean_clwp_stoch(:,:) / nsubcol ! mean_ciwp_stoch(:,:) = mean_ciwp_stoch(:,:) / nsubcol ! mean_tauc_stoch(:,:) = mean_tauc_stoch(:,:) / nsubcol ! mean_ssac_stoch(:,:) = mean_ssac_stoch(:,:) / nsubcol ! mean_asmc_stoch(:,:) = mean_asmc_stoch(:,:) / nsubcol end subroutine generate_stochastic_clouds !------------------------------------------------------------------ ! Private subroutines !------------------------------------------------------------------ !-------------------------------------------------------------------------------------------------- subroutine kissvec(seed1,seed2,seed3,seed4,ran_arr) !-------------------------------------------------------------------------------------------------- ! public domain code ! made available from http://www.fortran.com/ ! downloaded by pjr on 03/16/04 for NCAR CAM ! converted to vector form, functions inlined by pjr,mvr on 05/10/2004 ! The KISS (Keep It Simple Stupid) random number generator. Combines: ! (1) The congruential generator x(n)=69069*x(n-1)+1327217885, period 2^32. ! (2) A 3-shift shift-register generator, period 2^32-1, ! (3) Two 16-bit multiply-with-carry generators, period 597273182964842497>2^59 ! Overall period>2^123; ! real(kind=rb), dimension(:), intent(inout) :: ran_arr integer(kind=im), dimension(:), intent(inout) :: seed1,seed2,seed3,seed4 integer(kind=im) :: i,sz,kiss integer(kind=im) :: m, k, n ! inline function m(k, n) = ieor (k, ishft (k, n) ) sz = size(ran_arr) do i = 1, sz seed1(i) = 69069_im * seed1(i) + 1327217885_im seed2(i) = m (m (m (seed2(i), 13_im), - 17_im), 5_im) seed3(i) = 18000_im * iand (seed3(i), 65535_im) + ishft (seed3(i), - 16_im) seed4(i) = 30903_im * iand (seed4(i), 65535_im) + ishft (seed4(i), - 16_im) kiss = seed1(i) + seed2(i) + ishft (seed3(i), 16_im) + seed4(i) ran_arr(i) = kiss*2.328306e-10_rb + 0.5_rb end do end subroutine kissvec end module mcica_subcol_gen_lw ! path: $Source: /storm/rc1/cvsroot/rc/rrtmg_lw/src/rrtmg_lw_cldprmc.f90,v $ ! author: $Author: mike $ ! revision: $Revision: 1.8 $ ! created: $Date: 2009/05/22 21:04:30 $ ! module rrtmg_lw_cldprmc ! -------------------------------------------------------------------------- ! | | ! | Copyright 2002-2009, Atmospheric & Environmental Research, Inc. (AER). | ! | This software may be used, copied, or redistributed as long as it is | ! | not sold and this copyright notice is reproduced on each copy made. | ! | This model is provided as is without any express or implied warranties. | ! | (http://www.rtweb.aer.com/) | ! | | ! -------------------------------------------------------------------------- ! --------- Modules ---------- use parkind, only : im => kind_im, rb => kind_rb use parrrtm, only : ngptlw, nbndlw use rrlw_cld, only: abscld1, absliq0, absliq1, & absice0, absice1, absice2, absice3 use rrlw_wvn, only: ngb use rrlw_vsn, only: hvrclc, hnamclc implicit none contains ! ------------------------------------------------------------------------------ subroutine cldprmc(nlayers, inflag, iceflag, liqflag, cldfmc, & ciwpmc, clwpmc, cswpmc, reicmc, relqmc, resnmc, ncbands, taucmc) ! ------------------------------------------------------------------------------ ! Purpose: Compute the cloud optical depth(s) for each cloudy layer. ! ------- Input ------- integer(kind=im), intent(in) :: nlayers ! total number of layers integer(kind=im), intent(in) :: inflag ! see definitions integer(kind=im), intent(in) :: iceflag ! see definitions integer(kind=im), intent(in) :: liqflag ! see definitions real(kind=rb), intent(in) :: cldfmc(:,:) ! cloud fraction [mcica] ! Dimensions: (ngptlw,nlayers) real(kind=rb), intent(in) :: ciwpmc(:,:) ! cloud ice water path [mcica] ! Dimensions: (ngptlw,nlayers) real(kind=rb), intent(in) :: clwpmc(:,:) ! cloud liquid water path [mcica] ! Dimensions: (ngptlw,nlayers) real(kind=rb), intent(in) :: cswpmc(:,:) ! cloud snow path [mcica] ! Dimensions: (ngptlw,nlayers) real(kind=rb), intent(in) :: relqmc(:) ! liquid particle effective radius (microns) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: reicmc(:) ! ice particle effective radius (microns) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: resnmc(:) ! snow particle effective radius (microns) ! Dimensions: (nlayers) ! specific definition of reicmc depends on setting of iceflag: ! iceflag = 0: ice effective radius, r_ec, (Ebert and Curry, 1992), ! r_ec must be >= 10.0 microns ! iceflag = 1: ice effective radius, r_ec, (Ebert and Curry, 1992), ! r_ec range is limited to 13.0 to 130.0 microns ! iceflag = 2: ice effective radius, r_k, (Key, Streamer Ref. Manual, 1996) ! r_k range is limited to 5.0 to 131.0 microns ! iceflag = 3: generalized effective size, dge, (Fu, 1996), ! dge range is limited to 5.0 to 140.0 microns ! [dge = 1.0315 * r_ec] ! ------- Output ------- integer(kind=im), intent(out) :: ncbands ! number of cloud spectral bands real(kind=rb), intent(inout) :: taucmc(:,:) ! cloud optical depth [mcica] ! Dimensions: (ngptlw,nlayers) ! ------- Local ------- integer(kind=im) :: lay ! Layer index integer(kind=im) :: ib ! spectral band index integer(kind=im) :: ig ! g-point interval index integer(kind=im) :: index integer(kind=im) :: icb(nbndlw) real(kind=rb) :: abscoice(ngptlw) ! ice absorption coefficients real(kind=rb) :: abscoliq(ngptlw) ! liquid absorption coefficients real(kind=rb) :: abscosno(ngptlw) ! snow absorption coefficients real(kind=rb) :: cwp ! cloud water path real(kind=rb) :: radice ! cloud ice effective size (microns) real(kind=rb) :: factor ! real(kind=rb) :: fint ! real(kind=rb) :: radliq ! cloud liquid droplet radius (microns) real(kind=rb) :: radsno ! cloud snow effective size (microns) real(kind=rb), parameter :: eps = 1.e-6_rb ! epsilon real(kind=rb), parameter :: cldmin = 1.e-20_rb ! minimum value for cloud quantities character*80 errmess ! ------- Definitions ------- ! Explanation of the method for each value of INFLAG. Values of ! 0 or 1 for INFLAG do not distingish being liquid and ice clouds. ! INFLAG = 2 does distinguish between liquid and ice clouds, and ! requires further user input to specify the method to be used to ! compute the aborption due to each. ! INFLAG = 0: For each cloudy layer, the cloud fraction and (gray) ! optical depth are input. ! INFLAG = 1: For each cloudy layer, the cloud fraction and cloud ! water path (g/m2) are input. The (gray) cloud optical ! depth is computed as in CCM2. ! INFLAG = 2: For each cloudy layer, the cloud fraction, cloud ! water path (g/m2), and cloud ice fraction are input. ! ICEFLAG = 0: The ice effective radius (microns) is input and the ! optical depths due to ice clouds are computed as in CCM3. ! ICEFLAG = 1: The ice effective radius (microns) is input and the ! optical depths due to ice clouds are computed as in ! Ebert and Curry, JGR, 97, 3831-3836 (1992). The ! spectral regions in this work have been matched with ! the spectral bands in RRTM to as great an extent ! as possible: ! E&C 1 IB = 5 RRTM bands 9-16 ! E&C 2 IB = 4 RRTM bands 6-8 ! E&C 3 IB = 3 RRTM bands 3-5 ! E&C 4 IB = 2 RRTM band 2 ! E&C 5 IB = 1 RRTM band 1 ! ICEFLAG = 2: The ice effective radius (microns) is input and the ! optical properties due to ice clouds are computed from ! the optical properties stored in the RT code, ! STREAMER v3.0 (Reference: Key. J., Streamer ! User's Guide, Cooperative Institute for ! Meteorological Satellite Studies, 2001, 96 pp.). ! Valid range of values for re are between 5.0 and ! 131.0 micron. ! ICEFLAG = 3: The ice generalized effective size (dge) is input ! and the optical properties, are calculated as in ! Q. Fu, J. Climate, (1998). Q. Fu provided high resolution ! tables which were appropriately averaged for the ! bands in RRTM_LW. Linear interpolation is used to ! get the coefficients from the stored tables. ! Valid range of values for dge are between 5.0 and ! 140.0 micron. ! LIQFLAG = 0: The optical depths due to water clouds are computed as ! in CCM3. ! LIQFLAG = 1: The water droplet effective radius (microns) is input ! and the optical depths due to water clouds are computed ! as in Hu and Stamnes, J., Clim., 6, 728-742, (1993). ! The values for absorption coefficients appropriate for ! the spectral bands in RRTM have been obtained for a ! range of effective radii by an averaging procedure ! based on the work of J. Pinto (private communication). ! Linear interpolation is used to get the absorption ! coefficients for the input effective radius. data icb /1,2,3,3,3,4,4,4,5, 5, 5, 5, 5, 5, 5, 5/ !jm not thread safe hvrclc = '$Revision: 1.8 $' ncbands = 1 ! This initialization is done in rrtmg_lw_subcol.F90. ! do lay = 1, nlayers ! do ig = 1, ngptlw ! taucmc(ig,lay) = 0.0_rb ! enddo ! enddo ! Main layer loop do lay = 1, nlayers do ig = 1, ngptlw cwp = ciwpmc(ig,lay) + clwpmc(ig,lay) + cswpmc(ig,lay) if (cldfmc(ig,lay) .ge. cldmin .and. & (cwp .ge. cldmin .or. taucmc(ig,lay) .ge. cldmin)) then ! Ice clouds and water clouds combined. if (inflag .eq. 0) then ! Cloud optical depth already defined in taucmc, return to main program return elseif(inflag .eq. 1) then stop 'INFLAG = 1 OPTION NOT AVAILABLE WITH MCICA' ! cwp = ciwpmc(ig,lay) + clwpmc(ig,lay) ! taucmc(ig,lay) = abscld1 * cwp ! Separate treatement of ice clouds and water clouds. elseif(inflag .ge. 2) then radice = reicmc(lay) ! Calculation of absorption coefficients due to ice clouds. if ((ciwpmc(ig,lay)+cswpmc(ig,lay)) .eq. 0.0_rb) then abscoice(ig) = 0.0_rb abscosno(ig) = 0.0_rb elseif (iceflag .eq. 0) then if (radice .lt. 10.0_rb) stop 'ICE RADIUS TOO SMALL' abscoice(ig) = absice0(1) + absice0(2)/radice abscosno(ig) = 0.0_rb elseif (iceflag .eq. 1) then if (radice .lt. 13.0_rb .or. radice .gt. 130._rb) stop & 'ICE RADIUS OUT OF BOUNDS' ncbands = 5 ib = icb(ngb(ig)) abscoice(ig) = absice1(1,ib) + absice1(2,ib)/radice abscosno(ig) = 0.0_rb ! For iceflag=2 option, ice particle effective radius is limited to 5.0 to 131.0 microns elseif (iceflag .eq. 2) then if (radice .lt. 5.0_rb .or. radice .gt. 131.0_rb) stop 'ICE RADIUS OUT OF BOUNDS' ncbands = 16 factor = (radice - 2._rb)/3._rb index = int(factor) if (index .eq. 43) index = 42 fint = factor - float(index) ib = ngb(ig) abscoice(ig) = & absice2(index,ib) + fint * & (absice2(index+1,ib) - (absice2(index,ib))) abscosno(ig) = 0.0_rb ! For iceflag=3 option, ice particle generalized effective size is limited to 5.0 to 140.0 microns elseif (iceflag .ge. 3) then if (radice .lt. 5.0_rb .or. radice .gt. 140.0_rb) then write(errmess,'(A,i5,i5,f8.2,f8.2)' ) & 'ERROR: ICE GENERALIZED EFFECTIVE SIZE OUT OF BOUNDS' & ,ig, lay, ciwpmc(ig,lay), radice call wrf_error_fatal(errmess) end if ncbands = 16 factor = (radice - 2._rb)/3._rb index = int(factor) if (index .eq. 46) index = 45 fint = factor - float(index) ib = ngb(ig) abscoice(ig) = & absice3(index,ib) + fint * & (absice3(index+1,ib) - (absice3(index,ib))) abscosno(ig) = 0.0_rb endif !..Incorporate additional effects due to snow. if (cswpmc(ig,lay).gt.0.0_rb .and. iceflag .eq. 5) then radsno = resnmc(lay) if (radsno .lt. 5.0_rb .or. radsno .gt. 140.0_rb) then write(errmess,'(A,i5,i5,f8.2,f8.2)' ) & 'ERROR: SNOW GENERALIZED EFFECTIVE SIZE OUT OF BOUNDS' & ,ig, lay, cswpmc(ig,lay), radsno call wrf_error_fatal(errmess) end if ncbands = 16 factor = (radsno - 2._rb)/3._rb index = int(factor) if (index .eq. 46) index = 45 fint = factor - float(index) ib = ngb(ig) abscosno(ig) = & absice3(index,ib) + fint * & (absice3(index+1,ib) - (absice3(index,ib))) endif ! Calculation of absorption coefficients due to water clouds. if (clwpmc(ig,lay) .eq. 0.0_rb) then abscoliq(ig) = 0.0_rb elseif (liqflag .eq. 0) then abscoliq(ig) = absliq0 elseif (liqflag .eq. 1) then radliq = relqmc(lay) if (radliq .lt. 2.5_rb .or. radliq .gt. 60._rb) stop & 'LIQUID EFFECTIVE RADIUS OUT OF BOUNDS' index = int(radliq - 1.5_rb) if (index .eq. 0) index = 1 if (index .eq. 58) index = 57 fint = radliq - 1.5_rb - float(index) ib = ngb(ig) abscoliq(ig) = & absliq1(index,ib) + fint * & (absliq1(index+1,ib) - (absliq1(index,ib))) endif taucmc(ig,lay) = ciwpmc(ig,lay) * abscoice(ig) + & clwpmc(ig,lay) * abscoliq(ig) + & cswpmc(ig,lay) * abscosno(ig) endif endif enddo enddo end subroutine cldprmc end module rrtmg_lw_cldprmc ! path: $Source: /cvsroot/NWP/WRFV3/phys/module_ra_rrtmg_lw.F,v $ ! author: $Author: trn $ ! revision: $Revision: 1.3 $ ! created: $Date: 2009/04/16 19:54:22 $ ! module rrtmg_lw_rtrnmc ! -------------------------------------------------------------------------- ! | | ! | Copyright 2002-2008, Atmospheric & Environmental Research, Inc. (AER). | ! | This software may be used, copied, or redistributed as long as it is | ! | not sold and this copyright notice is reproduced on each copy made. | ! | This model is provided as is without any express or implied warranties. | ! | (http://www.rtweb.aer.com/) | ! | | ! -------------------------------------------------------------------------- ! --------- Modules ---------- use parkind, only : im => kind_im, rb => kind_rb use parrrtm, only : mg, nbndlw, ngptlw use rrlw_con, only: fluxfac, heatfac use rrlw_wvn, only: delwave, ngb, ngs use rrlw_tbl, only: tblint, bpade, tau_tbl, exp_tbl, tfn_tbl use rrlw_vsn, only: hvrrtc, hnamrtc implicit none real(kind=rb) :: wtdiff, rec_6 real(kind=rb) :: a0(nbndlw),a1(nbndlw),a2(nbndlw)! diffusivity angle adjustment coefficients ! This secant and weight corresponds to the standard diffusivity ! angle. This initial value is redefined below for some bands. data wtdiff /0.5_rb/ data rec_6 /0.166667_rb/ ! Reset diffusivity angle for Bands 2-3 and 5-9 to vary (between 1.50 ! and 1.80) as a function of total column water vapor. The function ! has been defined to minimize flux and cooling rate errors in these bands ! over a wide range of precipitable water values. data a0 / 1.66_rb, 1.55_rb, 1.58_rb, 1.66_rb, & 1.54_rb, 1.454_rb, 1.89_rb, 1.33_rb, & 1.668_rb, 1.66_rb, 1.66_rb, 1.66_rb, & 1.66_rb, 1.66_rb, 1.66_rb, 1.66_rb / data a1 / 0.00_rb, 0.25_rb, 0.22_rb, 0.00_rb, & 0.13_rb, 0.446_rb, -0.10_rb, 0.40_rb, & -0.006_rb, 0.00_rb, 0.00_rb, 0.00_rb, & 0.00_rb, 0.00_rb, 0.00_rb, 0.00_rb / data a2 / 0.00_rb, -12.0_rb, -11.7_rb, 0.00_rb, & -0.72_rb,-0.243_rb, 0.19_rb,-0.062_rb, & 0.414_rb, 0.00_rb, 0.00_rb, 0.00_rb, & 0.00_rb, 0.00_rb, 0.00_rb, 0.00_rb / contains !----------------------------------------------------------------------------- subroutine rtrnmc(nlayers, istart, iend, iout, pz, semiss, ncbands, & cldfmc, taucmc, planklay, planklev, plankbnd, & pwvcm, fracs, taut, & totuflux, totdflux, fnet, htr, & totuclfl, totdclfl, fnetc, htrc ) !----------------------------------------------------------------------------- ! ! Original version: E. J. Mlawer, et al. RRTM_V3.0 ! Revision for GCMs: Michael J. Iacono; October, 2002 ! Revision for F90: Michael J. Iacono; June, 2006 ! ! This program calculates the upward fluxes, downward fluxes, and ! heating rates for an arbitrary clear or cloudy atmosphere. The input ! to this program is the atmospheric profile, all Planck function ! information, and the cloud fraction by layer. A variable diffusivity ! angle (SECDIFF) is used for the angle integration. Bands 2-3 and 5-9 ! use a value for SECDIFF that varies from 1.50 to 1.80 as a function of ! the column water vapor, and other bands use a value of 1.66. The Gaussian ! weight appropriate to this angle (WTDIFF=0.5) is applied here. Note that ! use of the emissivity angle for the flux integration can cause errors of ! 1 to 4 W/m2 within cloudy layers. ! Clouds are treated with the McICA stochastic approach and maximum-random ! cloud overlap. !*************************************************************************** ! ------- Declarations ------- ! ----- Input ----- integer(kind=im), intent(in) :: nlayers ! total number of layers integer(kind=im), intent(in) :: istart ! beginning band of calculation integer(kind=im), intent(in) :: iend ! ending band of calculation integer(kind=im), intent(in) :: iout ! output option flag ! Atmosphere real(kind=rb), intent(in) :: pz(0:) ! level (interface) pressures (hPa, mb) ! Dimensions: (0:nlayers) real(kind=rb), intent(in) :: pwvcm ! precipitable water vapor (cm) real(kind=rb), intent(in) :: semiss(:) ! lw surface emissivity ! Dimensions: (nbndlw) real(kind=rb), intent(in) :: planklay(:,:) ! ! Dimensions: (nlayers,nbndlw) real(kind=rb), intent(in) :: planklev(0:,:) ! ! Dimensions: (0:nlayers,nbndlw) real(kind=rb), intent(in) :: plankbnd(:) ! ! Dimensions: (nbndlw) real(kind=rb), intent(in) :: fracs(:,:) ! ! Dimensions: (nlayers,ngptw) real(kind=rb), intent(in) :: taut(:,:) ! gaseous + aerosol optical depths ! Dimensions: (nlayers,ngptlw) ! Clouds integer(kind=im), intent(in) :: ncbands ! number of cloud spectral bands real(kind=rb), intent(in) :: cldfmc(:,:) ! layer cloud fraction [mcica] ! Dimensions: (ngptlw,nlayers) real(kind=rb), intent(in) :: taucmc(:,:) ! layer cloud optical depth [mcica] ! Dimensions: (ngptlw,nlayers) ! ----- Output ----- real(kind=rb), intent(out) :: totuflux(0:) ! upward longwave flux (w/m2) ! Dimensions: (0:nlayers) real(kind=rb), intent(out) :: totdflux(0:) ! downward longwave flux (w/m2) ! Dimensions: (0:nlayers) real(kind=rb), intent(out) :: fnet(0:) ! net longwave flux (w/m2) ! Dimensions: (0:nlayers) real(kind=rb), intent(out) :: htr(0:) ! longwave heating rate (k/day) ! Dimensions: (0:nlayers) real(kind=rb), intent(out) :: totuclfl(0:) ! clear sky upward longwave flux (w/m2) ! Dimensions: (0:nlayers) real(kind=rb), intent(out) :: totdclfl(0:) ! clear sky downward longwave flux (w/m2) ! Dimensions: (0:nlayers) real(kind=rb), intent(out) :: fnetc(0:) ! clear sky net longwave flux (w/m2) ! Dimensions: (0:nlayers) real(kind=rb), intent(out) :: htrc(0:) ! clear sky longwave heating rate (k/day) ! Dimensions: (0:nlayers) ! ----- Local ----- ! Declarations for radiative transfer real(kind=rb) :: abscld(nlayers,ngptlw) real(kind=rb) :: atot(nlayers) real(kind=rb) :: atrans(nlayers) real(kind=rb) :: bbugas(nlayers) real(kind=rb) :: bbutot(nlayers) real(kind=rb) :: clrurad(0:nlayers) real(kind=rb) :: clrdrad(0:nlayers) real(kind=rb) :: efclfrac(nlayers,ngptlw) real(kind=rb) :: uflux(0:nlayers) real(kind=rb) :: dflux(0:nlayers) real(kind=rb) :: urad(0:nlayers) real(kind=rb) :: drad(0:nlayers) real(kind=rb) :: uclfl(0:nlayers) real(kind=rb) :: dclfl(0:nlayers) real(kind=rb) :: odcld(nlayers,ngptlw) real(kind=rb) :: secdiff(nbndlw) ! secant of diffusivity angle real(kind=rb) :: transcld, radld, radclrd, plfrac, blay, dplankup, dplankdn real(kind=rb) :: odepth, odtot, odepth_rec, odtot_rec, gassrc real(kind=rb) :: tblind, tfactot, bbd, bbdtot, tfacgas, transc, tausfac real(kind=rb) :: rad0, reflect, radlu, radclru integer(kind=im) :: icldlyr(nlayers) ! flag for cloud in layer integer(kind=im) :: ibnd, ib, iband, lay, lev, l, ig ! loop indices integer(kind=im) :: igc ! g-point interval counter integer(kind=im) :: iclddn ! flag for cloud in down path integer(kind=im) :: ittot, itgas, itr ! lookup table indices ! ------- Definitions ------- ! input ! nlayers ! number of model layers ! ngptlw ! total number of g-point subintervals ! nbndlw ! number of longwave spectral bands ! ncbands ! number of spectral bands for clouds ! secdiff ! diffusivity angle ! wtdiff ! weight for radiance to flux conversion ! pavel ! layer pressures (mb) ! pz ! level (interface) pressures (mb) ! tavel ! layer temperatures (k) ! tz ! level (interface) temperatures(mb) ! tbound ! surface temperature (k) ! cldfrac ! layer cloud fraction ! taucloud ! layer cloud optical depth ! itr ! integer look-up table index ! icldlyr ! flag for cloudy layers ! iclddn ! flag for cloud in column at any layer ! semiss ! surface emissivities for each band ! reflect ! surface reflectance ! bpade ! 1/(pade constant) ! tau_tbl ! clear sky optical depth look-up table ! exp_tbl ! exponential look-up table for transmittance ! tfn_tbl ! tau transition function look-up table ! local ! atrans ! gaseous absorptivity ! abscld ! cloud absorptivity ! atot ! combined gaseous and cloud absorptivity ! odclr ! clear sky (gaseous) optical depth ! odcld ! cloud optical depth ! odtot ! optical depth of gas and cloud ! tfacgas ! gas-only pade factor, used for planck fn ! tfactot ! gas and cloud pade factor, used for planck fn ! bbdgas ! gas-only planck function for downward rt ! bbugas ! gas-only planck function for upward rt ! bbdtot ! gas and cloud planck function for downward rt ! bbutot ! gas and cloud planck function for upward calc. ! gassrc ! source radiance due to gas only ! efclfrac ! effective cloud fraction ! radlu ! spectrally summed upward radiance ! radclru ! spectrally summed clear sky upward radiance ! urad ! upward radiance by layer ! clrurad ! clear sky upward radiance by layer ! radld ! spectrally summed downward radiance ! radclrd ! spectrally summed clear sky downward radiance ! drad ! downward radiance by layer ! clrdrad ! clear sky downward radiance by layer ! output ! totuflux ! upward longwave flux (w/m2) ! totdflux ! downward longwave flux (w/m2) ! fnet ! net longwave flux (w/m2) ! htr ! longwave heating rate (k/day) ! totuclfl ! clear sky upward longwave flux (w/m2) ! totdclfl ! clear sky downward longwave flux (w/m2) ! fnetc ! clear sky net longwave flux (w/m2) ! htrc ! clear sky longwave heating rate (k/day) !jm not thread safe hvrrtc = '$Revision: 1.3 $' do ibnd = 1,nbndlw if (ibnd.eq.1 .or. ibnd.eq.4 .or. ibnd.ge.10) then secdiff(ibnd) = 1.66_rb else secdiff(ibnd) = a0(ibnd) + a1(ibnd)*exp(a2(ibnd)*pwvcm) if (secdiff(ibnd) .gt. 1.80_rb) secdiff(ibnd) = 1.80_rb if (secdiff(ibnd) .lt. 1.50_rb) secdiff(ibnd) = 1.50_rb endif enddo urad(0) = 0.0_rb drad(0) = 0.0_rb totuflux(0) = 0.0_rb totdflux(0) = 0.0_rb clrurad(0) = 0.0_rb clrdrad(0) = 0.0_rb totuclfl(0) = 0.0_rb totdclfl(0) = 0.0_rb do lay = 1, nlayers urad(lay) = 0.0_rb drad(lay) = 0.0_rb totuflux(lay) = 0.0_rb totdflux(lay) = 0.0_rb clrurad(lay) = 0.0_rb clrdrad(lay) = 0.0_rb totuclfl(lay) = 0.0_rb totdclfl(lay) = 0.0_rb icldlyr(lay) = 0 ! Change to band loop? do ig = 1, ngptlw if (cldfmc(ig,lay) .eq. 1._rb) then ib = ngb(ig) odcld(lay,ig) = secdiff(ib) * taucmc(ig,lay) transcld = exp(-odcld(lay,ig)) abscld(lay,ig) = 1._rb - transcld efclfrac(lay,ig) = abscld(lay,ig) * cldfmc(ig,lay) icldlyr(lay) = 1 else odcld(lay,ig) = 0.0_rb abscld(lay,ig) = 0.0_rb efclfrac(lay,ig) = 0.0_rb endif enddo enddo igc = 1 ! Loop over frequency bands. do iband = istart, iend ! Reinitialize g-point counter for each band if output for each band is requested. if (iout.gt.0.and.iband.ge.2) igc = ngs(iband-1)+1 ! Loop over g-channels. 1000 continue ! Radiative transfer starts here. radld = 0._rb radclrd = 0._rb iclddn = 0 ! Downward radiative transfer loop. do lev = nlayers, 1, -1 plfrac = fracs(lev,igc) blay = planklay(lev,iband) dplankup = planklev(lev,iband) - blay dplankdn = planklev(lev-1,iband) - blay odepth = secdiff(iband) * taut(lev,igc) if (odepth .lt. 0.0_rb) odepth = 0.0_rb ! Cloudy layer if (icldlyr(lev).eq.1) then iclddn = 1 odtot = odepth + odcld(lev,igc) if (odtot .lt. 0.06_rb) then atrans(lev) = odepth - 0.5_rb*odepth*odepth odepth_rec = rec_6*odepth gassrc = plfrac*(blay+dplankdn*odepth_rec)*atrans(lev) atot(lev) = odtot - 0.5_rb*odtot*odtot odtot_rec = rec_6*odtot bbdtot = plfrac * (blay+dplankdn*odtot_rec) bbd = plfrac*(blay+dplankdn*odepth_rec) radld = radld - radld * (atrans(lev) + & efclfrac(lev,igc) * (1. - atrans(lev))) + & gassrc + cldfmc(igc,lev) * & (bbdtot * atot(lev) - gassrc) drad(lev-1) = drad(lev-1) + radld bbugas(lev) = plfrac * (blay+dplankup*odepth_rec) bbutot(lev) = plfrac * (blay+dplankup*odtot_rec) elseif (odepth .le. 0.06_rb) then atrans(lev) = odepth - 0.5_rb*odepth*odepth odepth_rec = rec_6*odepth gassrc = plfrac*(blay+dplankdn*odepth_rec)*atrans(lev) odtot = odepth + odcld(lev,igc) tblind = odtot/(bpade+odtot) ittot = tblint*tblind + 0.5_rb tfactot = tfn_tbl(ittot) bbdtot = plfrac * (blay + tfactot*dplankdn) bbd = plfrac*(blay+dplankdn*odepth_rec) atot(lev) = 1. - exp_tbl(ittot) radld = radld - radld * (atrans(lev) + & efclfrac(lev,igc) * (1._rb - atrans(lev))) + & gassrc + cldfmc(igc,lev) * & (bbdtot * atot(lev) - gassrc) drad(lev-1) = drad(lev-1) + radld bbugas(lev) = plfrac * (blay + dplankup*odepth_rec) bbutot(lev) = plfrac * (blay + tfactot * dplankup) else tblind = odepth/(bpade+odepth) itgas = tblint*tblind+0.5_rb odepth = tau_tbl(itgas) atrans(lev) = 1._rb - exp_tbl(itgas) tfacgas = tfn_tbl(itgas) gassrc = atrans(lev) * plfrac * (blay + tfacgas*dplankdn) odtot = odepth + odcld(lev,igc) tblind = odtot/(bpade+odtot) ittot = tblint*tblind + 0.5_rb tfactot = tfn_tbl(ittot) bbdtot = plfrac * (blay + tfactot*dplankdn) bbd = plfrac*(blay+tfacgas*dplankdn) atot(lev) = 1._rb - exp_tbl(ittot) radld = radld - radld * (atrans(lev) + & efclfrac(lev,igc) * (1._rb - atrans(lev))) + & gassrc + cldfmc(igc,lev) * & (bbdtot * atot(lev) - gassrc) drad(lev-1) = drad(lev-1) + radld bbugas(lev) = plfrac * (blay + tfacgas * dplankup) bbutot(lev) = plfrac * (blay + tfactot * dplankup) endif ! Clear layer else if (odepth .le. 0.06_rb) then atrans(lev) = odepth-0.5_rb*odepth*odepth odepth = rec_6*odepth bbd = plfrac*(blay+dplankdn*odepth) bbugas(lev) = plfrac*(blay+dplankup*odepth) else tblind = odepth/(bpade+odepth) itr = tblint*tblind+0.5_rb transc = exp_tbl(itr) atrans(lev) = 1._rb-transc tausfac = tfn_tbl(itr) bbd = plfrac*(blay+tausfac*dplankdn) bbugas(lev) = plfrac * (blay + tausfac * dplankup) endif radld = radld + (bbd-radld)*atrans(lev) drad(lev-1) = drad(lev-1) + radld endif ! Set clear sky stream to total sky stream as long as layers ! remain clear. Streams diverge when a cloud is reached (iclddn=1), ! and clear sky stream must be computed separately from that point. if (iclddn.eq.1) then radclrd = radclrd + (bbd-radclrd) * atrans(lev) clrdrad(lev-1) = clrdrad(lev-1) + radclrd else radclrd = radld clrdrad(lev-1) = drad(lev-1) endif enddo ! Spectral emissivity & reflectance ! Include the contribution of spectrally varying longwave emissivity ! and reflection from the surface to the upward radiative transfer. ! Note: Spectral and Lambertian reflection are identical for the ! diffusivity angle flux integration used here. rad0 = fracs(1,igc) * plankbnd(iband) ! Add in specular reflection of surface downward radiance. reflect = 1._rb - semiss(iband) radlu = rad0 + reflect * radld radclru = rad0 + reflect * radclrd ! Upward radiative transfer loop. urad(0) = urad(0) + radlu clrurad(0) = clrurad(0) + radclru do lev = 1, nlayers ! Cloudy layer if (icldlyr(lev) .eq. 1) then gassrc = bbugas(lev) * atrans(lev) radlu = radlu - radlu * (atrans(lev) + & efclfrac(lev,igc) * (1._rb - atrans(lev))) + & gassrc + cldfmc(igc,lev) * & (bbutot(lev) * atot(lev) - gassrc) urad(lev) = urad(lev) + radlu ! Clear layer else radlu = radlu + (bbugas(lev)-radlu)*atrans(lev) urad(lev) = urad(lev) + radlu endif ! Set clear sky stream to total sky stream as long as all layers ! are clear (iclddn=0). Streams must be calculated separately at ! all layers when a cloud is present (ICLDDN=1), because surface ! reflectance is different for each stream. if (iclddn.eq.1) then radclru = radclru + (bbugas(lev)-radclru)*atrans(lev) clrurad(lev) = clrurad(lev) + radclru else radclru = radlu clrurad(lev) = urad(lev) endif enddo ! Increment g-point counter igc = igc + 1 ! Return to continue radiative transfer for all g-channels in present band if (igc .le. ngs(iband)) go to 1000 ! Process longwave output from band for total and clear streams. ! Calculate upward, downward, and net flux. do lev = nlayers, 0, -1 uflux(lev) = urad(lev)*wtdiff dflux(lev) = drad(lev)*wtdiff urad(lev) = 0.0_rb drad(lev) = 0.0_rb totuflux(lev) = totuflux(lev) + uflux(lev) * delwave(iband) totdflux(lev) = totdflux(lev) + dflux(lev) * delwave(iband) uclfl(lev) = clrurad(lev)*wtdiff dclfl(lev) = clrdrad(lev)*wtdiff clrurad(lev) = 0.0_rb clrdrad(lev) = 0.0_rb totuclfl(lev) = totuclfl(lev) + uclfl(lev) * delwave(iband) totdclfl(lev) = totdclfl(lev) + dclfl(lev) * delwave(iband) enddo ! End spectral band loop enddo ! Calculate fluxes at surface totuflux(0) = totuflux(0) * fluxfac totdflux(0) = totdflux(0) * fluxfac fnet(0) = totuflux(0) - totdflux(0) totuclfl(0) = totuclfl(0) * fluxfac totdclfl(0) = totdclfl(0) * fluxfac fnetc(0) = totuclfl(0) - totdclfl(0) ! Calculate fluxes at model levels do lev = 1, nlayers totuflux(lev) = totuflux(lev) * fluxfac totdflux(lev) = totdflux(lev) * fluxfac fnet(lev) = totuflux(lev) - totdflux(lev) totuclfl(lev) = totuclfl(lev) * fluxfac totdclfl(lev) = totdclfl(lev) * fluxfac fnetc(lev) = totuclfl(lev) - totdclfl(lev) l = lev - 1 ! Calculate heating rates at model layers htr(l)=heatfac*(fnet(l)-fnet(lev))/(pz(l)-pz(lev)) htrc(l)=heatfac*(fnetc(l)-fnetc(lev))/(pz(l)-pz(lev)) enddo ! Set heating rate to zero in top layer htr(nlayers) = 0.0_rb htrc(nlayers) = 0.0_rb end subroutine rtrnmc end module rrtmg_lw_rtrnmc ! path: $Source: /cvsroot/NWP/WRFV3/phys/module_ra_rrtmg_lw.F,v $ ! author: $Author: trn $ ! revision: $Revision: 1.3 $ ! created: $Date: 2009/04/16 19:54:22 $ ! module rrtmg_lw_setcoef ! -------------------------------------------------------------------------- ! | | ! | Copyright 2002-2008, Atmospheric & Environmental Research, Inc. (AER). | ! | This software may be used, copied, or redistributed as long as it is | ! | not sold and this copyright notice is reproduced on each copy made. | ! | This model is provided as is without any express or implied warranties. | ! | (http://www.rtweb.aer.com/) | ! | | ! -------------------------------------------------------------------------- ! ------- Modules ------- use parkind, only : im => kind_im, rb => kind_rb use parrrtm, only : nbndlw, mg, maxxsec, mxmol use rrlw_wvn, only: totplnk, totplk16 use rrlw_ref use rrlw_vsn, only: hvrset, hnamset implicit none contains !---------------------------------------------------------------------------- subroutine setcoef(nlayers, istart, pavel, tavel, tz, tbound, semiss, & coldry, wkl, wbroad, & laytrop, jp, jt, jt1, planklay, planklev, plankbnd, & colh2o, colco2, colo3, coln2o, colco, colch4, colo2, & colbrd, fac00, fac01, fac10, fac11, & rat_h2oco2, rat_h2oco2_1, rat_h2oo3, rat_h2oo3_1, & rat_h2on2o, rat_h2on2o_1, rat_h2och4, rat_h2och4_1, & rat_n2oco2, rat_n2oco2_1, rat_o3co2, rat_o3co2_1, & selffac, selffrac, indself, forfac, forfrac, indfor, & minorfrac, scaleminor, scaleminorn2, indminor) !---------------------------------------------------------------------------- ! ! Purpose: For a given atmosphere, calculate the indices and ! fractions related to the pressure and temperature interpolations. ! Also calculate the values of the integrated Planck functions ! for each band at the level and layer temperatures. ! ------- Declarations ------- ! ----- Input ----- integer(kind=im), intent(in) :: nlayers ! total number of layers integer(kind=im), intent(in) :: istart ! beginning band of calculation real(kind=rb), intent(in) :: pavel(:) ! layer pressures (mb) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: tavel(:) ! layer temperatures (K) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: tz(0:) ! level (interface) temperatures (K) ! Dimensions: (0:nlayers) real(kind=rb), intent(in) :: tbound ! surface temperature (K) real(kind=rb), intent(in) :: coldry(:) ! dry air column density (mol/cm2) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: wbroad(:) ! broadening gas column density (mol/cm2) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: wkl(:,:) ! molecular amounts (mol/cm-2) ! Dimensions: (mxmol,nlayers) real(kind=rb), intent(in) :: semiss(:) ! lw surface emissivity ! Dimensions: (nbndlw) ! ----- Output ----- integer(kind=im), intent(out) :: laytrop ! tropopause layer index integer(kind=im), intent(out) :: jp(:) ! ! Dimensions: (nlayers) integer(kind=im), intent(out) :: jt(:) ! ! Dimensions: (nlayers) integer(kind=im), intent(out) :: jt1(:) ! ! Dimensions: (nlayers) real(kind=rb), intent(out) :: planklay(:,:) ! ! Dimensions: (nlayers,nbndlw) real(kind=rb), intent(out) :: planklev(0:,:) ! ! Dimensions: (0:nlayers,nbndlw) real(kind=rb), intent(out) :: plankbnd(:) ! ! Dimensions: (nbndlw) real(kind=rb), intent(out) :: colh2o(:) ! column amount (h2o) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: colco2(:) ! column amount (co2) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: colo3(:) ! column amount (o3) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: coln2o(:) ! column amount (n2o) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: colco(:) ! column amount (co) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: colch4(:) ! column amount (ch4) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: colo2(:) ! column amount (o2) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: colbrd(:) ! column amount (broadening gases) ! Dimensions: (nlayers) integer(kind=im), intent(out) :: indself(:) ! Dimensions: (nlayers) integer(kind=im), intent(out) :: indfor(:) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: selffac(:) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: selffrac(:) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: forfac(:) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: forfrac(:) ! Dimensions: (nlayers) integer(kind=im), intent(out) :: indminor(:) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: minorfrac(:) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: scaleminor(:) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: scaleminorn2(:) ! Dimensions: (nlayers) real(kind=rb), intent(out) :: & ! fac00(:), fac01(:), & ! Dimensions: (nlayers) fac10(:), fac11(:) real(kind=rb), intent(out) :: & ! rat_h2oco2(:),rat_h2oco2_1(:), & rat_h2oo3(:),rat_h2oo3_1(:), & ! Dimensions: (nlayers) rat_h2on2o(:),rat_h2on2o_1(:), & rat_h2och4(:),rat_h2och4_1(:), & rat_n2oco2(:),rat_n2oco2_1(:), & rat_o3co2(:),rat_o3co2_1(:) ! ----- Local ----- integer(kind=im) :: indbound, indlev0 integer(kind=im) :: lay, indlay, indlev, iband integer(kind=im) :: jp1 real(kind=rb) :: stpfac, tbndfrac, t0frac, tlayfrac, tlevfrac real(kind=rb) :: dbdtlev, dbdtlay real(kind=rb) :: plog, fp, ft, ft1, water, scalefac, factor, compfp !jm not thread safe hvrset = '$Revision: 1.3 $' stpfac = 296._rb/1013._rb indbound = tbound - 159._rb if (indbound .lt. 1) then indbound = 1 elseif (indbound .gt. 180) then indbound = 180 endif tbndfrac = tbound - 159._rb - float(indbound) indlev0 = tz(0) - 159._rb if (indlev0 .lt. 1) then indlev0 = 1 elseif (indlev0 .gt. 180) then indlev0 = 180 endif t0frac = tz(0) - 159._rb - float(indlev0) laytrop = 0 ! Begin layer loop ! Calculate the integrated Planck functions for each band at the ! surface, level, and layer temperatures. do lay = 1, nlayers indlay = tavel(lay) - 159._rb if (indlay .lt. 1) then indlay = 1 elseif (indlay .gt. 180) then indlay = 180 endif tlayfrac = tavel(lay) - 159._rb - float(indlay) indlev = tz(lay) - 159._rb if (indlev .lt. 1) then indlev = 1 elseif (indlev .gt. 180) then indlev = 180 endif tlevfrac = tz(lay) - 159._rb - float(indlev) ! Begin spectral band loop do iband = 1, 15 if (lay.eq.1) then dbdtlev = totplnk(indbound+1,iband) - totplnk(indbound,iband) plankbnd(iband) = semiss(iband) * & (totplnk(indbound,iband) + tbndfrac * dbdtlev) dbdtlev = totplnk(indlev0+1,iband)-totplnk(indlev0,iband) planklev(0,iband) = totplnk(indlev0,iband) + t0frac * dbdtlev endif dbdtlev = totplnk(indlev+1,iband) - totplnk(indlev,iband) dbdtlay = totplnk(indlay+1,iband) - totplnk(indlay,iband) planklay(lay,iband) = totplnk(indlay,iband) + tlayfrac * dbdtlay planklev(lay,iband) = totplnk(indlev,iband) + tlevfrac * dbdtlev enddo ! For band 16, if radiative transfer will be performed on just ! this band, use integrated Planck values up to 3250 cm-1. ! If radiative transfer will be performed across all 16 bands, ! then include in the integrated Planck values for this band ! contributions from 2600 cm-1 to infinity. iband = 16 if (istart .eq. 16) then if (lay.eq.1) then dbdtlev = totplk16(indbound+1) - totplk16(indbound) plankbnd(iband) = semiss(iband) * & (totplk16(indbound) + tbndfrac * dbdtlev) dbdtlev = totplnk(indlev0+1,iband)-totplnk(indlev0,iband) planklev(0,iband) = totplk16(indlev0) + & t0frac * dbdtlev endif dbdtlev = totplk16(indlev+1) - totplk16(indlev) dbdtlay = totplk16(indlay+1) - totplk16(indlay) planklay(lay,iband) = totplk16(indlay) + tlayfrac * dbdtlay planklev(lay,iband) = totplk16(indlev) + tlevfrac * dbdtlev else if (lay.eq.1) then dbdtlev = totplnk(indbound+1,iband) - totplnk(indbound,iband) plankbnd(iband) = semiss(iband) * & (totplnk(indbound,iband) + tbndfrac * dbdtlev) dbdtlev = totplnk(indlev0+1,iband)-totplnk(indlev0,iband) planklev(0,iband) = totplnk(indlev0,iband) + t0frac * dbdtlev endif dbdtlev = totplnk(indlev+1,iband) - totplnk(indlev,iband) dbdtlay = totplnk(indlay+1,iband) - totplnk(indlay,iband) planklay(lay,iband) = totplnk(indlay,iband) + tlayfrac * dbdtlay planklev(lay,iband) = totplnk(indlev,iband) + tlevfrac * dbdtlev endif ! Find the two reference pressures on either side of the ! layer pressure. Store them in JP and JP1. Store in FP the ! fraction of the difference (in ln(pressure)) between these ! two values that the layer pressure lies. plog = log(pavel(lay)) ! plog = dlog(pavel(lay)) jp(lay) = int(36._rb - 5*(plog+0.04_rb)) if (jp(lay) .lt. 1) then jp(lay) = 1 elseif (jp(lay) .gt. 58) then jp(lay) = 58 endif jp1 = jp(lay) + 1 fp = 5._rb *(preflog(jp(lay)) - plog) ! Determine, for each reference pressure (JP and JP1), which ! reference temperature (these are different for each ! reference pressure) is nearest the layer temperature but does ! not exceed it. Store these indices in JT and JT1, resp. ! Store in FT (resp. FT1) the fraction of the way between JT ! (JT1) and the next highest reference temperature that the ! layer temperature falls. jt(lay) = int(3._rb + (tavel(lay)-tref(jp(lay)))/15._rb) if (jt(lay) .lt. 1) then jt(lay) = 1 elseif (jt(lay) .gt. 4) then jt(lay) = 4 endif ft = ((tavel(lay)-tref(jp(lay)))/15._rb) - float(jt(lay)-3) jt1(lay) = int(3._rb + (tavel(lay)-tref(jp1))/15._rb) if (jt1(lay) .lt. 1) then jt1(lay) = 1 elseif (jt1(lay) .gt. 4) then jt1(lay) = 4 endif ft1 = ((tavel(lay)-tref(jp1))/15._rb) - float(jt1(lay)-3) water = wkl(1,lay)/coldry(lay) scalefac = pavel(lay) * stpfac / tavel(lay) ! If the pressure is less than ~100mb, perform a different ! set of species interpolations. if (plog .le. 4.56_rb) go to 5300 laytrop = laytrop + 1 forfac(lay) = scalefac / (1.+water) factor = (332.0_rb-tavel(lay))/36.0_rb indfor(lay) = min(2, max(1, int(factor))) forfrac(lay) = factor - float(indfor(lay)) ! Set up factors needed to separately include the water vapor ! self-continuum in the calculation of absorption coefficient. selffac(lay) = water * forfac(lay) factor = (tavel(lay)-188.0_rb)/7.2_rb indself(lay) = min(9, max(1, int(factor)-7)) selffrac(lay) = factor - float(indself(lay) + 7) ! Set up factors needed to separately include the minor gases ! in the calculation of absorption coefficient scaleminor(lay) = pavel(lay)/tavel(lay) scaleminorn2(lay) = (pavel(lay)/tavel(lay)) & *(wbroad(lay)/(coldry(lay)+wkl(1,lay))) factor = (tavel(lay)-180.8_rb)/7.2_rb indminor(lay) = min(18, max(1, int(factor))) minorfrac(lay) = factor - float(indminor(lay)) ! Setup reference ratio to be used in calculation of binary ! species parameter in lower atmosphere. rat_h2oco2(lay)=chi_mls(1,jp(lay))/chi_mls(2,jp(lay)) rat_h2oco2_1(lay)=chi_mls(1,jp(lay)+1)/chi_mls(2,jp(lay)+1) rat_h2oo3(lay)=chi_mls(1,jp(lay))/chi_mls(3,jp(lay)) rat_h2oo3_1(lay)=chi_mls(1,jp(lay)+1)/chi_mls(3,jp(lay)+1) rat_h2on2o(lay)=chi_mls(1,jp(lay))/chi_mls(4,jp(lay)) rat_h2on2o_1(lay)=chi_mls(1,jp(lay)+1)/chi_mls(4,jp(lay)+1) rat_h2och4(lay)=chi_mls(1,jp(lay))/chi_mls(6,jp(lay)) rat_h2och4_1(lay)=chi_mls(1,jp(lay)+1)/chi_mls(6,jp(lay)+1) rat_n2oco2(lay)=chi_mls(4,jp(lay))/chi_mls(2,jp(lay)) rat_n2oco2_1(lay)=chi_mls(4,jp(lay)+1)/chi_mls(2,jp(lay)+1) ! Calculate needed column amounts. colh2o(lay) = 1.e-20_rb * wkl(1,lay) colco2(lay) = 1.e-20_rb * wkl(2,lay) colo3(lay) = 1.e-20_rb * wkl(3,lay) coln2o(lay) = 1.e-20_rb * wkl(4,lay) colco(lay) = 1.e-20_rb * wkl(5,lay) colch4(lay) = 1.e-20_rb * wkl(6,lay) colo2(lay) = 1.e-20_rb * wkl(7,lay) if (colco2(lay) .eq. 0._rb) colco2(lay) = 1.e-32_rb * coldry(lay) if (colo3(lay) .eq. 0._rb) colo3(lay) = 1.e-32_rb * coldry(lay) if (coln2o(lay) .eq. 0._rb) coln2o(lay) = 1.e-32_rb * coldry(lay) if (colco(lay) .eq. 0._rb) colco(lay) = 1.e-32_rb * coldry(lay) if (colch4(lay) .eq. 0._rb) colch4(lay) = 1.e-32_rb * coldry(lay) colbrd(lay) = 1.e-20_rb * wbroad(lay) go to 5400 ! Above laytrop. 5300 continue forfac(lay) = scalefac / (1.+water) factor = (tavel(lay)-188.0_rb)/36.0_rb indfor(lay) = 3 forfrac(lay) = factor - 1.0_rb ! Set up factors needed to separately include the water vapor ! self-continuum in the calculation of absorption coefficient. selffac(lay) = water * forfac(lay) ! Set up factors needed to separately include the minor gases ! in the calculation of absorption coefficient scaleminor(lay) = pavel(lay)/tavel(lay) scaleminorn2(lay) = (pavel(lay)/tavel(lay)) & * (wbroad(lay)/(coldry(lay)+wkl(1,lay))) factor = (tavel(lay)-180.8_rb)/7.2_rb indminor(lay) = min(18, max(1, int(factor))) minorfrac(lay) = factor - float(indminor(lay)) ! Setup reference ratio to be used in calculation of binary ! species parameter in upper atmosphere. rat_h2oco2(lay)=chi_mls(1,jp(lay))/chi_mls(2,jp(lay)) rat_h2oco2_1(lay)=chi_mls(1,jp(lay)+1)/chi_mls(2,jp(lay)+1) rat_o3co2(lay)=chi_mls(3,jp(lay))/chi_mls(2,jp(lay)) rat_o3co2_1(lay)=chi_mls(3,jp(lay)+1)/chi_mls(2,jp(lay)+1) ! Calculate needed column amounts. colh2o(lay) = 1.e-20_rb * wkl(1,lay) colco2(lay) = 1.e-20_rb * wkl(2,lay) colo3(lay) = 1.e-20_rb * wkl(3,lay) coln2o(lay) = 1.e-20_rb * wkl(4,lay) colco(lay) = 1.e-20_rb * wkl(5,lay) colch4(lay) = 1.e-20_rb * wkl(6,lay) colo2(lay) = 1.e-20_rb * wkl(7,lay) if (colco2(lay) .eq. 0._rb) colco2(lay) = 1.e-32_rb * coldry(lay) if (colo3(lay) .eq. 0._rb) colo3(lay) = 1.e-32_rb * coldry(lay) if (coln2o(lay) .eq. 0._rb) coln2o(lay) = 1.e-32_rb * coldry(lay) if (colco(lay) .eq. 0._rb) colco(lay) = 1.e-32_rb * coldry(lay) if (colch4(lay) .eq. 0._rb) colch4(lay) = 1.e-32_rb * coldry(lay) colbrd(lay) = 1.e-20_rb * wbroad(lay) 5400 continue ! We have now isolated the layer ln pressure and temperature, ! between two reference pressures and two reference temperatures ! (for each reference pressure). We multiply the pressure ! fraction FP with the appropriate temperature fractions to get ! the factors that will be needed for the interpolation that yields ! the optical depths (performed in routines TAUGBn for band n).` compfp = 1. - fp fac10(lay) = compfp * ft fac00(lay) = compfp * (1._rb - ft) fac11(lay) = fp * ft1 fac01(lay) = fp * (1._rb - ft1) ! Rescale selffac and forfac for use in taumol selffac(lay) = colh2o(lay)*selffac(lay) forfac(lay) = colh2o(lay)*forfac(lay) ! End layer loop enddo end subroutine setcoef !*************************************************************************** subroutine lwatmref !*************************************************************************** save ! These pressures are chosen such that the ln of the first pressure ! has only a few non-zero digits (i.e. ln(PREF(1)) = 6.96000) and ! each subsequent ln(pressure) differs from the previous one by 0.2. pref(:) = (/ & 1.05363e+03_rb,8.62642e+02_rb,7.06272e+02_rb,5.78246e+02_rb,4.73428e+02_rb, & 3.87610e+02_rb,3.17348e+02_rb,2.59823e+02_rb,2.12725e+02_rb,1.74164e+02_rb, & 1.42594e+02_rb,1.16746e+02_rb,9.55835e+01_rb,7.82571e+01_rb,6.40715e+01_rb, & 5.24573e+01_rb,4.29484e+01_rb,3.51632e+01_rb,2.87892e+01_rb,2.35706e+01_rb, & 1.92980e+01_rb,1.57998e+01_rb,1.29358e+01_rb,1.05910e+01_rb,8.67114e+00_rb, & 7.09933e+00_rb,5.81244e+00_rb,4.75882e+00_rb,3.89619e+00_rb,3.18993e+00_rb, & 2.61170e+00_rb,2.13828e+00_rb,1.75067e+00_rb,1.43333e+00_rb,1.17351e+00_rb, & 9.60789e-01_rb,7.86628e-01_rb,6.44036e-01_rb,5.27292e-01_rb,4.31710e-01_rb, & 3.53455e-01_rb,2.89384e-01_rb,2.36928e-01_rb,1.93980e-01_rb,1.58817e-01_rb, & 1.30029e-01_rb,1.06458e-01_rb,8.71608e-02_rb,7.13612e-02_rb,5.84256e-02_rb, & 4.78349e-02_rb,3.91639e-02_rb,3.20647e-02_rb,2.62523e-02_rb,2.14936e-02_rb, & 1.75975e-02_rb,1.44076e-02_rb,1.17959e-02_rb,9.65769e-03_rb/) preflog(:) = (/ & 6.9600e+00_rb, 6.7600e+00_rb, 6.5600e+00_rb, 6.3600e+00_rb, 6.1600e+00_rb, & 5.9600e+00_rb, 5.7600e+00_rb, 5.5600e+00_rb, 5.3600e+00_rb, 5.1600e+00_rb, & 4.9600e+00_rb, 4.7600e+00_rb, 4.5600e+00_rb, 4.3600e+00_rb, 4.1600e+00_rb, & 3.9600e+00_rb, 3.7600e+00_rb, 3.5600e+00_rb, 3.3600e+00_rb, 3.1600e+00_rb, & 2.9600e+00_rb, 2.7600e+00_rb, 2.5600e+00_rb, 2.3600e+00_rb, 2.1600e+00_rb, & 1.9600e+00_rb, 1.7600e+00_rb, 1.5600e+00_rb, 1.3600e+00_rb, 1.1600e+00_rb, & 9.6000e-01_rb, 7.6000e-01_rb, 5.6000e-01_rb, 3.6000e-01_rb, 1.6000e-01_rb, & -4.0000e-02_rb,-2.4000e-01_rb,-4.4000e-01_rb,-6.4000e-01_rb,-8.4000e-01_rb, & -1.0400e+00_rb,-1.2400e+00_rb,-1.4400e+00_rb,-1.6400e+00_rb,-1.8400e+00_rb, & -2.0400e+00_rb,-2.2400e+00_rb,-2.4400e+00_rb,-2.6400e+00_rb,-2.8400e+00_rb, & -3.0400e+00_rb,-3.2400e+00_rb,-3.4400e+00_rb,-3.6400e+00_rb,-3.8400e+00_rb, & -4.0400e+00_rb,-4.2400e+00_rb,-4.4400e+00_rb,-4.6400e+00_rb/) ! These are the temperatures associated with the respective ! pressures for the mls standard atmosphere. tref(:) = (/ & 2.9420e+02_rb, 2.8799e+02_rb, 2.7894e+02_rb, 2.6925e+02_rb, 2.5983e+02_rb, & 2.5017e+02_rb, 2.4077e+02_rb, 2.3179e+02_rb, 2.2306e+02_rb, 2.1578e+02_rb, & 2.1570e+02_rb, 2.1570e+02_rb, 2.1570e+02_rb, 2.1706e+02_rb, 2.1858e+02_rb, & 2.2018e+02_rb, 2.2174e+02_rb, 2.2328e+02_rb, 2.2479e+02_rb, 2.2655e+02_rb, & 2.2834e+02_rb, 2.3113e+02_rb, 2.3401e+02_rb, 2.3703e+02_rb, 2.4022e+02_rb, & 2.4371e+02_rb, 2.4726e+02_rb, 2.5085e+02_rb, 2.5457e+02_rb, 2.5832e+02_rb, & 2.6216e+02_rb, 2.6606e+02_rb, 2.6999e+02_rb, 2.7340e+02_rb, 2.7536e+02_rb, & 2.7568e+02_rb, 2.7372e+02_rb, 2.7163e+02_rb, 2.6955e+02_rb, 2.6593e+02_rb, & 2.6211e+02_rb, 2.5828e+02_rb, 2.5360e+02_rb, 2.4854e+02_rb, 2.4348e+02_rb, & 2.3809e+02_rb, 2.3206e+02_rb, 2.2603e+02_rb, 2.2000e+02_rb, 2.1435e+02_rb, & 2.0887e+02_rb, 2.0340e+02_rb, 1.9792e+02_rb, 1.9290e+02_rb, 1.8809e+02_rb, & 1.8329e+02_rb, 1.7849e+02_rb, 1.7394e+02_rb, 1.7212e+02_rb/) chi_mls(1,1:12) = (/ & 1.8760e-02_rb, 1.2223e-02_rb, 5.8909e-03_rb, 2.7675e-03_rb, 1.4065e-03_rb, & 7.5970e-04_rb, 3.8876e-04_rb, 1.6542e-04_rb, 3.7190e-05_rb, 7.4765e-06_rb, & 4.3082e-06_rb, 3.3319e-06_rb/) chi_mls(1,13:59) = (/ & 3.2039e-06_rb, 3.1619e-06_rb, 3.2524e-06_rb, 3.4226e-06_rb, 3.6288e-06_rb, & 3.9148e-06_rb, 4.1488e-06_rb, 4.3081e-06_rb, 4.4420e-06_rb, 4.5778e-06_rb, & 4.7087e-06_rb, 4.7943e-06_rb, 4.8697e-06_rb, 4.9260e-06_rb, 4.9669e-06_rb, & 4.9963e-06_rb, 5.0527e-06_rb, 5.1266e-06_rb, 5.2503e-06_rb, 5.3571e-06_rb, & 5.4509e-06_rb, 5.4830e-06_rb, 5.5000e-06_rb, 5.5000e-06_rb, 5.4536e-06_rb, & 5.4047e-06_rb, 5.3558e-06_rb, 5.2533e-06_rb, 5.1436e-06_rb, 5.0340e-06_rb, & 4.8766e-06_rb, 4.6979e-06_rb, 4.5191e-06_rb, 4.3360e-06_rb, 4.1442e-06_rb, & 3.9523e-06_rb, 3.7605e-06_rb, 3.5722e-06_rb, 3.3855e-06_rb, 3.1988e-06_rb, & 3.0121e-06_rb, 2.8262e-06_rb, 2.6407e-06_rb, 2.4552e-06_rb, 2.2696e-06_rb, & 4.3360e-06_rb, 4.1442e-06_rb/) chi_mls(2,1:12) = (/ & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb/) chi_mls(2,13:59) = (/ & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, 3.5500e-04_rb, & 3.5500e-04_rb, 3.5471e-04_rb, 3.5427e-04_rb, 3.5384e-04_rb, 3.5340e-04_rb, & 3.5500e-04_rb, 3.5500e-04_rb/) chi_mls(3,1:12) = (/ & 3.0170e-08_rb, 3.4725e-08_rb, 4.2477e-08_rb, 5.2759e-08_rb, 6.6944e-08_rb, & 8.7130e-08_rb, 1.1391e-07_rb, 1.5677e-07_rb, 2.1788e-07_rb, 3.2443e-07_rb, & 4.6594e-07_rb, 5.6806e-07_rb/) chi_mls(3,13:59) = (/ & 6.9607e-07_rb, 1.1186e-06_rb, 1.7618e-06_rb, 2.3269e-06_rb, 2.9577e-06_rb, & 3.6593e-06_rb, 4.5950e-06_rb, 5.3189e-06_rb, 5.9618e-06_rb, 6.5113e-06_rb, & 7.0635e-06_rb, 7.6917e-06_rb, 8.2577e-06_rb, 8.7082e-06_rb, 8.8325e-06_rb, & 8.7149e-06_rb, 8.0943e-06_rb, 7.3307e-06_rb, 6.3101e-06_rb, 5.3672e-06_rb, & 4.4829e-06_rb, 3.8391e-06_rb, 3.2827e-06_rb, 2.8235e-06_rb, 2.4906e-06_rb, & 2.1645e-06_rb, 1.8385e-06_rb, 1.6618e-06_rb, 1.5052e-06_rb, 1.3485e-06_rb, & 1.1972e-06_rb, 1.0482e-06_rb, 8.9926e-07_rb, 7.6343e-07_rb, 6.5381e-07_rb, & 5.4419e-07_rb, 4.3456e-07_rb, 3.6421e-07_rb, 3.1194e-07_rb, 2.5967e-07_rb, & 2.0740e-07_rb, 1.9146e-07_rb, 1.9364e-07_rb, 1.9582e-07_rb, 1.9800e-07_rb, & 7.6343e-07_rb, 6.5381e-07_rb/) chi_mls(4,1:12) = (/ & 3.2000e-07_rb, 3.2000e-07_rb, 3.2000e-07_rb, 3.2000e-07_rb, 3.2000e-07_rb, & 3.1965e-07_rb, 3.1532e-07_rb, 3.0383e-07_rb, 2.9422e-07_rb, 2.8495e-07_rb, & 2.7671e-07_rb, 2.6471e-07_rb/) chi_mls(4,13:59) = (/ & 2.4285e-07_rb, 2.0955e-07_rb, 1.7195e-07_rb, 1.3749e-07_rb, 1.1332e-07_rb, & 1.0035e-07_rb, 9.1281e-08_rb, 8.5463e-08_rb, 8.0363e-08_rb, 7.3372e-08_rb, & 6.5975e-08_rb, 5.6039e-08_rb, 4.7090e-08_rb, 3.9977e-08_rb, 3.2979e-08_rb, & 2.6064e-08_rb, 2.1066e-08_rb, 1.6592e-08_rb, 1.3017e-08_rb, 1.0090e-08_rb, & 7.6249e-09_rb, 6.1159e-09_rb, 4.6672e-09_rb, 3.2857e-09_rb, 2.8484e-09_rb, & 2.4620e-09_rb, 2.0756e-09_rb, 1.8551e-09_rb, 1.6568e-09_rb, 1.4584e-09_rb, & 1.3195e-09_rb, 1.2072e-09_rb, 1.0948e-09_rb, 9.9780e-10_rb, 9.3126e-10_rb, & 8.6472e-10_rb, 7.9818e-10_rb, 7.5138e-10_rb, 7.1367e-10_rb, 6.7596e-10_rb, & 6.3825e-10_rb, 6.0981e-10_rb, 5.8600e-10_rb, 5.6218e-10_rb, 5.3837e-10_rb, & 9.9780e-10_rb, 9.3126e-10_rb/) chi_mls(5,1:12) = (/ & 1.5000e-07_rb, 1.4306e-07_rb, 1.3474e-07_rb, 1.3061e-07_rb, 1.2793e-07_rb, & 1.2038e-07_rb, 1.0798e-07_rb, 9.4238e-08_rb, 7.9488e-08_rb, 6.1386e-08_rb, & 4.5563e-08_rb, 3.3475e-08_rb/) chi_mls(5,13:59) = (/ & 2.5118e-08_rb, 1.8671e-08_rb, 1.4349e-08_rb, 1.2501e-08_rb, 1.2407e-08_rb, & 1.3472e-08_rb, 1.4900e-08_rb, 1.6079e-08_rb, 1.7156e-08_rb, 1.8616e-08_rb, & 2.0106e-08_rb, 2.1654e-08_rb, 2.3096e-08_rb, 2.4340e-08_rb, 2.5643e-08_rb, & 2.6990e-08_rb, 2.8456e-08_rb, 2.9854e-08_rb, 3.0943e-08_rb, 3.2023e-08_rb, & 3.3101e-08_rb, 3.4260e-08_rb, 3.5360e-08_rb, 3.6397e-08_rb, 3.7310e-08_rb, & 3.8217e-08_rb, 3.9123e-08_rb, 4.1303e-08_rb, 4.3652e-08_rb, 4.6002e-08_rb, & 5.0289e-08_rb, 5.5446e-08_rb, 6.0603e-08_rb, 6.8946e-08_rb, 8.3652e-08_rb, & 9.8357e-08_rb, 1.1306e-07_rb, 1.4766e-07_rb, 1.9142e-07_rb, 2.3518e-07_rb, & 2.7894e-07_rb, 3.5001e-07_rb, 4.3469e-07_rb, 5.1938e-07_rb, 6.0407e-07_rb, & 6.8946e-08_rb, 8.3652e-08_rb/) chi_mls(6,1:12) = (/ & 1.7000e-06_rb, 1.7000e-06_rb, 1.6999e-06_rb, 1.6904e-06_rb, 1.6671e-06_rb, & 1.6351e-06_rb, 1.6098e-06_rb, 1.5590e-06_rb, 1.5120e-06_rb, 1.4741e-06_rb, & 1.4385e-06_rb, 1.4002e-06_rb/) chi_mls(6,13:59) = (/ & 1.3573e-06_rb, 1.3130e-06_rb, 1.2512e-06_rb, 1.1668e-06_rb, 1.0553e-06_rb, & 9.3281e-07_rb, 8.1217e-07_rb, 7.5239e-07_rb, 7.0728e-07_rb, 6.6722e-07_rb, & 6.2733e-07_rb, 5.8604e-07_rb, 5.4769e-07_rb, 5.1480e-07_rb, 4.8206e-07_rb, & 4.4943e-07_rb, 4.1702e-07_rb, 3.8460e-07_rb, 3.5200e-07_rb, 3.1926e-07_rb, & 2.8646e-07_rb, 2.5498e-07_rb, 2.2474e-07_rb, 1.9588e-07_rb, 1.8295e-07_rb, & 1.7089e-07_rb, 1.5882e-07_rb, 1.5536e-07_rb, 1.5304e-07_rb, 1.5072e-07_rb, & 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, & 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, & 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, 1.5000e-07_rb, & 1.5000e-07_rb, 1.5000e-07_rb/) chi_mls(7,1:12) = (/ & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb/) chi_mls(7,13:59) = (/ & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, 0.2090_rb, & 0.2090_rb, 0.2090_rb/) end subroutine lwatmref !*************************************************************************** subroutine lwavplank !*************************************************************************** save totplnk(1:50, 1) = (/ & 0.14783e-05_rb,0.15006e-05_rb,0.15230e-05_rb,0.15455e-05_rb,0.15681e-05_rb, & 0.15908e-05_rb,0.16136e-05_rb,0.16365e-05_rb,0.16595e-05_rb,0.16826e-05_rb, & 0.17059e-05_rb,0.17292e-05_rb,0.17526e-05_rb,0.17762e-05_rb,0.17998e-05_rb, & 0.18235e-05_rb,0.18473e-05_rb,0.18712e-05_rb,0.18953e-05_rb,0.19194e-05_rb, & 0.19435e-05_rb,0.19678e-05_rb,0.19922e-05_rb,0.20166e-05_rb,0.20412e-05_rb, & 0.20658e-05_rb,0.20905e-05_rb,0.21153e-05_rb,0.21402e-05_rb,0.21652e-05_rb, & 0.21902e-05_rb,0.22154e-05_rb,0.22406e-05_rb,0.22659e-05_rb,0.22912e-05_rb, & 0.23167e-05_rb,0.23422e-05_rb,0.23678e-05_rb,0.23934e-05_rb,0.24192e-05_rb, & 0.24450e-05_rb,0.24709e-05_rb,0.24968e-05_rb,0.25229e-05_rb,0.25490e-05_rb, & 0.25751e-05_rb,0.26014e-05_rb,0.26277e-05_rb,0.26540e-05_rb,0.26805e-05_rb/) totplnk(51:100, 1) = (/ & 0.27070e-05_rb,0.27335e-05_rb,0.27602e-05_rb,0.27869e-05_rb,0.28136e-05_rb, & 0.28404e-05_rb,0.28673e-05_rb,0.28943e-05_rb,0.29213e-05_rb,0.29483e-05_rb, & 0.29754e-05_rb,0.30026e-05_rb,0.30298e-05_rb,0.30571e-05_rb,0.30845e-05_rb, & 0.31119e-05_rb,0.31393e-05_rb,0.31669e-05_rb,0.31944e-05_rb,0.32220e-05_rb, & 0.32497e-05_rb,0.32774e-05_rb,0.33052e-05_rb,0.33330e-05_rb,0.33609e-05_rb, & 0.33888e-05_rb,0.34168e-05_rb,0.34448e-05_rb,0.34729e-05_rb,0.35010e-05_rb, & 0.35292e-05_rb,0.35574e-05_rb,0.35857e-05_rb,0.36140e-05_rb,0.36424e-05_rb, & 0.36708e-05_rb,0.36992e-05_rb,0.37277e-05_rb,0.37563e-05_rb,0.37848e-05_rb, & 0.38135e-05_rb,0.38421e-05_rb,0.38708e-05_rb,0.38996e-05_rb,0.39284e-05_rb, & 0.39572e-05_rb,0.39861e-05_rb,0.40150e-05_rb,0.40440e-05_rb,0.40730e-05_rb/) totplnk(101:150, 1) = (/ & 0.41020e-05_rb,0.41311e-05_rb,0.41602e-05_rb,0.41893e-05_rb,0.42185e-05_rb, & 0.42477e-05_rb,0.42770e-05_rb,0.43063e-05_rb,0.43356e-05_rb,0.43650e-05_rb, & 0.43944e-05_rb,0.44238e-05_rb,0.44533e-05_rb,0.44828e-05_rb,0.45124e-05_rb, & 0.45419e-05_rb,0.45715e-05_rb,0.46012e-05_rb,0.46309e-05_rb,0.46606e-05_rb, & 0.46903e-05_rb,0.47201e-05_rb,0.47499e-05_rb,0.47797e-05_rb,0.48096e-05_rb, & 0.48395e-05_rb,0.48695e-05_rb,0.48994e-05_rb,0.49294e-05_rb,0.49594e-05_rb, & 0.49895e-05_rb,0.50196e-05_rb,0.50497e-05_rb,0.50798e-05_rb,0.51100e-05_rb, & 0.51402e-05_rb,0.51704e-05_rb,0.52007e-05_rb,0.52309e-05_rb,0.52612e-05_rb, & 0.52916e-05_rb,0.53219e-05_rb,0.53523e-05_rb,0.53827e-05_rb,0.54132e-05_rb, & 0.54436e-05_rb,0.54741e-05_rb,0.55047e-05_rb,0.55352e-05_rb,0.55658e-05_rb/) totplnk(151:181, 1) = (/ & 0.55964e-05_rb,0.56270e-05_rb,0.56576e-05_rb,0.56883e-05_rb,0.57190e-05_rb, & 0.57497e-05_rb,0.57804e-05_rb,0.58112e-05_rb,0.58420e-05_rb,0.58728e-05_rb, & 0.59036e-05_rb,0.59345e-05_rb,0.59653e-05_rb,0.59962e-05_rb,0.60272e-05_rb, & 0.60581e-05_rb,0.60891e-05_rb,0.61201e-05_rb,0.61511e-05_rb,0.61821e-05_rb, & 0.62131e-05_rb,0.62442e-05_rb,0.62753e-05_rb,0.63064e-05_rb,0.63376e-05_rb, & 0.63687e-05_rb,0.63998e-05_rb,0.64310e-05_rb,0.64622e-05_rb,0.64935e-05_rb, & 0.65247e-05_rb/) totplnk(1:50, 2) = (/ & 0.20262e-05_rb,0.20757e-05_rb,0.21257e-05_rb,0.21763e-05_rb,0.22276e-05_rb, & 0.22794e-05_rb,0.23319e-05_rb,0.23849e-05_rb,0.24386e-05_rb,0.24928e-05_rb, & 0.25477e-05_rb,0.26031e-05_rb,0.26591e-05_rb,0.27157e-05_rb,0.27728e-05_rb, & 0.28306e-05_rb,0.28889e-05_rb,0.29478e-05_rb,0.30073e-05_rb,0.30673e-05_rb, & 0.31279e-05_rb,0.31890e-05_rb,0.32507e-05_rb,0.33129e-05_rb,0.33757e-05_rb, & 0.34391e-05_rb,0.35029e-05_rb,0.35674e-05_rb,0.36323e-05_rb,0.36978e-05_rb, & 0.37638e-05_rb,0.38304e-05_rb,0.38974e-05_rb,0.39650e-05_rb,0.40331e-05_rb, & 0.41017e-05_rb,0.41708e-05_rb,0.42405e-05_rb,0.43106e-05_rb,0.43812e-05_rb, & 0.44524e-05_rb,0.45240e-05_rb,0.45961e-05_rb,0.46687e-05_rb,0.47418e-05_rb, & 0.48153e-05_rb,0.48894e-05_rb,0.49639e-05_rb,0.50389e-05_rb,0.51143e-05_rb/) totplnk(51:100, 2) = (/ & 0.51902e-05_rb,0.52666e-05_rb,0.53434e-05_rb,0.54207e-05_rb,0.54985e-05_rb, & 0.55767e-05_rb,0.56553e-05_rb,0.57343e-05_rb,0.58139e-05_rb,0.58938e-05_rb, & 0.59742e-05_rb,0.60550e-05_rb,0.61362e-05_rb,0.62179e-05_rb,0.63000e-05_rb, & 0.63825e-05_rb,0.64654e-05_rb,0.65487e-05_rb,0.66324e-05_rb,0.67166e-05_rb, & 0.68011e-05_rb,0.68860e-05_rb,0.69714e-05_rb,0.70571e-05_rb,0.71432e-05_rb, & 0.72297e-05_rb,0.73166e-05_rb,0.74039e-05_rb,0.74915e-05_rb,0.75796e-05_rb, & 0.76680e-05_rb,0.77567e-05_rb,0.78459e-05_rb,0.79354e-05_rb,0.80252e-05_rb, & 0.81155e-05_rb,0.82061e-05_rb,0.82970e-05_rb,0.83883e-05_rb,0.84799e-05_rb, & 0.85719e-05_rb,0.86643e-05_rb,0.87569e-05_rb,0.88499e-05_rb,0.89433e-05_rb, & 0.90370e-05_rb,0.91310e-05_rb,0.92254e-05_rb,0.93200e-05_rb,0.94150e-05_rb/) totplnk(101:150, 2) = (/ & 0.95104e-05_rb,0.96060e-05_rb,0.97020e-05_rb,0.97982e-05_rb,0.98948e-05_rb, & 0.99917e-05_rb,0.10089e-04_rb,0.10186e-04_rb,0.10284e-04_rb,0.10382e-04_rb, & 0.10481e-04_rb,0.10580e-04_rb,0.10679e-04_rb,0.10778e-04_rb,0.10877e-04_rb, & 0.10977e-04_rb,0.11077e-04_rb,0.11178e-04_rb,0.11279e-04_rb,0.11380e-04_rb, & 0.11481e-04_rb,0.11583e-04_rb,0.11684e-04_rb,0.11786e-04_rb,0.11889e-04_rb, & 0.11992e-04_rb,0.12094e-04_rb,0.12198e-04_rb,0.12301e-04_rb,0.12405e-04_rb, & 0.12509e-04_rb,0.12613e-04_rb,0.12717e-04_rb,0.12822e-04_rb,0.12927e-04_rb, & 0.13032e-04_rb,0.13138e-04_rb,0.13244e-04_rb,0.13349e-04_rb,0.13456e-04_rb, & 0.13562e-04_rb,0.13669e-04_rb,0.13776e-04_rb,0.13883e-04_rb,0.13990e-04_rb, & 0.14098e-04_rb,0.14206e-04_rb,0.14314e-04_rb,0.14422e-04_rb,0.14531e-04_rb/) totplnk(151:181, 2) = (/ & 0.14639e-04_rb,0.14748e-04_rb,0.14857e-04_rb,0.14967e-04_rb,0.15076e-04_rb, & 0.15186e-04_rb,0.15296e-04_rb,0.15407e-04_rb,0.15517e-04_rb,0.15628e-04_rb, & 0.15739e-04_rb,0.15850e-04_rb,0.15961e-04_rb,0.16072e-04_rb,0.16184e-04_rb, & 0.16296e-04_rb,0.16408e-04_rb,0.16521e-04_rb,0.16633e-04_rb,0.16746e-04_rb, & 0.16859e-04_rb,0.16972e-04_rb,0.17085e-04_rb,0.17198e-04_rb,0.17312e-04_rb, & 0.17426e-04_rb,0.17540e-04_rb,0.17654e-04_rb,0.17769e-04_rb,0.17883e-04_rb, & 0.17998e-04_rb/) totplnk(1:50, 3) = (/ & 1.34822e-06_rb,1.39134e-06_rb,1.43530e-06_rb,1.48010e-06_rb,1.52574e-06_rb, & 1.57222e-06_rb,1.61956e-06_rb,1.66774e-06_rb,1.71678e-06_rb,1.76666e-06_rb, & 1.81741e-06_rb,1.86901e-06_rb,1.92147e-06_rb,1.97479e-06_rb,2.02898e-06_rb, & 2.08402e-06_rb,2.13993e-06_rb,2.19671e-06_rb,2.25435e-06_rb,2.31285e-06_rb, & 2.37222e-06_rb,2.43246e-06_rb,2.49356e-06_rb,2.55553e-06_rb,2.61837e-06_rb, & 2.68207e-06_rb,2.74664e-06_rb,2.81207e-06_rb,2.87837e-06_rb,2.94554e-06_rb, & 3.01356e-06_rb,3.08245e-06_rb,3.15221e-06_rb,3.22282e-06_rb,3.29429e-06_rb, & 3.36662e-06_rb,3.43982e-06_rb,3.51386e-06_rb,3.58876e-06_rb,3.66451e-06_rb, & 3.74112e-06_rb,3.81857e-06_rb,3.89688e-06_rb,3.97602e-06_rb,4.05601e-06_rb, & 4.13685e-06_rb,4.21852e-06_rb,4.30104e-06_rb,4.38438e-06_rb,4.46857e-06_rb/) totplnk(51:100, 3) = (/ & 4.55358e-06_rb,4.63943e-06_rb,4.72610e-06_rb,4.81359e-06_rb,4.90191e-06_rb, & 4.99105e-06_rb,5.08100e-06_rb,5.17176e-06_rb,5.26335e-06_rb,5.35573e-06_rb, & 5.44892e-06_rb,5.54292e-06_rb,5.63772e-06_rb,5.73331e-06_rb,5.82970e-06_rb, & 5.92688e-06_rb,6.02485e-06_rb,6.12360e-06_rb,6.22314e-06_rb,6.32346e-06_rb, & 6.42455e-06_rb,6.52641e-06_rb,6.62906e-06_rb,6.73247e-06_rb,6.83664e-06_rb, & 6.94156e-06_rb,7.04725e-06_rb,7.15370e-06_rb,7.26089e-06_rb,7.36883e-06_rb, & 7.47752e-06_rb,7.58695e-06_rb,7.69712e-06_rb,7.80801e-06_rb,7.91965e-06_rb, & 8.03201e-06_rb,8.14510e-06_rb,8.25891e-06_rb,8.37343e-06_rb,8.48867e-06_rb, & 8.60463e-06_rb,8.72128e-06_rb,8.83865e-06_rb,8.95672e-06_rb,9.07548e-06_rb, & 9.19495e-06_rb,9.31510e-06_rb,9.43594e-06_rb,9.55745e-06_rb,9.67966e-06_rb/) totplnk(101:150, 3) = (/ & 9.80254e-06_rb,9.92609e-06_rb,1.00503e-05_rb,1.01752e-05_rb,1.03008e-05_rb, & 1.04270e-05_rb,1.05539e-05_rb,1.06814e-05_rb,1.08096e-05_rb,1.09384e-05_rb, & 1.10679e-05_rb,1.11980e-05_rb,1.13288e-05_rb,1.14601e-05_rb,1.15922e-05_rb, & 1.17248e-05_rb,1.18581e-05_rb,1.19920e-05_rb,1.21265e-05_rb,1.22616e-05_rb, & 1.23973e-05_rb,1.25337e-05_rb,1.26706e-05_rb,1.28081e-05_rb,1.29463e-05_rb, & 1.30850e-05_rb,1.32243e-05_rb,1.33642e-05_rb,1.35047e-05_rb,1.36458e-05_rb, & 1.37875e-05_rb,1.39297e-05_rb,1.40725e-05_rb,1.42159e-05_rb,1.43598e-05_rb, & 1.45044e-05_rb,1.46494e-05_rb,1.47950e-05_rb,1.49412e-05_rb,1.50879e-05_rb, & 1.52352e-05_rb,1.53830e-05_rb,1.55314e-05_rb,1.56803e-05_rb,1.58297e-05_rb, & 1.59797e-05_rb,1.61302e-05_rb,1.62812e-05_rb,1.64327e-05_rb,1.65848e-05_rb/) totplnk(151:181, 3) = (/ & 1.67374e-05_rb,1.68904e-05_rb,1.70441e-05_rb,1.71982e-05_rb,1.73528e-05_rb, & 1.75079e-05_rb,1.76635e-05_rb,1.78197e-05_rb,1.79763e-05_rb,1.81334e-05_rb, & 1.82910e-05_rb,1.84491e-05_rb,1.86076e-05_rb,1.87667e-05_rb,1.89262e-05_rb, & 1.90862e-05_rb,1.92467e-05_rb,1.94076e-05_rb,1.95690e-05_rb,1.97309e-05_rb, & 1.98932e-05_rb,2.00560e-05_rb,2.02193e-05_rb,2.03830e-05_rb,2.05472e-05_rb, & 2.07118e-05_rb,2.08768e-05_rb,2.10423e-05_rb,2.12083e-05_rb,2.13747e-05_rb, & 2.15414e-05_rb/) totplnk(1:50, 4) = (/ & 8.90528e-07_rb,9.24222e-07_rb,9.58757e-07_rb,9.94141e-07_rb,1.03038e-06_rb, & 1.06748e-06_rb,1.10545e-06_rb,1.14430e-06_rb,1.18403e-06_rb,1.22465e-06_rb, & 1.26618e-06_rb,1.30860e-06_rb,1.35193e-06_rb,1.39619e-06_rb,1.44136e-06_rb, & 1.48746e-06_rb,1.53449e-06_rb,1.58246e-06_rb,1.63138e-06_rb,1.68124e-06_rb, & 1.73206e-06_rb,1.78383e-06_rb,1.83657e-06_rb,1.89028e-06_rb,1.94495e-06_rb, & 2.00060e-06_rb,2.05724e-06_rb,2.11485e-06_rb,2.17344e-06_rb,2.23303e-06_rb, & 2.29361e-06_rb,2.35519e-06_rb,2.41777e-06_rb,2.48134e-06_rb,2.54592e-06_rb, & 2.61151e-06_rb,2.67810e-06_rb,2.74571e-06_rb,2.81433e-06_rb,2.88396e-06_rb, & 2.95461e-06_rb,3.02628e-06_rb,3.09896e-06_rb,3.17267e-06_rb,3.24741e-06_rb, & 3.32316e-06_rb,3.39994e-06_rb,3.47774e-06_rb,3.55657e-06_rb,3.63642e-06_rb/) totplnk(51:100, 4) = (/ & 3.71731e-06_rb,3.79922e-06_rb,3.88216e-06_rb,3.96612e-06_rb,4.05112e-06_rb, & 4.13714e-06_rb,4.22419e-06_rb,4.31227e-06_rb,4.40137e-06_rb,4.49151e-06_rb, & 4.58266e-06_rb,4.67485e-06_rb,4.76806e-06_rb,4.86229e-06_rb,4.95754e-06_rb, & 5.05383e-06_rb,5.15113e-06_rb,5.24946e-06_rb,5.34879e-06_rb,5.44916e-06_rb, & 5.55053e-06_rb,5.65292e-06_rb,5.75632e-06_rb,5.86073e-06_rb,5.96616e-06_rb, & 6.07260e-06_rb,6.18003e-06_rb,6.28848e-06_rb,6.39794e-06_rb,6.50838e-06_rb, & 6.61983e-06_rb,6.73229e-06_rb,6.84573e-06_rb,6.96016e-06_rb,7.07559e-06_rb, & 7.19200e-06_rb,7.30940e-06_rb,7.42779e-06_rb,7.54715e-06_rb,7.66749e-06_rb, & 7.78882e-06_rb,7.91110e-06_rb,8.03436e-06_rb,8.15859e-06_rb,8.28379e-06_rb, & 8.40994e-06_rb,8.53706e-06_rb,8.66515e-06_rb,8.79418e-06_rb,8.92416e-06_rb/) totplnk(101:150, 4) = (/ & 9.05510e-06_rb,9.18697e-06_rb,9.31979e-06_rb,9.45356e-06_rb,9.58826e-06_rb, & 9.72389e-06_rb,9.86046e-06_rb,9.99793e-06_rb,1.01364e-05_rb,1.02757e-05_rb, & 1.04159e-05_rb,1.05571e-05_rb,1.06992e-05_rb,1.08422e-05_rb,1.09861e-05_rb, & 1.11309e-05_rb,1.12766e-05_rb,1.14232e-05_rb,1.15707e-05_rb,1.17190e-05_rb, & 1.18683e-05_rb,1.20184e-05_rb,1.21695e-05_rb,1.23214e-05_rb,1.24741e-05_rb, & 1.26277e-05_rb,1.27822e-05_rb,1.29376e-05_rb,1.30939e-05_rb,1.32509e-05_rb, & 1.34088e-05_rb,1.35676e-05_rb,1.37273e-05_rb,1.38877e-05_rb,1.40490e-05_rb, & 1.42112e-05_rb,1.43742e-05_rb,1.45380e-05_rb,1.47026e-05_rb,1.48680e-05_rb, & 1.50343e-05_rb,1.52014e-05_rb,1.53692e-05_rb,1.55379e-05_rb,1.57074e-05_rb, & 1.58778e-05_rb,1.60488e-05_rb,1.62207e-05_rb,1.63934e-05_rb,1.65669e-05_rb/) totplnk(151:181, 4) = (/ & 1.67411e-05_rb,1.69162e-05_rb,1.70920e-05_rb,1.72685e-05_rb,1.74459e-05_rb, & 1.76240e-05_rb,1.78029e-05_rb,1.79825e-05_rb,1.81629e-05_rb,1.83440e-05_rb, & 1.85259e-05_rb,1.87086e-05_rb,1.88919e-05_rb,1.90760e-05_rb,1.92609e-05_rb, & 1.94465e-05_rb,1.96327e-05_rb,1.98199e-05_rb,2.00076e-05_rb,2.01961e-05_rb, & 2.03853e-05_rb,2.05752e-05_rb,2.07658e-05_rb,2.09571e-05_rb,2.11491e-05_rb, & 2.13418e-05_rb,2.15352e-05_rb,2.17294e-05_rb,2.19241e-05_rb,2.21196e-05_rb, & 2.23158e-05_rb/) totplnk(1:50, 5) = (/ & 5.70230e-07_rb,5.94788e-07_rb,6.20085e-07_rb,6.46130e-07_rb,6.72936e-07_rb, & 7.00512e-07_rb,7.28869e-07_rb,7.58019e-07_rb,7.87971e-07_rb,8.18734e-07_rb, & 8.50320e-07_rb,8.82738e-07_rb,9.15999e-07_rb,9.50110e-07_rb,9.85084e-07_rb, & 1.02093e-06_rb,1.05765e-06_rb,1.09527e-06_rb,1.13378e-06_rb,1.17320e-06_rb, & 1.21353e-06_rb,1.25479e-06_rb,1.29698e-06_rb,1.34011e-06_rb,1.38419e-06_rb, & 1.42923e-06_rb,1.47523e-06_rb,1.52221e-06_rb,1.57016e-06_rb,1.61910e-06_rb, & 1.66904e-06_rb,1.71997e-06_rb,1.77192e-06_rb,1.82488e-06_rb,1.87886e-06_rb, & 1.93387e-06_rb,1.98991e-06_rb,2.04699e-06_rb,2.10512e-06_rb,2.16430e-06_rb, & 2.22454e-06_rb,2.28584e-06_rb,2.34821e-06_rb,2.41166e-06_rb,2.47618e-06_rb, & 2.54178e-06_rb,2.60847e-06_rb,2.67626e-06_rb,2.74514e-06_rb,2.81512e-06_rb/) totplnk(51:100, 5) = (/ & 2.88621e-06_rb,2.95841e-06_rb,3.03172e-06_rb,3.10615e-06_rb,3.18170e-06_rb, & 3.25838e-06_rb,3.33618e-06_rb,3.41511e-06_rb,3.49518e-06_rb,3.57639e-06_rb, & 3.65873e-06_rb,3.74221e-06_rb,3.82684e-06_rb,3.91262e-06_rb,3.99955e-06_rb, & 4.08763e-06_rb,4.17686e-06_rb,4.26725e-06_rb,4.35880e-06_rb,4.45150e-06_rb, & 4.54537e-06_rb,4.64039e-06_rb,4.73659e-06_rb,4.83394e-06_rb,4.93246e-06_rb, & 5.03215e-06_rb,5.13301e-06_rb,5.23504e-06_rb,5.33823e-06_rb,5.44260e-06_rb, & 5.54814e-06_rb,5.65484e-06_rb,5.76272e-06_rb,5.87177e-06_rb,5.98199e-06_rb, & 6.09339e-06_rb,6.20596e-06_rb,6.31969e-06_rb,6.43460e-06_rb,6.55068e-06_rb, & 6.66793e-06_rb,6.78636e-06_rb,6.90595e-06_rb,7.02670e-06_rb,7.14863e-06_rb, & 7.27173e-06_rb,7.39599e-06_rb,7.52142e-06_rb,7.64802e-06_rb,7.77577e-06_rb/) totplnk(101:150, 5) = (/ & 7.90469e-06_rb,8.03477e-06_rb,8.16601e-06_rb,8.29841e-06_rb,8.43198e-06_rb, & 8.56669e-06_rb,8.70256e-06_rb,8.83957e-06_rb,8.97775e-06_rb,9.11706e-06_rb, & 9.25753e-06_rb,9.39915e-06_rb,9.54190e-06_rb,9.68580e-06_rb,9.83085e-06_rb, & 9.97704e-06_rb,1.01243e-05_rb,1.02728e-05_rb,1.04224e-05_rb,1.05731e-05_rb, & 1.07249e-05_rb,1.08779e-05_rb,1.10320e-05_rb,1.11872e-05_rb,1.13435e-05_rb, & 1.15009e-05_rb,1.16595e-05_rb,1.18191e-05_rb,1.19799e-05_rb,1.21418e-05_rb, & 1.23048e-05_rb,1.24688e-05_rb,1.26340e-05_rb,1.28003e-05_rb,1.29676e-05_rb, & 1.31361e-05_rb,1.33056e-05_rb,1.34762e-05_rb,1.36479e-05_rb,1.38207e-05_rb, & 1.39945e-05_rb,1.41694e-05_rb,1.43454e-05_rb,1.45225e-05_rb,1.47006e-05_rb, & 1.48797e-05_rb,1.50600e-05_rb,1.52413e-05_rb,1.54236e-05_rb,1.56070e-05_rb/) totplnk(151:181, 5) = (/ & 1.57914e-05_rb,1.59768e-05_rb,1.61633e-05_rb,1.63509e-05_rb,1.65394e-05_rb, & 1.67290e-05_rb,1.69197e-05_rb,1.71113e-05_rb,1.73040e-05_rb,1.74976e-05_rb, & 1.76923e-05_rb,1.78880e-05_rb,1.80847e-05_rb,1.82824e-05_rb,1.84811e-05_rb, & 1.86808e-05_rb,1.88814e-05_rb,1.90831e-05_rb,1.92857e-05_rb,1.94894e-05_rb, & 1.96940e-05_rb,1.98996e-05_rb,2.01061e-05_rb,2.03136e-05_rb,2.05221e-05_rb, & 2.07316e-05_rb,2.09420e-05_rb,2.11533e-05_rb,2.13657e-05_rb,2.15789e-05_rb, & 2.17931e-05_rb/) totplnk(1:50, 6) = (/ & 2.73493e-07_rb,2.87408e-07_rb,3.01848e-07_rb,3.16825e-07_rb,3.32352e-07_rb, & 3.48439e-07_rb,3.65100e-07_rb,3.82346e-07_rb,4.00189e-07_rb,4.18641e-07_rb, & 4.37715e-07_rb,4.57422e-07_rb,4.77774e-07_rb,4.98784e-07_rb,5.20464e-07_rb, & 5.42824e-07_rb,5.65879e-07_rb,5.89638e-07_rb,6.14115e-07_rb,6.39320e-07_rb, & 6.65266e-07_rb,6.91965e-07_rb,7.19427e-07_rb,7.47666e-07_rb,7.76691e-07_rb, & 8.06516e-07_rb,8.37151e-07_rb,8.68607e-07_rb,9.00896e-07_rb,9.34029e-07_rb, & 9.68018e-07_rb,1.00287e-06_rb,1.03860e-06_rb,1.07522e-06_rb,1.11274e-06_rb, & 1.15117e-06_rb,1.19052e-06_rb,1.23079e-06_rb,1.27201e-06_rb,1.31418e-06_rb, & 1.35731e-06_rb,1.40141e-06_rb,1.44650e-06_rb,1.49257e-06_rb,1.53965e-06_rb, & 1.58773e-06_rb,1.63684e-06_rb,1.68697e-06_rb,1.73815e-06_rb,1.79037e-06_rb/) totplnk(51:100, 6) = (/ & 1.84365e-06_rb,1.89799e-06_rb,1.95341e-06_rb,2.00991e-06_rb,2.06750e-06_rb, & 2.12619e-06_rb,2.18599e-06_rb,2.24691e-06_rb,2.30895e-06_rb,2.37212e-06_rb, & 2.43643e-06_rb,2.50189e-06_rb,2.56851e-06_rb,2.63628e-06_rb,2.70523e-06_rb, & 2.77536e-06_rb,2.84666e-06_rb,2.91916e-06_rb,2.99286e-06_rb,3.06776e-06_rb, & 3.14387e-06_rb,3.22120e-06_rb,3.29975e-06_rb,3.37953e-06_rb,3.46054e-06_rb, & 3.54280e-06_rb,3.62630e-06_rb,3.71105e-06_rb,3.79707e-06_rb,3.88434e-06_rb, & 3.97288e-06_rb,4.06270e-06_rb,4.15380e-06_rb,4.24617e-06_rb,4.33984e-06_rb, & 4.43479e-06_rb,4.53104e-06_rb,4.62860e-06_rb,4.72746e-06_rb,4.82763e-06_rb, & 4.92911e-06_rb,5.03191e-06_rb,5.13603e-06_rb,5.24147e-06_rb,5.34824e-06_rb, & 5.45634e-06_rb,5.56578e-06_rb,5.67656e-06_rb,5.78867e-06_rb,5.90213e-06_rb/) totplnk(101:150, 6) = (/ & 6.01694e-06_rb,6.13309e-06_rb,6.25060e-06_rb,6.36947e-06_rb,6.48968e-06_rb, & 6.61126e-06_rb,6.73420e-06_rb,6.85850e-06_rb,6.98417e-06_rb,7.11120e-06_rb, & 7.23961e-06_rb,7.36938e-06_rb,7.50053e-06_rb,7.63305e-06_rb,7.76694e-06_rb, & 7.90221e-06_rb,8.03887e-06_rb,8.17690e-06_rb,8.31632e-06_rb,8.45710e-06_rb, & 8.59928e-06_rb,8.74282e-06_rb,8.88776e-06_rb,9.03409e-06_rb,9.18179e-06_rb, & 9.33088e-06_rb,9.48136e-06_rb,9.63323e-06_rb,9.78648e-06_rb,9.94111e-06_rb, & 1.00971e-05_rb,1.02545e-05_rb,1.04133e-05_rb,1.05735e-05_rb,1.07351e-05_rb, & 1.08980e-05_rb,1.10624e-05_rb,1.12281e-05_rb,1.13952e-05_rb,1.15637e-05_rb, & 1.17335e-05_rb,1.19048e-05_rb,1.20774e-05_rb,1.22514e-05_rb,1.24268e-05_rb, & 1.26036e-05_rb,1.27817e-05_rb,1.29612e-05_rb,1.31421e-05_rb,1.33244e-05_rb/) totplnk(151:181, 6) = (/ & 1.35080e-05_rb,1.36930e-05_rb,1.38794e-05_rb,1.40672e-05_rb,1.42563e-05_rb, & 1.44468e-05_rb,1.46386e-05_rb,1.48318e-05_rb,1.50264e-05_rb,1.52223e-05_rb, & 1.54196e-05_rb,1.56182e-05_rb,1.58182e-05_rb,1.60196e-05_rb,1.62223e-05_rb, & 1.64263e-05_rb,1.66317e-05_rb,1.68384e-05_rb,1.70465e-05_rb,1.72559e-05_rb, & 1.74666e-05_rb,1.76787e-05_rb,1.78921e-05_rb,1.81069e-05_rb,1.83230e-05_rb, & 1.85404e-05_rb,1.87591e-05_rb,1.89791e-05_rb,1.92005e-05_rb,1.94232e-05_rb, & 1.96471e-05_rb/) totplnk(1:50, 7) = (/ & 1.25349e-07_rb,1.32735e-07_rb,1.40458e-07_rb,1.48527e-07_rb,1.56954e-07_rb, & 1.65748e-07_rb,1.74920e-07_rb,1.84481e-07_rb,1.94443e-07_rb,2.04814e-07_rb, & 2.15608e-07_rb,2.26835e-07_rb,2.38507e-07_rb,2.50634e-07_rb,2.63229e-07_rb, & 2.76301e-07_rb,2.89864e-07_rb,3.03930e-07_rb,3.18508e-07_rb,3.33612e-07_rb, & 3.49253e-07_rb,3.65443e-07_rb,3.82195e-07_rb,3.99519e-07_rb,4.17428e-07_rb, & 4.35934e-07_rb,4.55050e-07_rb,4.74785e-07_rb,4.95155e-07_rb,5.16170e-07_rb, & 5.37844e-07_rb,5.60186e-07_rb,5.83211e-07_rb,6.06929e-07_rb,6.31355e-07_rb, & 6.56498e-07_rb,6.82373e-07_rb,7.08990e-07_rb,7.36362e-07_rb,7.64501e-07_rb, & 7.93420e-07_rb,8.23130e-07_rb,8.53643e-07_rb,8.84971e-07_rb,9.17128e-07_rb, & 9.50123e-07_rb,9.83969e-07_rb,1.01868e-06_rb,1.05426e-06_rb,1.09073e-06_rb/) totplnk(51:100, 7) = (/ & 1.12810e-06_rb,1.16638e-06_rb,1.20558e-06_rb,1.24572e-06_rb,1.28680e-06_rb, & 1.32883e-06_rb,1.37183e-06_rb,1.41581e-06_rb,1.46078e-06_rb,1.50675e-06_rb, & 1.55374e-06_rb,1.60174e-06_rb,1.65078e-06_rb,1.70087e-06_rb,1.75200e-06_rb, & 1.80421e-06_rb,1.85749e-06_rb,1.91186e-06_rb,1.96732e-06_rb,2.02389e-06_rb, & 2.08159e-06_rb,2.14040e-06_rb,2.20035e-06_rb,2.26146e-06_rb,2.32372e-06_rb, & 2.38714e-06_rb,2.45174e-06_rb,2.51753e-06_rb,2.58451e-06_rb,2.65270e-06_rb, & 2.72210e-06_rb,2.79272e-06_rb,2.86457e-06_rb,2.93767e-06_rb,3.01201e-06_rb, & 3.08761e-06_rb,3.16448e-06_rb,3.24261e-06_rb,3.32204e-06_rb,3.40275e-06_rb, & 3.48476e-06_rb,3.56808e-06_rb,3.65271e-06_rb,3.73866e-06_rb,3.82595e-06_rb, & 3.91456e-06_rb,4.00453e-06_rb,4.09584e-06_rb,4.18851e-06_rb,4.28254e-06_rb/) totplnk(101:150, 7) = (/ & 4.37796e-06_rb,4.47475e-06_rb,4.57293e-06_rb,4.67249e-06_rb,4.77346e-06_rb, & 4.87583e-06_rb,4.97961e-06_rb,5.08481e-06_rb,5.19143e-06_rb,5.29948e-06_rb, & 5.40896e-06_rb,5.51989e-06_rb,5.63226e-06_rb,5.74608e-06_rb,5.86136e-06_rb, & 5.97810e-06_rb,6.09631e-06_rb,6.21597e-06_rb,6.33713e-06_rb,6.45976e-06_rb, & 6.58388e-06_rb,6.70950e-06_rb,6.83661e-06_rb,6.96521e-06_rb,7.09531e-06_rb, & 7.22692e-06_rb,7.36005e-06_rb,7.49468e-06_rb,7.63084e-06_rb,7.76851e-06_rb, & 7.90773e-06_rb,8.04846e-06_rb,8.19072e-06_rb,8.33452e-06_rb,8.47985e-06_rb, & 8.62674e-06_rb,8.77517e-06_rb,8.92514e-06_rb,9.07666e-06_rb,9.22975e-06_rb, & 9.38437e-06_rb,9.54057e-06_rb,9.69832e-06_rb,9.85762e-06_rb,1.00185e-05_rb, & 1.01810e-05_rb,1.03450e-05_rb,1.05106e-05_rb,1.06777e-05_rb,1.08465e-05_rb/) totplnk(151:181, 7) = (/ & 1.10168e-05_rb,1.11887e-05_rb,1.13621e-05_rb,1.15372e-05_rb,1.17138e-05_rb, & 1.18920e-05_rb,1.20718e-05_rb,1.22532e-05_rb,1.24362e-05_rb,1.26207e-05_rb, & 1.28069e-05_rb,1.29946e-05_rb,1.31839e-05_rb,1.33749e-05_rb,1.35674e-05_rb, & 1.37615e-05_rb,1.39572e-05_rb,1.41544e-05_rb,1.43533e-05_rb,1.45538e-05_rb, & 1.47558e-05_rb,1.49595e-05_rb,1.51647e-05_rb,1.53716e-05_rb,1.55800e-05_rb, & 1.57900e-05_rb,1.60017e-05_rb,1.62149e-05_rb,1.64296e-05_rb,1.66460e-05_rb, & 1.68640e-05_rb/) totplnk(1:50, 8) = (/ & 6.74445e-08_rb,7.18176e-08_rb,7.64153e-08_rb,8.12456e-08_rb,8.63170e-08_rb, & 9.16378e-08_rb,9.72168e-08_rb,1.03063e-07_rb,1.09184e-07_rb,1.15591e-07_rb, & 1.22292e-07_rb,1.29296e-07_rb,1.36613e-07_rb,1.44253e-07_rb,1.52226e-07_rb, & 1.60540e-07_rb,1.69207e-07_rb,1.78236e-07_rb,1.87637e-07_rb,1.97421e-07_rb, & 2.07599e-07_rb,2.18181e-07_rb,2.29177e-07_rb,2.40598e-07_rb,2.52456e-07_rb, & 2.64761e-07_rb,2.77523e-07_rb,2.90755e-07_rb,3.04468e-07_rb,3.18673e-07_rb, & 3.33381e-07_rb,3.48603e-07_rb,3.64352e-07_rb,3.80638e-07_rb,3.97474e-07_rb, & 4.14871e-07_rb,4.32841e-07_rb,4.51395e-07_rb,4.70547e-07_rb,4.90306e-07_rb, & 5.10687e-07_rb,5.31699e-07_rb,5.53357e-07_rb,5.75670e-07_rb,5.98652e-07_rb, & 6.22315e-07_rb,6.46672e-07_rb,6.71731e-07_rb,6.97511e-07_rb,7.24018e-07_rb/) totplnk(51:100, 8) = (/ & 7.51266e-07_rb,7.79269e-07_rb,8.08038e-07_rb,8.37584e-07_rb,8.67922e-07_rb, & 8.99061e-07_rb,9.31016e-07_rb,9.63797e-07_rb,9.97417e-07_rb,1.03189e-06_rb, & 1.06722e-06_rb,1.10343e-06_rb,1.14053e-06_rb,1.17853e-06_rb,1.21743e-06_rb, & 1.25726e-06_rb,1.29803e-06_rb,1.33974e-06_rb,1.38241e-06_rb,1.42606e-06_rb, & 1.47068e-06_rb,1.51630e-06_rb,1.56293e-06_rb,1.61056e-06_rb,1.65924e-06_rb, & 1.70894e-06_rb,1.75971e-06_rb,1.81153e-06_rb,1.86443e-06_rb,1.91841e-06_rb, & 1.97350e-06_rb,2.02968e-06_rb,2.08699e-06_rb,2.14543e-06_rb,2.20500e-06_rb, & 2.26573e-06_rb,2.32762e-06_rb,2.39068e-06_rb,2.45492e-06_rb,2.52036e-06_rb, & 2.58700e-06_rb,2.65485e-06_rb,2.72393e-06_rb,2.79424e-06_rb,2.86580e-06_rb, & 2.93861e-06_rb,3.01269e-06_rb,3.08803e-06_rb,3.16467e-06_rb,3.24259e-06_rb/) totplnk(101:150, 8) = (/ & 3.32181e-06_rb,3.40235e-06_rb,3.48420e-06_rb,3.56739e-06_rb,3.65192e-06_rb, & 3.73779e-06_rb,3.82502e-06_rb,3.91362e-06_rb,4.00359e-06_rb,4.09494e-06_rb, & 4.18768e-06_rb,4.28182e-06_rb,4.37737e-06_rb,4.47434e-06_rb,4.57273e-06_rb, & 4.67254e-06_rb,4.77380e-06_rb,4.87651e-06_rb,4.98067e-06_rb,5.08630e-06_rb, & 5.19339e-06_rb,5.30196e-06_rb,5.41201e-06_rb,5.52356e-06_rb,5.63660e-06_rb, & 5.75116e-06_rb,5.86722e-06_rb,5.98479e-06_rb,6.10390e-06_rb,6.22453e-06_rb, & 6.34669e-06_rb,6.47042e-06_rb,6.59569e-06_rb,6.72252e-06_rb,6.85090e-06_rb, & 6.98085e-06_rb,7.11238e-06_rb,7.24549e-06_rb,7.38019e-06_rb,7.51646e-06_rb, & 7.65434e-06_rb,7.79382e-06_rb,7.93490e-06_rb,8.07760e-06_rb,8.22192e-06_rb, & 8.36784e-06_rb,8.51540e-06_rb,8.66459e-06_rb,8.81542e-06_rb,8.96786e-06_rb/) totplnk(151:181, 8) = (/ & 9.12197e-06_rb,9.27772e-06_rb,9.43513e-06_rb,9.59419e-06_rb,9.75490e-06_rb, & 9.91728e-06_rb,1.00813e-05_rb,1.02471e-05_rb,1.04144e-05_rb,1.05835e-05_rb, & 1.07543e-05_rb,1.09267e-05_rb,1.11008e-05_rb,1.12766e-05_rb,1.14541e-05_rb, & 1.16333e-05_rb,1.18142e-05_rb,1.19969e-05_rb,1.21812e-05_rb,1.23672e-05_rb, & 1.25549e-05_rb,1.27443e-05_rb,1.29355e-05_rb,1.31284e-05_rb,1.33229e-05_rb, & 1.35193e-05_rb,1.37173e-05_rb,1.39170e-05_rb,1.41185e-05_rb,1.43217e-05_rb, & 1.45267e-05_rb/) totplnk(1:50, 9) = (/ & 2.61522e-08_rb,2.80613e-08_rb,3.00838e-08_rb,3.22250e-08_rb,3.44899e-08_rb, & 3.68841e-08_rb,3.94129e-08_rb,4.20820e-08_rb,4.48973e-08_rb,4.78646e-08_rb, & 5.09901e-08_rb,5.42799e-08_rb,5.77405e-08_rb,6.13784e-08_rb,6.52001e-08_rb, & 6.92126e-08_rb,7.34227e-08_rb,7.78375e-08_rb,8.24643e-08_rb,8.73103e-08_rb, & 9.23832e-08_rb,9.76905e-08_rb,1.03240e-07_rb,1.09039e-07_rb,1.15097e-07_rb, & 1.21421e-07_rb,1.28020e-07_rb,1.34902e-07_rb,1.42075e-07_rb,1.49548e-07_rb, & 1.57331e-07_rb,1.65432e-07_rb,1.73860e-07_rb,1.82624e-07_rb,1.91734e-07_rb, & 2.01198e-07_rb,2.11028e-07_rb,2.21231e-07_rb,2.31818e-07_rb,2.42799e-07_rb, & 2.54184e-07_rb,2.65983e-07_rb,2.78205e-07_rb,2.90862e-07_rb,3.03963e-07_rb, & 3.17519e-07_rb,3.31541e-07_rb,3.46039e-07_rb,3.61024e-07_rb,3.76507e-07_rb/) totplnk(51:100, 9) = (/ & 3.92498e-07_rb,4.09008e-07_rb,4.26050e-07_rb,4.43633e-07_rb,4.61769e-07_rb, & 4.80469e-07_rb,4.99744e-07_rb,5.19606e-07_rb,5.40067e-07_rb,5.61136e-07_rb, & 5.82828e-07_rb,6.05152e-07_rb,6.28120e-07_rb,6.51745e-07_rb,6.76038e-07_rb, & 7.01010e-07_rb,7.26674e-07_rb,7.53041e-07_rb,7.80124e-07_rb,8.07933e-07_rb, & 8.36482e-07_rb,8.65781e-07_rb,8.95845e-07_rb,9.26683e-07_rb,9.58308e-07_rb, & 9.90732e-07_rb,1.02397e-06_rb,1.05803e-06_rb,1.09292e-06_rb,1.12866e-06_rb, & 1.16526e-06_rb,1.20274e-06_rb,1.24109e-06_rb,1.28034e-06_rb,1.32050e-06_rb, & 1.36158e-06_rb,1.40359e-06_rb,1.44655e-06_rb,1.49046e-06_rb,1.53534e-06_rb, & 1.58120e-06_rb,1.62805e-06_rb,1.67591e-06_rb,1.72478e-06_rb,1.77468e-06_rb, & 1.82561e-06_rb,1.87760e-06_rb,1.93066e-06_rb,1.98479e-06_rb,2.04000e-06_rb/) totplnk(101:150, 9) = (/ & 2.09631e-06_rb,2.15373e-06_rb,2.21228e-06_rb,2.27196e-06_rb,2.33278e-06_rb, & 2.39475e-06_rb,2.45790e-06_rb,2.52222e-06_rb,2.58773e-06_rb,2.65445e-06_rb, & 2.72238e-06_rb,2.79152e-06_rb,2.86191e-06_rb,2.93354e-06_rb,3.00643e-06_rb, & 3.08058e-06_rb,3.15601e-06_rb,3.23273e-06_rb,3.31075e-06_rb,3.39009e-06_rb, & 3.47074e-06_rb,3.55272e-06_rb,3.63605e-06_rb,3.72072e-06_rb,3.80676e-06_rb, & 3.89417e-06_rb,3.98297e-06_rb,4.07315e-06_rb,4.16474e-06_rb,4.25774e-06_rb, & 4.35217e-06_rb,4.44802e-06_rb,4.54532e-06_rb,4.64406e-06_rb,4.74428e-06_rb, & 4.84595e-06_rb,4.94911e-06_rb,5.05376e-06_rb,5.15990e-06_rb,5.26755e-06_rb, & 5.37671e-06_rb,5.48741e-06_rb,5.59963e-06_rb,5.71340e-06_rb,5.82871e-06_rb, & 5.94559e-06_rb,6.06403e-06_rb,6.18404e-06_rb,6.30565e-06_rb,6.42885e-06_rb/) totplnk(151:181, 9) = (/ & 6.55364e-06_rb,6.68004e-06_rb,6.80806e-06_rb,6.93771e-06_rb,7.06898e-06_rb, & 7.20190e-06_rb,7.33646e-06_rb,7.47267e-06_rb,7.61056e-06_rb,7.75010e-06_rb, & 7.89133e-06_rb,8.03423e-06_rb,8.17884e-06_rb,8.32514e-06_rb,8.47314e-06_rb, & 8.62284e-06_rb,8.77427e-06_rb,8.92743e-06_rb,9.08231e-06_rb,9.23893e-06_rb, & 9.39729e-06_rb,9.55741e-06_rb,9.71927e-06_rb,9.88291e-06_rb,1.00483e-05_rb, & 1.02155e-05_rb,1.03844e-05_rb,1.05552e-05_rb,1.07277e-05_rb,1.09020e-05_rb, & 1.10781e-05_rb/) totplnk(1:50,10) = (/ & 8.89300e-09_rb,9.63263e-09_rb,1.04235e-08_rb,1.12685e-08_rb,1.21703e-08_rb, & 1.31321e-08_rb,1.41570e-08_rb,1.52482e-08_rb,1.64090e-08_rb,1.76428e-08_rb, & 1.89533e-08_rb,2.03441e-08_rb,2.18190e-08_rb,2.33820e-08_rb,2.50370e-08_rb, & 2.67884e-08_rb,2.86402e-08_rb,3.05969e-08_rb,3.26632e-08_rb,3.48436e-08_rb, & 3.71429e-08_rb,3.95660e-08_rb,4.21179e-08_rb,4.48040e-08_rb,4.76294e-08_rb, & 5.05996e-08_rb,5.37201e-08_rb,5.69966e-08_rb,6.04349e-08_rb,6.40411e-08_rb, & 6.78211e-08_rb,7.17812e-08_rb,7.59276e-08_rb,8.02670e-08_rb,8.48059e-08_rb, & 8.95508e-08_rb,9.45090e-08_rb,9.96873e-08_rb,1.05093e-07_rb,1.10733e-07_rb, & 1.16614e-07_rb,1.22745e-07_rb,1.29133e-07_rb,1.35786e-07_rb,1.42711e-07_rb, & 1.49916e-07_rb,1.57410e-07_rb,1.65202e-07_rb,1.73298e-07_rb,1.81709e-07_rb/) totplnk(51:100,10) = (/ & 1.90441e-07_rb,1.99505e-07_rb,2.08908e-07_rb,2.18660e-07_rb,2.28770e-07_rb, & 2.39247e-07_rb,2.50101e-07_rb,2.61340e-07_rb,2.72974e-07_rb,2.85013e-07_rb, & 2.97467e-07_rb,3.10345e-07_rb,3.23657e-07_rb,3.37413e-07_rb,3.51623e-07_rb, & 3.66298e-07_rb,3.81448e-07_rb,3.97082e-07_rb,4.13212e-07_rb,4.29848e-07_rb, & 4.47000e-07_rb,4.64680e-07_rb,4.82898e-07_rb,5.01664e-07_rb,5.20991e-07_rb, & 5.40888e-07_rb,5.61369e-07_rb,5.82440e-07_rb,6.04118e-07_rb,6.26410e-07_rb, & 6.49329e-07_rb,6.72887e-07_rb,6.97095e-07_rb,7.21964e-07_rb,7.47506e-07_rb, & 7.73732e-07_rb,8.00655e-07_rb,8.28287e-07_rb,8.56635e-07_rb,8.85717e-07_rb, & 9.15542e-07_rb,9.46122e-07_rb,9.77469e-07_rb,1.00960e-06_rb,1.04251e-06_rb, & 1.07623e-06_rb,1.11077e-06_rb,1.14613e-06_rb,1.18233e-06_rb,1.21939e-06_rb/) totplnk(101:150,10) = (/ & 1.25730e-06_rb,1.29610e-06_rb,1.33578e-06_rb,1.37636e-06_rb,1.41785e-06_rb, & 1.46027e-06_rb,1.50362e-06_rb,1.54792e-06_rb,1.59319e-06_rb,1.63942e-06_rb, & 1.68665e-06_rb,1.73487e-06_rb,1.78410e-06_rb,1.83435e-06_rb,1.88564e-06_rb, & 1.93797e-06_rb,1.99136e-06_rb,2.04582e-06_rb,2.10137e-06_rb,2.15801e-06_rb, & 2.21576e-06_rb,2.27463e-06_rb,2.33462e-06_rb,2.39577e-06_rb,2.45806e-06_rb, & 2.52153e-06_rb,2.58617e-06_rb,2.65201e-06_rb,2.71905e-06_rb,2.78730e-06_rb, & 2.85678e-06_rb,2.92749e-06_rb,2.99946e-06_rb,3.07269e-06_rb,3.14720e-06_rb, & 3.22299e-06_rb,3.30007e-06_rb,3.37847e-06_rb,3.45818e-06_rb,3.53923e-06_rb, & 3.62161e-06_rb,3.70535e-06_rb,3.79046e-06_rb,3.87695e-06_rb,3.96481e-06_rb, & 4.05409e-06_rb,4.14477e-06_rb,4.23687e-06_rb,4.33040e-06_rb,4.42538e-06_rb/) totplnk(151:181,10) = (/ & 4.52180e-06_rb,4.61969e-06_rb,4.71905e-06_rb,4.81991e-06_rb,4.92226e-06_rb, & 5.02611e-06_rb,5.13148e-06_rb,5.23839e-06_rb,5.34681e-06_rb,5.45681e-06_rb, & 5.56835e-06_rb,5.68146e-06_rb,5.79614e-06_rb,5.91242e-06_rb,6.03030e-06_rb, & 6.14978e-06_rb,6.27088e-06_rb,6.39360e-06_rb,6.51798e-06_rb,6.64398e-06_rb, & 6.77165e-06_rb,6.90099e-06_rb,7.03198e-06_rb,7.16468e-06_rb,7.29906e-06_rb, & 7.43514e-06_rb,7.57294e-06_rb,7.71244e-06_rb,7.85369e-06_rb,7.99666e-06_rb, & 8.14138e-06_rb/) totplnk(1:50,11) = (/ & 2.53767e-09_rb,2.77242e-09_rb,3.02564e-09_rb,3.29851e-09_rb,3.59228e-09_rb, & 3.90825e-09_rb,4.24777e-09_rb,4.61227e-09_rb,5.00322e-09_rb,5.42219e-09_rb, & 5.87080e-09_rb,6.35072e-09_rb,6.86370e-09_rb,7.41159e-09_rb,7.99628e-09_rb, & 8.61974e-09_rb,9.28404e-09_rb,9.99130e-09_rb,1.07437e-08_rb,1.15436e-08_rb, & 1.23933e-08_rb,1.32953e-08_rb,1.42522e-08_rb,1.52665e-08_rb,1.63410e-08_rb, & 1.74786e-08_rb,1.86820e-08_rb,1.99542e-08_rb,2.12985e-08_rb,2.27179e-08_rb, & 2.42158e-08_rb,2.57954e-08_rb,2.74604e-08_rb,2.92141e-08_rb,3.10604e-08_rb, & 3.30029e-08_rb,3.50457e-08_rb,3.71925e-08_rb,3.94476e-08_rb,4.18149e-08_rb, & 4.42991e-08_rb,4.69043e-08_rb,4.96352e-08_rb,5.24961e-08_rb,5.54921e-08_rb, & 5.86277e-08_rb,6.19081e-08_rb,6.53381e-08_rb,6.89231e-08_rb,7.26681e-08_rb/) totplnk(51:100,11) = (/ & 7.65788e-08_rb,8.06604e-08_rb,8.49187e-08_rb,8.93591e-08_rb,9.39879e-08_rb, & 9.88106e-08_rb,1.03834e-07_rb,1.09063e-07_rb,1.14504e-07_rb,1.20165e-07_rb, & 1.26051e-07_rb,1.32169e-07_rb,1.38525e-07_rb,1.45128e-07_rb,1.51982e-07_rb, & 1.59096e-07_rb,1.66477e-07_rb,1.74132e-07_rb,1.82068e-07_rb,1.90292e-07_rb, & 1.98813e-07_rb,2.07638e-07_rb,2.16775e-07_rb,2.26231e-07_rb,2.36015e-07_rb, & 2.46135e-07_rb,2.56599e-07_rb,2.67415e-07_rb,2.78592e-07_rb,2.90137e-07_rb, & 3.02061e-07_rb,3.14371e-07_rb,3.27077e-07_rb,3.40186e-07_rb,3.53710e-07_rb, & 3.67655e-07_rb,3.82031e-07_rb,3.96848e-07_rb,4.12116e-07_rb,4.27842e-07_rb, & 4.44039e-07_rb,4.60713e-07_rb,4.77876e-07_rb,4.95537e-07_rb,5.13706e-07_rb, & 5.32392e-07_rb,5.51608e-07_rb,5.71360e-07_rb,5.91662e-07_rb,6.12521e-07_rb/) totplnk(101:150,11) = (/ & 6.33950e-07_rb,6.55958e-07_rb,6.78556e-07_rb,7.01753e-07_rb,7.25562e-07_rb, & 7.49992e-07_rb,7.75055e-07_rb,8.00760e-07_rb,8.27120e-07_rb,8.54145e-07_rb, & 8.81845e-07_rb,9.10233e-07_rb,9.39318e-07_rb,9.69113e-07_rb,9.99627e-07_rb, & 1.03087e-06_rb,1.06286e-06_rb,1.09561e-06_rb,1.12912e-06_rb,1.16340e-06_rb, & 1.19848e-06_rb,1.23435e-06_rb,1.27104e-06_rb,1.30855e-06_rb,1.34690e-06_rb, & 1.38609e-06_rb,1.42614e-06_rb,1.46706e-06_rb,1.50886e-06_rb,1.55155e-06_rb, & 1.59515e-06_rb,1.63967e-06_rb,1.68512e-06_rb,1.73150e-06_rb,1.77884e-06_rb, & 1.82715e-06_rb,1.87643e-06_rb,1.92670e-06_rb,1.97797e-06_rb,2.03026e-06_rb, & 2.08356e-06_rb,2.13791e-06_rb,2.19330e-06_rb,2.24975e-06_rb,2.30728e-06_rb, & 2.36589e-06_rb,2.42560e-06_rb,2.48641e-06_rb,2.54835e-06_rb,2.61142e-06_rb/) totplnk(151:181,11) = (/ & 2.67563e-06_rb,2.74100e-06_rb,2.80754e-06_rb,2.87526e-06_rb,2.94417e-06_rb, & 3.01429e-06_rb,3.08562e-06_rb,3.15819e-06_rb,3.23199e-06_rb,3.30704e-06_rb, & 3.38336e-06_rb,3.46096e-06_rb,3.53984e-06_rb,3.62002e-06_rb,3.70151e-06_rb, & 3.78433e-06_rb,3.86848e-06_rb,3.95399e-06_rb,4.04084e-06_rb,4.12907e-06_rb, & 4.21868e-06_rb,4.30968e-06_rb,4.40209e-06_rb,4.49592e-06_rb,4.59117e-06_rb, & 4.68786e-06_rb,4.78600e-06_rb,4.88561e-06_rb,4.98669e-06_rb,5.08926e-06_rb, & 5.19332e-06_rb/) totplnk(1:50,12) = (/ & 2.73921e-10_rb,3.04500e-10_rb,3.38056e-10_rb,3.74835e-10_rb,4.15099e-10_rb, & 4.59126e-10_rb,5.07214e-10_rb,5.59679e-10_rb,6.16857e-10_rb,6.79103e-10_rb, & 7.46796e-10_rb,8.20335e-10_rb,9.00144e-10_rb,9.86671e-10_rb,1.08039e-09_rb, & 1.18180e-09_rb,1.29142e-09_rb,1.40982e-09_rb,1.53757e-09_rb,1.67529e-09_rb, & 1.82363e-09_rb,1.98327e-09_rb,2.15492e-09_rb,2.33932e-09_rb,2.53726e-09_rb, & 2.74957e-09_rb,2.97710e-09_rb,3.22075e-09_rb,3.48145e-09_rb,3.76020e-09_rb, & 4.05801e-09_rb,4.37595e-09_rb,4.71513e-09_rb,5.07672e-09_rb,5.46193e-09_rb, & 5.87201e-09_rb,6.30827e-09_rb,6.77205e-09_rb,7.26480e-09_rb,7.78794e-09_rb, & 8.34304e-09_rb,8.93163e-09_rb,9.55537e-09_rb,1.02159e-08_rb,1.09151e-08_rb, & 1.16547e-08_rb,1.24365e-08_rb,1.32625e-08_rb,1.41348e-08_rb,1.50554e-08_rb/) totplnk(51:100,12) = (/ & 1.60264e-08_rb,1.70500e-08_rb,1.81285e-08_rb,1.92642e-08_rb,2.04596e-08_rb, & 2.17171e-08_rb,2.30394e-08_rb,2.44289e-08_rb,2.58885e-08_rb,2.74209e-08_rb, & 2.90290e-08_rb,3.07157e-08_rb,3.24841e-08_rb,3.43371e-08_rb,3.62782e-08_rb, & 3.83103e-08_rb,4.04371e-08_rb,4.26617e-08_rb,4.49878e-08_rb,4.74190e-08_rb, & 4.99589e-08_rb,5.26113e-08_rb,5.53801e-08_rb,5.82692e-08_rb,6.12826e-08_rb, & 6.44245e-08_rb,6.76991e-08_rb,7.11105e-08_rb,7.46634e-08_rb,7.83621e-08_rb, & 8.22112e-08_rb,8.62154e-08_rb,9.03795e-08_rb,9.47081e-08_rb,9.92066e-08_rb, & 1.03879e-07_rb,1.08732e-07_rb,1.13770e-07_rb,1.18998e-07_rb,1.24422e-07_rb, & 1.30048e-07_rb,1.35880e-07_rb,1.41924e-07_rb,1.48187e-07_rb,1.54675e-07_rb, & 1.61392e-07_rb,1.68346e-07_rb,1.75543e-07_rb,1.82988e-07_rb,1.90688e-07_rb/) totplnk(101:150,12) = (/ & 1.98650e-07_rb,2.06880e-07_rb,2.15385e-07_rb,2.24172e-07_rb,2.33247e-07_rb, & 2.42617e-07_rb,2.52289e-07_rb,2.62272e-07_rb,2.72571e-07_rb,2.83193e-07_rb, & 2.94147e-07_rb,3.05440e-07_rb,3.17080e-07_rb,3.29074e-07_rb,3.41430e-07_rb, & 3.54155e-07_rb,3.67259e-07_rb,3.80747e-07_rb,3.94631e-07_rb,4.08916e-07_rb, & 4.23611e-07_rb,4.38725e-07_rb,4.54267e-07_rb,4.70245e-07_rb,4.86666e-07_rb, & 5.03541e-07_rb,5.20879e-07_rb,5.38687e-07_rb,5.56975e-07_rb,5.75751e-07_rb, & 5.95026e-07_rb,6.14808e-07_rb,6.35107e-07_rb,6.55932e-07_rb,6.77293e-07_rb, & 6.99197e-07_rb,7.21656e-07_rb,7.44681e-07_rb,7.68278e-07_rb,7.92460e-07_rb, & 8.17235e-07_rb,8.42614e-07_rb,8.68606e-07_rb,8.95223e-07_rb,9.22473e-07_rb, & 9.50366e-07_rb,9.78915e-07_rb,1.00813e-06_rb,1.03802e-06_rb,1.06859e-06_rb/) totplnk(151:181,12) = (/ & 1.09986e-06_rb,1.13184e-06_rb,1.16453e-06_rb,1.19796e-06_rb,1.23212e-06_rb, & 1.26703e-06_rb,1.30270e-06_rb,1.33915e-06_rb,1.37637e-06_rb,1.41440e-06_rb, & 1.45322e-06_rb,1.49286e-06_rb,1.53333e-06_rb,1.57464e-06_rb,1.61679e-06_rb, & 1.65981e-06_rb,1.70370e-06_rb,1.74847e-06_rb,1.79414e-06_rb,1.84071e-06_rb, & 1.88821e-06_rb,1.93663e-06_rb,1.98599e-06_rb,2.03631e-06_rb,2.08759e-06_rb, & 2.13985e-06_rb,2.19310e-06_rb,2.24734e-06_rb,2.30260e-06_rb,2.35888e-06_rb, & 2.41619e-06_rb/) totplnk(1:50,13) = (/ & 4.53634e-11_rb,5.11435e-11_rb,5.75754e-11_rb,6.47222e-11_rb,7.26531e-11_rb, & 8.14420e-11_rb,9.11690e-11_rb,1.01921e-10_rb,1.13790e-10_rb,1.26877e-10_rb, & 1.41288e-10_rb,1.57140e-10_rb,1.74555e-10_rb,1.93665e-10_rb,2.14613e-10_rb, & 2.37548e-10_rb,2.62633e-10_rb,2.90039e-10_rb,3.19948e-10_rb,3.52558e-10_rb, & 3.88073e-10_rb,4.26716e-10_rb,4.68719e-10_rb,5.14331e-10_rb,5.63815e-10_rb, & 6.17448e-10_rb,6.75526e-10_rb,7.38358e-10_rb,8.06277e-10_rb,8.79625e-10_rb, & 9.58770e-10_rb,1.04410e-09_rb,1.13602e-09_rb,1.23495e-09_rb,1.34135e-09_rb, & 1.45568e-09_rb,1.57845e-09_rb,1.71017e-09_rb,1.85139e-09_rb,2.00268e-09_rb, & 2.16464e-09_rb,2.33789e-09_rb,2.52309e-09_rb,2.72093e-09_rb,2.93212e-09_rb, & 3.15740e-09_rb,3.39757e-09_rb,3.65341e-09_rb,3.92579e-09_rb,4.21559e-09_rb/) totplnk(51:100,13) = (/ & 4.52372e-09_rb,4.85115e-09_rb,5.19886e-09_rb,5.56788e-09_rb,5.95928e-09_rb, & 6.37419e-09_rb,6.81375e-09_rb,7.27917e-09_rb,7.77168e-09_rb,8.29256e-09_rb, & 8.84317e-09_rb,9.42487e-09_rb,1.00391e-08_rb,1.06873e-08_rb,1.13710e-08_rb, & 1.20919e-08_rb,1.28515e-08_rb,1.36514e-08_rb,1.44935e-08_rb,1.53796e-08_rb, & 1.63114e-08_rb,1.72909e-08_rb,1.83201e-08_rb,1.94008e-08_rb,2.05354e-08_rb, & 2.17258e-08_rb,2.29742e-08_rb,2.42830e-08_rb,2.56545e-08_rb,2.70910e-08_rb, & 2.85950e-08_rb,3.01689e-08_rb,3.18155e-08_rb,3.35373e-08_rb,3.53372e-08_rb, & 3.72177e-08_rb,3.91818e-08_rb,4.12325e-08_rb,4.33727e-08_rb,4.56056e-08_rb, & 4.79342e-08_rb,5.03617e-08_rb,5.28915e-08_rb,5.55270e-08_rb,5.82715e-08_rb, & 6.11286e-08_rb,6.41019e-08_rb,6.71951e-08_rb,7.04119e-08_rb,7.37560e-08_rb/) totplnk(101:150,13) = (/ & 7.72315e-08_rb,8.08424e-08_rb,8.45927e-08_rb,8.84866e-08_rb,9.25281e-08_rb, & 9.67218e-08_rb,1.01072e-07_rb,1.05583e-07_rb,1.10260e-07_rb,1.15107e-07_rb, & 1.20128e-07_rb,1.25330e-07_rb,1.30716e-07_rb,1.36291e-07_rb,1.42061e-07_rb, & 1.48031e-07_rb,1.54206e-07_rb,1.60592e-07_rb,1.67192e-07_rb,1.74015e-07_rb, & 1.81064e-07_rb,1.88345e-07_rb,1.95865e-07_rb,2.03628e-07_rb,2.11643e-07_rb, & 2.19912e-07_rb,2.28443e-07_rb,2.37244e-07_rb,2.46318e-07_rb,2.55673e-07_rb, & 2.65316e-07_rb,2.75252e-07_rb,2.85489e-07_rb,2.96033e-07_rb,3.06891e-07_rb, & 3.18070e-07_rb,3.29576e-07_rb,3.41417e-07_rb,3.53600e-07_rb,3.66133e-07_rb, & 3.79021e-07_rb,3.92274e-07_rb,4.05897e-07_rb,4.19899e-07_rb,4.34288e-07_rb, & 4.49071e-07_rb,4.64255e-07_rb,4.79850e-07_rb,4.95863e-07_rb,5.12300e-07_rb/) totplnk(151:181,13) = (/ & 5.29172e-07_rb,5.46486e-07_rb,5.64250e-07_rb,5.82473e-07_rb,6.01164e-07_rb, & 6.20329e-07_rb,6.39979e-07_rb,6.60122e-07_rb,6.80767e-07_rb,7.01922e-07_rb, & 7.23596e-07_rb,7.45800e-07_rb,7.68539e-07_rb,7.91826e-07_rb,8.15669e-07_rb, & 8.40076e-07_rb,8.65058e-07_rb,8.90623e-07_rb,9.16783e-07_rb,9.43544e-07_rb, & 9.70917e-07_rb,9.98912e-07_rb,1.02754e-06_rb,1.05681e-06_rb,1.08673e-06_rb, & 1.11731e-06_rb,1.14856e-06_rb,1.18050e-06_rb,1.21312e-06_rb,1.24645e-06_rb, & 1.28049e-06_rb/) totplnk(1:50,14) = (/ & 1.40113e-11_rb,1.59358e-11_rb,1.80960e-11_rb,2.05171e-11_rb,2.32266e-11_rb, & 2.62546e-11_rb,2.96335e-11_rb,3.33990e-11_rb,3.75896e-11_rb,4.22469e-11_rb, & 4.74164e-11_rb,5.31466e-11_rb,5.94905e-11_rb,6.65054e-11_rb,7.42522e-11_rb, & 8.27975e-11_rb,9.22122e-11_rb,1.02573e-10_rb,1.13961e-10_rb,1.26466e-10_rb, & 1.40181e-10_rb,1.55206e-10_rb,1.71651e-10_rb,1.89630e-10_rb,2.09265e-10_rb, & 2.30689e-10_rb,2.54040e-10_rb,2.79467e-10_rb,3.07128e-10_rb,3.37190e-10_rb, & 3.69833e-10_rb,4.05243e-10_rb,4.43623e-10_rb,4.85183e-10_rb,5.30149e-10_rb, & 5.78755e-10_rb,6.31255e-10_rb,6.87910e-10_rb,7.49002e-10_rb,8.14824e-10_rb, & 8.85687e-10_rb,9.61914e-10_rb,1.04385e-09_rb,1.13186e-09_rb,1.22631e-09_rb, & 1.32761e-09_rb,1.43617e-09_rb,1.55243e-09_rb,1.67686e-09_rb,1.80992e-09_rb/) totplnk(51:100,14) = (/ & 1.95212e-09_rb,2.10399e-09_rb,2.26607e-09_rb,2.43895e-09_rb,2.62321e-09_rb, & 2.81949e-09_rb,3.02844e-09_rb,3.25073e-09_rb,3.48707e-09_rb,3.73820e-09_rb, & 4.00490e-09_rb,4.28794e-09_rb,4.58819e-09_rb,4.90647e-09_rb,5.24371e-09_rb, & 5.60081e-09_rb,5.97875e-09_rb,6.37854e-09_rb,6.80120e-09_rb,7.24782e-09_rb, & 7.71950e-09_rb,8.21740e-09_rb,8.74271e-09_rb,9.29666e-09_rb,9.88054e-09_rb, & 1.04956e-08_rb,1.11434e-08_rb,1.18251e-08_rb,1.25422e-08_rb,1.32964e-08_rb, & 1.40890e-08_rb,1.49217e-08_rb,1.57961e-08_rb,1.67140e-08_rb,1.76771e-08_rb, & 1.86870e-08_rb,1.97458e-08_rb,2.08553e-08_rb,2.20175e-08_rb,2.32342e-08_rb, & 2.45077e-08_rb,2.58401e-08_rb,2.72334e-08_rb,2.86900e-08_rb,3.02122e-08_rb, & 3.18021e-08_rb,3.34624e-08_rb,3.51954e-08_rb,3.70037e-08_rb,3.88899e-08_rb/) totplnk(101:150,14) = (/ & 4.08568e-08_rb,4.29068e-08_rb,4.50429e-08_rb,4.72678e-08_rb,4.95847e-08_rb, & 5.19963e-08_rb,5.45058e-08_rb,5.71161e-08_rb,5.98309e-08_rb,6.26529e-08_rb, & 6.55857e-08_rb,6.86327e-08_rb,7.17971e-08_rb,7.50829e-08_rb,7.84933e-08_rb, & 8.20323e-08_rb,8.57035e-08_rb,8.95105e-08_rb,9.34579e-08_rb,9.75488e-08_rb, & 1.01788e-07_rb,1.06179e-07_rb,1.10727e-07_rb,1.15434e-07_rb,1.20307e-07_rb, & 1.25350e-07_rb,1.30566e-07_rb,1.35961e-07_rb,1.41539e-07_rb,1.47304e-07_rb, & 1.53263e-07_rb,1.59419e-07_rb,1.65778e-07_rb,1.72345e-07_rb,1.79124e-07_rb, & 1.86122e-07_rb,1.93343e-07_rb,2.00792e-07_rb,2.08476e-07_rb,2.16400e-07_rb, & 2.24568e-07_rb,2.32988e-07_rb,2.41666e-07_rb,2.50605e-07_rb,2.59813e-07_rb, & 2.69297e-07_rb,2.79060e-07_rb,2.89111e-07_rb,2.99455e-07_rb,3.10099e-07_rb/) totplnk(151:181,14) = (/ & 3.21049e-07_rb,3.32311e-07_rb,3.43893e-07_rb,3.55801e-07_rb,3.68041e-07_rb, & 3.80621e-07_rb,3.93547e-07_rb,4.06826e-07_rb,4.20465e-07_rb,4.34473e-07_rb, & 4.48856e-07_rb,4.63620e-07_rb,4.78774e-07_rb,4.94325e-07_rb,5.10280e-07_rb, & 5.26648e-07_rb,5.43436e-07_rb,5.60652e-07_rb,5.78302e-07_rb,5.96397e-07_rb, & 6.14943e-07_rb,6.33949e-07_rb,6.53421e-07_rb,6.73370e-07_rb,6.93803e-07_rb, & 7.14731e-07_rb,7.36157e-07_rb,7.58095e-07_rb,7.80549e-07_rb,8.03533e-07_rb, & 8.27050e-07_rb/) totplnk(1:50,15) = (/ & 3.90483e-12_rb,4.47999e-12_rb,5.13122e-12_rb,5.86739e-12_rb,6.69829e-12_rb, & 7.63467e-12_rb,8.68833e-12_rb,9.87221e-12_rb,1.12005e-11_rb,1.26885e-11_rb, & 1.43534e-11_rb,1.62134e-11_rb,1.82888e-11_rb,2.06012e-11_rb,2.31745e-11_rb, & 2.60343e-11_rb,2.92087e-11_rb,3.27277e-11_rb,3.66242e-11_rb,4.09334e-11_rb, & 4.56935e-11_rb,5.09455e-11_rb,5.67338e-11_rb,6.31057e-11_rb,7.01127e-11_rb, & 7.78096e-11_rb,8.62554e-11_rb,9.55130e-11_rb,1.05651e-10_rb,1.16740e-10_rb, & 1.28858e-10_rb,1.42089e-10_rb,1.56519e-10_rb,1.72243e-10_rb,1.89361e-10_rb, & 2.07978e-10_rb,2.28209e-10_rb,2.50173e-10_rb,2.73999e-10_rb,2.99820e-10_rb, & 3.27782e-10_rb,3.58034e-10_rb,3.90739e-10_rb,4.26067e-10_rb,4.64196e-10_rb, & 5.05317e-10_rb,5.49631e-10_rb,5.97347e-10_rb,6.48689e-10_rb,7.03891e-10_rb/) totplnk(51:100,15) = (/ & 7.63201e-10_rb,8.26876e-10_rb,8.95192e-10_rb,9.68430e-10_rb,1.04690e-09_rb, & 1.13091e-09_rb,1.22079e-09_rb,1.31689e-09_rb,1.41957e-09_rb,1.52922e-09_rb, & 1.64623e-09_rb,1.77101e-09_rb,1.90401e-09_rb,2.04567e-09_rb,2.19647e-09_rb, & 2.35690e-09_rb,2.52749e-09_rb,2.70875e-09_rb,2.90127e-09_rb,3.10560e-09_rb, & 3.32238e-09_rb,3.55222e-09_rb,3.79578e-09_rb,4.05375e-09_rb,4.32682e-09_rb, & 4.61574e-09_rb,4.92128e-09_rb,5.24420e-09_rb,5.58536e-09_rb,5.94558e-09_rb, & 6.32575e-09_rb,6.72678e-09_rb,7.14964e-09_rb,7.59526e-09_rb,8.06470e-09_rb, & 8.55897e-09_rb,9.07916e-09_rb,9.62638e-09_rb,1.02018e-08_rb,1.08066e-08_rb, & 1.14420e-08_rb,1.21092e-08_rb,1.28097e-08_rb,1.35446e-08_rb,1.43155e-08_rb, & 1.51237e-08_rb,1.59708e-08_rb,1.68581e-08_rb,1.77873e-08_rb,1.87599e-08_rb/) totplnk(101:150,15) = (/ & 1.97777e-08_rb,2.08423e-08_rb,2.19555e-08_rb,2.31190e-08_rb,2.43348e-08_rb, & 2.56045e-08_rb,2.69302e-08_rb,2.83140e-08_rb,2.97578e-08_rb,3.12636e-08_rb, & 3.28337e-08_rb,3.44702e-08_rb,3.61755e-08_rb,3.79516e-08_rb,3.98012e-08_rb, & 4.17265e-08_rb,4.37300e-08_rb,4.58143e-08_rb,4.79819e-08_rb,5.02355e-08_rb, & 5.25777e-08_rb,5.50114e-08_rb,5.75393e-08_rb,6.01644e-08_rb,6.28896e-08_rb, & 6.57177e-08_rb,6.86521e-08_rb,7.16959e-08_rb,7.48520e-08_rb,7.81239e-08_rb, & 8.15148e-08_rb,8.50282e-08_rb,8.86675e-08_rb,9.24362e-08_rb,9.63380e-08_rb, & 1.00376e-07_rb,1.04555e-07_rb,1.08878e-07_rb,1.13349e-07_rb,1.17972e-07_rb, & 1.22751e-07_rb,1.27690e-07_rb,1.32793e-07_rb,1.38064e-07_rb,1.43508e-07_rb, & 1.49129e-07_rb,1.54931e-07_rb,1.60920e-07_rb,1.67099e-07_rb,1.73473e-07_rb/) totplnk(151:181,15) = (/ & 1.80046e-07_rb,1.86825e-07_rb,1.93812e-07_rb,2.01014e-07_rb,2.08436e-07_rb, & 2.16082e-07_rb,2.23957e-07_rb,2.32067e-07_rb,2.40418e-07_rb,2.49013e-07_rb, & 2.57860e-07_rb,2.66963e-07_rb,2.76328e-07_rb,2.85961e-07_rb,2.95868e-07_rb, & 3.06053e-07_rb,3.16524e-07_rb,3.27286e-07_rb,3.38345e-07_rb,3.49707e-07_rb, & 3.61379e-07_rb,3.73367e-07_rb,3.85676e-07_rb,3.98315e-07_rb,4.11287e-07_rb, & 4.24602e-07_rb,4.38265e-07_rb,4.52283e-07_rb,4.66662e-07_rb,4.81410e-07_rb, & 4.96535e-07_rb/) totplnk(1:50,16) = (/ & 0.28639e-12_rb,0.33349e-12_rb,0.38764e-12_rb,0.44977e-12_rb,0.52093e-12_rb, & 0.60231e-12_rb,0.69522e-12_rb,0.80111e-12_rb,0.92163e-12_rb,0.10586e-11_rb, & 0.12139e-11_rb,0.13899e-11_rb,0.15890e-11_rb,0.18138e-11_rb,0.20674e-11_rb, & 0.23531e-11_rb,0.26744e-11_rb,0.30352e-11_rb,0.34401e-11_rb,0.38936e-11_rb, & 0.44011e-11_rb,0.49681e-11_rb,0.56010e-11_rb,0.63065e-11_rb,0.70919e-11_rb, & 0.79654e-11_rb,0.89357e-11_rb,0.10012e-10_rb,0.11205e-10_rb,0.12526e-10_rb, & 0.13986e-10_rb,0.15600e-10_rb,0.17380e-10_rb,0.19342e-10_rb,0.21503e-10_rb, & 0.23881e-10_rb,0.26494e-10_rb,0.29362e-10_rb,0.32509e-10_rb,0.35958e-10_rb, & 0.39733e-10_rb,0.43863e-10_rb,0.48376e-10_rb,0.53303e-10_rb,0.58679e-10_rb, & 0.64539e-10_rb,0.70920e-10_rb,0.77864e-10_rb,0.85413e-10_rb,0.93615e-10_rb/) totplnk(51:100,16) = (/ & 0.10252e-09_rb,0.11217e-09_rb,0.12264e-09_rb,0.13397e-09_rb,0.14624e-09_rb, & 0.15950e-09_rb,0.17383e-09_rb,0.18930e-09_rb,0.20599e-09_rb,0.22399e-09_rb, & 0.24339e-09_rb,0.26427e-09_rb,0.28674e-09_rb,0.31090e-09_rb,0.33686e-09_rb, & 0.36474e-09_rb,0.39466e-09_rb,0.42676e-09_rb,0.46115e-09_rb,0.49800e-09_rb, & 0.53744e-09_rb,0.57964e-09_rb,0.62476e-09_rb,0.67298e-09_rb,0.72448e-09_rb, & 0.77945e-09_rb,0.83809e-09_rb,0.90062e-09_rb,0.96725e-09_rb,0.10382e-08_rb, & 0.11138e-08_rb,0.11941e-08_rb,0.12796e-08_rb,0.13704e-08_rb,0.14669e-08_rb, & 0.15694e-08_rb,0.16781e-08_rb,0.17934e-08_rb,0.19157e-08_rb,0.20453e-08_rb, & 0.21825e-08_rb,0.23278e-08_rb,0.24815e-08_rb,0.26442e-08_rb,0.28161e-08_rb, & 0.29978e-08_rb,0.31898e-08_rb,0.33925e-08_rb,0.36064e-08_rb,0.38321e-08_rb/) totplnk(101:150,16) = (/ & 0.40700e-08_rb,0.43209e-08_rb,0.45852e-08_rb,0.48636e-08_rb,0.51567e-08_rb, & 0.54652e-08_rb,0.57897e-08_rb,0.61310e-08_rb,0.64897e-08_rb,0.68667e-08_rb, & 0.72626e-08_rb,0.76784e-08_rb,0.81148e-08_rb,0.85727e-08_rb,0.90530e-08_rb, & 0.95566e-08_rb,0.10084e-07_rb,0.10638e-07_rb,0.11217e-07_rb,0.11824e-07_rb, & 0.12458e-07_rb,0.13123e-07_rb,0.13818e-07_rb,0.14545e-07_rb,0.15305e-07_rb, & 0.16099e-07_rb,0.16928e-07_rb,0.17795e-07_rb,0.18699e-07_rb,0.19643e-07_rb, & 0.20629e-07_rb,0.21656e-07_rb,0.22728e-07_rb,0.23845e-07_rb,0.25010e-07_rb, & 0.26223e-07_rb,0.27487e-07_rb,0.28804e-07_rb,0.30174e-07_rb,0.31600e-07_rb, & 0.33084e-07_rb,0.34628e-07_rb,0.36233e-07_rb,0.37902e-07_rb,0.39637e-07_rb, & 0.41440e-07_rb,0.43313e-07_rb,0.45259e-07_rb,0.47279e-07_rb,0.49376e-07_rb/) totplnk(151:181,16) = (/ & 0.51552e-07_rb,0.53810e-07_rb,0.56153e-07_rb,0.58583e-07_rb,0.61102e-07_rb, & 0.63713e-07_rb,0.66420e-07_rb,0.69224e-07_rb,0.72129e-07_rb,0.75138e-07_rb, & 0.78254e-07_rb,0.81479e-07_rb,0.84818e-07_rb,0.88272e-07_rb,0.91846e-07_rb, & 0.95543e-07_rb,0.99366e-07_rb,0.10332e-06_rb,0.10740e-06_rb,0.11163e-06_rb, & 0.11599e-06_rb,0.12050e-06_rb,0.12515e-06_rb,0.12996e-06_rb,0.13493e-06_rb, & 0.14005e-06_rb,0.14534e-06_rb,0.15080e-06_rb,0.15643e-06_rb,0.16224e-06_rb, & 0.16823e-06_rb/) totplk16(1:50) = (/ & 0.28481e-12_rb,0.33159e-12_rb,0.38535e-12_rb,0.44701e-12_rb,0.51763e-12_rb, & 0.59836e-12_rb,0.69049e-12_rb,0.79549e-12_rb,0.91493e-12_rb,0.10506e-11_rb, & 0.12045e-11_rb,0.13788e-11_rb,0.15758e-11_rb,0.17984e-11_rb,0.20493e-11_rb, & 0.23317e-11_rb,0.26494e-11_rb,0.30060e-11_rb,0.34060e-11_rb,0.38539e-11_rb, & 0.43548e-11_rb,0.49144e-11_rb,0.55387e-11_rb,0.62344e-11_rb,0.70086e-11_rb, & 0.78692e-11_rb,0.88248e-11_rb,0.98846e-11_rb,0.11059e-10_rb,0.12358e-10_rb, & 0.13794e-10_rb,0.15379e-10_rb,0.17128e-10_rb,0.19055e-10_rb,0.21176e-10_rb, & 0.23508e-10_rb,0.26070e-10_rb,0.28881e-10_rb,0.31963e-10_rb,0.35339e-10_rb, & 0.39034e-10_rb,0.43073e-10_rb,0.47484e-10_rb,0.52299e-10_rb,0.57548e-10_rb, & 0.63267e-10_rb,0.69491e-10_rb,0.76261e-10_rb,0.83616e-10_rb,0.91603e-10_rb/) totplk16(51:100) = (/ & 0.10027e-09_rb,0.10966e-09_rb,0.11983e-09_rb,0.13084e-09_rb,0.14275e-09_rb, & 0.15562e-09_rb,0.16951e-09_rb,0.18451e-09_rb,0.20068e-09_rb,0.21810e-09_rb, & 0.23686e-09_rb,0.25704e-09_rb,0.27875e-09_rb,0.30207e-09_rb,0.32712e-09_rb, & 0.35400e-09_rb,0.38282e-09_rb,0.41372e-09_rb,0.44681e-09_rb,0.48223e-09_rb, & 0.52013e-09_rb,0.56064e-09_rb,0.60392e-09_rb,0.65015e-09_rb,0.69948e-09_rb, & 0.75209e-09_rb,0.80818e-09_rb,0.86794e-09_rb,0.93157e-09_rb,0.99929e-09_rb, & 0.10713e-08_rb,0.11479e-08_rb,0.12293e-08_rb,0.13157e-08_rb,0.14074e-08_rb, & 0.15047e-08_rb,0.16079e-08_rb,0.17172e-08_rb,0.18330e-08_rb,0.19557e-08_rb, & 0.20855e-08_rb,0.22228e-08_rb,0.23680e-08_rb,0.25214e-08_rb,0.26835e-08_rb, & 0.28546e-08_rb,0.30352e-08_rb,0.32257e-08_rb,0.34266e-08_rb,0.36384e-08_rb/) totplk16(101:150) = (/ & 0.38615e-08_rb,0.40965e-08_rb,0.43438e-08_rb,0.46041e-08_rb,0.48779e-08_rb, & 0.51658e-08_rb,0.54683e-08_rb,0.57862e-08_rb,0.61200e-08_rb,0.64705e-08_rb, & 0.68382e-08_rb,0.72240e-08_rb,0.76285e-08_rb,0.80526e-08_rb,0.84969e-08_rb, & 0.89624e-08_rb,0.94498e-08_rb,0.99599e-08_rb,0.10494e-07_rb,0.11052e-07_rb, & 0.11636e-07_rb,0.12246e-07_rb,0.12884e-07_rb,0.13551e-07_rb,0.14246e-07_rb, & 0.14973e-07_rb,0.15731e-07_rb,0.16522e-07_rb,0.17347e-07_rb,0.18207e-07_rb, & 0.19103e-07_rb,0.20037e-07_rb,0.21011e-07_rb,0.22024e-07_rb,0.23079e-07_rb, & 0.24177e-07_rb,0.25320e-07_rb,0.26508e-07_rb,0.27744e-07_rb,0.29029e-07_rb, & 0.30365e-07_rb,0.31753e-07_rb,0.33194e-07_rb,0.34691e-07_rb,0.36246e-07_rb, & 0.37859e-07_rb,0.39533e-07_rb,0.41270e-07_rb,0.43071e-07_rb,0.44939e-07_rb/) totplk16(151:181) = (/ & 0.46875e-07_rb,0.48882e-07_rb,0.50961e-07_rb,0.53115e-07_rb,0.55345e-07_rb, & 0.57655e-07_rb,0.60046e-07_rb,0.62520e-07_rb,0.65080e-07_rb,0.67728e-07_rb, & 0.70466e-07_rb,0.73298e-07_rb,0.76225e-07_rb,0.79251e-07_rb,0.82377e-07_rb, & 0.85606e-07_rb,0.88942e-07_rb,0.92386e-07_rb,0.95942e-07_rb,0.99612e-07_rb, & 0.10340e-06_rb,0.10731e-06_rb,0.11134e-06_rb,0.11550e-06_rb,0.11979e-06_rb, & 0.12421e-06_rb,0.12876e-06_rb,0.13346e-06_rb,0.13830e-06_rb,0.14328e-06_rb, & 0.14841e-06_rb/) end subroutine lwavplank end module rrtmg_lw_setcoef ! path: $Source: /storm/rc1/cvsroot/rc/rrtmg_lw/src/rrtmg_lw_taumol.f90,v $ ! author: $Author: mike $ ! revision: $Revision: 1.7 $ ! created: $Date: 2009/10/20 15:08:37 $ ! module rrtmg_lw_taumol ! -------------------------------------------------------------------------- ! | | ! | Copyright 2002-2009, Atmospheric & Environmental Research, Inc. (AER). | ! | This software may be used, copied, or redistributed as long as it is | ! | not sold and this copyright notice is reproduced on each copy made. | ! | This model is provided as is without any express or implied warranties. | ! | (http://www.rtweb.aer.com/) | ! | | ! -------------------------------------------------------------------------- ! ------- Modules ------- use parkind, only : im => kind_im, rb => kind_rb use parrrtm, only : mg, nbndlw, maxxsec, ngptlw use rrlw_con, only: oneminus use rrlw_wvn, only: nspa, nspb use rrlw_vsn, only: hvrtau, hnamtau implicit none contains !---------------------------------------------------------------------------- subroutine taumol(nlayers, pavel, wx, coldry, & laytrop, jp, jt, jt1, planklay, planklev, plankbnd, & colh2o, colco2, colo3, coln2o, colco, colch4, colo2, & colbrd, fac00, fac01, fac10, fac11, & rat_h2oco2, rat_h2oco2_1, rat_h2oo3, rat_h2oo3_1, & rat_h2on2o, rat_h2on2o_1, rat_h2och4, rat_h2och4_1, & rat_n2oco2, rat_n2oco2_1, rat_o3co2, rat_o3co2_1, & selffac, selffrac, indself, forfac, forfrac, indfor, & minorfrac, scaleminor, scaleminorn2, indminor, & fracs, taug) !---------------------------------------------------------------------------- ! ******************************************************************************* ! * * ! * Optical depths developed for the * ! * * ! * RAPID RADIATIVE TRANSFER MODEL (RRTM) * ! * * ! * * ! * ATMOSPHERIC AND ENVIRONMENTAL RESEARCH, INC. * ! * 131 HARTWELL AVENUE * ! * LEXINGTON, MA 02421 * ! * * ! * * ! * ELI J. MLAWER * ! * JENNIFER DELAMERE * ! * STEVEN J. TAUBMAN * ! * SHEPARD A. CLOUGH * ! * * ! * * ! * * ! * * ! * email: mlawer@aer.com * ! * email: jdelamer@aer.com * ! * * ! * The authors wish to acknowledge the contributions of the * ! * following people: Karen Cady-Pereira, Patrick D. Brown, * ! * Michael J. Iacono, Ronald E. Farren, Luke Chen, Robert Bergstrom. * ! * * ! ******************************************************************************* ! * * ! * Revision for g-point reduction: Michael J. Iacono, AER, Inc. * ! * * ! ******************************************************************************* ! * TAUMOL * ! * * ! * This file contains the subroutines TAUGBn (where n goes from * ! * 1 to 16). TAUGBn calculates the optical depths and Planck fractions * ! * per g-value and layer for band n. * ! * * ! * Output: optical depths (unitless) * ! * fractions needed to compute Planck functions at every layer * ! * and g-value * ! * * ! * COMMON /TAUGCOM/ TAUG(MXLAY,MG) * ! * COMMON /PLANKG/ FRACS(MXLAY,MG) * ! * * ! * Input * ! * * ! * COMMON /FEATURES/ NG(NBANDS),NSPA(NBANDS),NSPB(NBANDS) * ! * COMMON /PRECISE/ ONEMINUS * ! * COMMON /PROFILE/ NLAYERS,PAVEL(MXLAY),TAVEL(MXLAY), * ! * & PZ(0:MXLAY),TZ(0:MXLAY) * ! * COMMON /PROFDATA/ LAYTROP, * ! * & COLH2O(MXLAY),COLCO2(MXLAY),COLO3(MXLAY), * ! * & COLN2O(MXLAY),COLCO(MXLAY),COLCH4(MXLAY), * ! * & COLO2(MXLAY) ! * COMMON /INTFAC/ FAC00(MXLAY),FAC01(MXLAY), * ! * & FAC10(MXLAY),FAC11(MXLAY) * ! * COMMON /INTIND/ JP(MXLAY),JT(MXLAY),JT1(MXLAY) * ! * COMMON /SELF/ SELFFAC(MXLAY), SELFFRAC(MXLAY), INDSELF(MXLAY) * ! * * ! * Description: * ! * NG(IBAND) - number of g-values in band IBAND * ! * NSPA(IBAND) - for the lower atmosphere, the number of reference * ! * atmospheres that are stored for band IBAND per * ! * pressure level and temperature. Each of these * ! * atmospheres has different relative amounts of the * ! * key species for the band (i.e. different binary * ! * species parameters). * ! * NSPB(IBAND) - same for upper atmosphere * ! * ONEMINUS - since problems are caused in some cases by interpolation * ! * parameters equal to or greater than 1, for these cases * ! * these parameters are set to this value, slightly < 1. * ! * PAVEL - layer pressures (mb) * ! * TAVEL - layer temperatures (degrees K) * ! * PZ - level pressures (mb) * ! * TZ - level temperatures (degrees K) * ! * LAYTROP - layer at which switch is made from one combination of * ! * key species to another * ! * COLH2O, COLCO2, COLO3, COLN2O, COLCH4 - column amounts of water * ! * vapor,carbon dioxide, ozone, nitrous ozide, methane, * ! * respectively (molecules/cm**2) * ! * FACij(LAY) - for layer LAY, these are factors that are needed to * ! * compute the interpolation factors that multiply the * ! * appropriate reference k-values. A value of 0 (1) for * ! * i,j indicates that the corresponding factor multiplies * ! * reference k-value for the lower (higher) of the two * ! * appropriate temperatures, and altitudes, respectively. * ! * JP - the index of the lower (in altitude) of the two appropriate * ! * reference pressure levels needed for interpolation * ! * JT, JT1 - the indices of the lower of the two appropriate reference * ! * temperatures needed for interpolation (for pressure * ! * levels JP and JP+1, respectively) * ! * SELFFAC - scale factor needed for water vapor self-continuum, equals * ! * (water vapor density)/(atmospheric density at 296K and * ! * 1013 mb) * ! * SELFFRAC - factor needed for temperature interpolation of reference * ! * water vapor self-continuum data * ! * INDSELF - index of the lower of the two appropriate reference * ! * temperatures needed for the self-continuum interpolation * ! * FORFAC - scale factor needed for water vapor foreign-continuum. * ! * FORFRAC - factor needed for temperature interpolation of reference * ! * water vapor foreign-continuum data * ! * INDFOR - index of the lower of the two appropriate reference * ! * temperatures needed for the foreign-continuum interpolation * ! * * ! * Data input * ! * COMMON /Kn/ KA(NSPA(n),5,13,MG), KB(NSPB(n),5,13:59,MG), SELFREF(10,MG),* ! * FORREF(4,MG), KA_M'MGAS', KB_M'MGAS' * ! * (note: n is the band number,'MGAS' is the species name of the minor * ! * gas) * ! * * ! * Description: * ! * KA - k-values for low reference atmospheres (key-species only) * ! * (units: cm**2/molecule) * ! * KB - k-values for high reference atmospheres (key-species only) * ! * (units: cm**2/molecule) * ! * KA_M'MGAS' - k-values for low reference atmosphere minor species * ! * (units: cm**2/molecule) * ! * KB_M'MGAS' - k-values for high reference atmosphere minor species * ! * (units: cm**2/molecule) * ! * SELFREF - k-values for water vapor self-continuum for reference * ! * atmospheres (used below LAYTROP) * ! * (units: cm**2/molecule) * ! * FORREF - k-values for water vapor foreign-continuum for reference * ! * atmospheres (used below/above LAYTROP) * ! * (units: cm**2/molecule) * ! * * ! * DIMENSION ABSA(65*NSPA(n),MG), ABSB(235*NSPB(n),MG) * ! * EQUIVALENCE (KA,ABSA),(KB,ABSB) * ! * * !******************************************************************************* ! ------- Declarations ------- ! ----- Input ----- integer(kind=im), intent(in) :: nlayers ! total number of layers real(kind=rb), intent(in) :: pavel(:) ! layer pressures (mb) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: wx(:,:) ! cross-section amounts (mol/cm2) ! Dimensions: (maxxsec,nlayers) real(kind=rb), intent(in) :: coldry(:) ! column amount (dry air) ! Dimensions: (nlayers) integer(kind=im), intent(in) :: laytrop ! tropopause layer index integer(kind=im), intent(in) :: jp(:) ! ! Dimensions: (nlayers) integer(kind=im), intent(in) :: jt(:) ! ! Dimensions: (nlayers) integer(kind=im), intent(in) :: jt1(:) ! ! Dimensions: (nlayers) real(kind=rb), intent(in) :: planklay(:,:) ! ! Dimensions: (nlayers,nbndlw) real(kind=rb), intent(in) :: planklev(0:,:) ! ! Dimensions: (nlayers,nbndlw) real(kind=rb), intent(in) :: plankbnd(:) ! ! Dimensions: (nbndlw) real(kind=rb), intent(in) :: colh2o(:) ! column amount (h2o) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: colco2(:) ! column amount (co2) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: colo3(:) ! column amount (o3) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: coln2o(:) ! column amount (n2o) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: colco(:) ! column amount (co) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: colch4(:) ! column amount (ch4) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: colo2(:) ! column amount (o2) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: colbrd(:) ! column amount (broadening gases) ! Dimensions: (nlayers) integer(kind=im), intent(in) :: indself(:) ! Dimensions: (nlayers) integer(kind=im), intent(in) :: indfor(:) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: selffac(:) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: selffrac(:) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: forfac(:) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: forfrac(:) ! Dimensions: (nlayers) integer(kind=im), intent(in) :: indminor(:) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: minorfrac(:) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: scaleminor(:) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: scaleminorn2(:) ! Dimensions: (nlayers) real(kind=rb), intent(in) :: & ! fac00(:), fac01(:), & ! Dimensions: (nlayers) fac10(:), fac11(:) real(kind=rb), intent(in) :: & ! rat_h2oco2(:),rat_h2oco2_1(:), & rat_h2oo3(:),rat_h2oo3_1(:), & ! Dimensions: (nlayers) rat_h2on2o(:),rat_h2on2o_1(:), & rat_h2och4(:),rat_h2och4_1(:), & rat_n2oco2(:),rat_n2oco2_1(:), & rat_o3co2(:),rat_o3co2_1(:) ! ----- Output ----- real(kind=rb), intent(out) :: fracs(:,:) ! planck fractions ! Dimensions: (nlayers,ngptlw) real(kind=rb), intent(out) :: taug(:,:) ! gaseous optical depth ! Dimensions: (nlayers,ngptlw) !jm not thread safe hvrtau = '$Revision: 1.7 $' ! Calculate gaseous optical depth and planck fractions for each spectral band. call taugb1 call taugb2 call taugb3 call taugb4 call taugb5 call taugb6 call taugb7 call taugb8 call taugb9 call taugb10 call taugb11 call taugb12 call taugb13 call taugb14 call taugb15 call taugb16 contains !---------------------------------------------------------------------------- subroutine taugb1 !---------------------------------------------------------------------------- ! ------- Modifications ------- ! Written by Eli J. Mlawer, Atmospheric & Environmental Research. ! Revised by Michael J. Iacono, Atmospheric & Environmental Research. ! ! band 1: 10-350 cm-1 (low key - h2o; low minor - n2) ! (high key - h2o; high minor - n2) ! ! note: previous versions of rrtm band 1: ! 10-250 cm-1 (low - h2o; high - h2o) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng1 use rrlw_kg01, only : fracrefa, fracrefb, absa, ka, absb, kb, & ka_mn2, kb_mn2, selfref, forref ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig real(kind=rb) :: pp, corradj, scalen2, tauself, taufor, taun2 ! Minor gas mapping levels: ! lower - n2, p = 142.5490 mbar, t = 215.70 k ! upper - n2, p = 142.5490 mbar, t = 215.70 k ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. Below laytrop, the water vapor self-continuum and ! foreign continuum is interpolated (in temperature) separately. ! Lower atmosphere loop do lay = 1, laytrop ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(1) + 1 ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(1) + 1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) pp = pavel(lay) corradj = 1. if (pp .lt. 250._rb) then corradj = 1._rb - 0.15_rb * (250._rb-pp) / 154.4_rb endif scalen2 = colbrd(lay) * scaleminorn2(lay) do ig = 1, ng1 tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) taun2 = scalen2*(ka_mn2(indm,ig) + & minorfrac(lay) * (ka_mn2(indm+1,ig) - ka_mn2(indm,ig))) taug(lay,ig) = corradj * (colh2o(lay) * & (fac00(lay) * absa(ind0,ig) + & fac10(lay) * absa(ind0+1,ig) + & fac01(lay) * absa(ind1,ig) + & fac11(lay) * absa(ind1+1,ig)) & + tauself + taufor + taun2) fracs(lay,ig) = fracrefa(ig) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(1) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(1) + 1 indf = indfor(lay) indm = indminor(lay) pp = pavel(lay) corradj = 1._rb - 0.15_rb * (pp / 95.6_rb) scalen2 = colbrd(lay) * scaleminorn2(lay) do ig = 1, ng1 taufor = forfac(lay) * (forref(indf,ig) + & forfrac(lay) * (forref(indf+1,ig) - forref(indf,ig))) taun2 = scalen2*(kb_mn2(indm,ig) + & minorfrac(lay) * (kb_mn2(indm+1,ig) - kb_mn2(indm,ig))) taug(lay,ig) = corradj * (colh2o(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) & + taufor + taun2) fracs(lay,ig) = fracrefb(ig) enddo enddo end subroutine taugb1 !---------------------------------------------------------------------------- subroutine taugb2 !---------------------------------------------------------------------------- ! ! band 2: 350-500 cm-1 (low key - h2o; high key - h2o) ! ! note: previous version of rrtm band 2: ! 250 - 500 cm-1 (low - h2o; high - h2o) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng2, ngs1 use rrlw_kg02, only : fracrefa, fracrefb, absa, ka, absb, kb, & selfref, forref ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, ig real(kind=rb) :: pp, corradj, tauself, taufor ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. Below laytrop, the water vapor self-continuum and ! foreign continuum is interpolated (in temperature) separately. ! Lower atmosphere loop do lay = 1, laytrop ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(2) + 1 ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(2) + 1 inds = indself(lay) indf = indfor(lay) pp = pavel(lay) corradj = 1._rb - .05_rb * (pp - 100._rb) / 900._rb do ig = 1, ng2 tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) taug(lay,ngs1+ig) = corradj * (colh2o(lay) * & (fac00(lay) * absa(ind0,ig) + & fac10(lay) * absa(ind0+1,ig) + & fac01(lay) * absa(ind1,ig) + & fac11(lay) * absa(ind1+1,ig)) & + tauself + taufor) fracs(lay,ngs1+ig) = fracrefa(ig) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(2) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(2) + 1 indf = indfor(lay) do ig = 1, ng2 taufor = forfac(lay) * (forref(indf,ig) + & forfrac(lay) * (forref(indf+1,ig) - forref(indf,ig))) taug(lay,ngs1+ig) = colh2o(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) & + taufor fracs(lay,ngs1+ig) = fracrefb(ig) enddo enddo end subroutine taugb2 !---------------------------------------------------------------------------- subroutine taugb3 !---------------------------------------------------------------------------- ! ! band 3: 500-630 cm-1 (low key - h2o,co2; low minor - n2o) ! (high key - h2o,co2; high minor - n2o) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng3, ngs2 use rrlw_ref, only : chi_mls use rrlw_kg03, only : fracrefa, fracrefb, absa, ka, absb, kb, & ka_mn2o, kb_mn2o, selfref, forref ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig integer(kind=im) :: js, js1, jmn2o, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_mn2o, specparm_mn2o, specmult_mn2o, & fmn2o, fmn2omf, chi_n2o, ratn2o, adjfac, adjcoln2o real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor, n2om1, n2om2, absn2o real(kind=rb) :: refrat_planck_a, refrat_planck_b, refrat_m_a, refrat_m_b real(kind=rb) :: tau_major, tau_major1 ! Minor gas mapping levels: ! lower - n2o, p = 706.272 mbar, t = 278.94 k ! upper - n2o, p = 95.58 mbar, t = 215.7 k ! P = 212.725 mb refrat_planck_a = chi_mls(1,9)/chi_mls(2,9) ! P = 95.58 mb refrat_planck_b = chi_mls(1,13)/chi_mls(2,13) ! P = 706.270mb refrat_m_a = chi_mls(1,3)/chi_mls(2,3) ! P = 95.58 mb refrat_m_b = chi_mls(1,13)/chi_mls(2,13) ! Compute the optical depth by interpolating in ln(pressure) and ! temperature, and appropriate species. Below laytrop, the water vapor ! self-continuum and foreign continuum is interpolated (in temperature) ! separately. ! Lower atmosphere loop do lay = 1, laytrop speccomb = colh2o(lay) + rat_h2oco2(lay)*colco2(lay) specparm = colh2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) speccomb1 = colh2o(lay) + rat_h2oco2_1(lay)*colco2(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) speccomb_mn2o = colh2o(lay) + refrat_m_a*colco2(lay) specparm_mn2o = colh2o(lay)/speccomb_mn2o if (specparm_mn2o .ge. oneminus) specparm_mn2o = oneminus specmult_mn2o = 8._rb*specparm_mn2o jmn2o = 1 + int(specmult_mn2o) fmn2o = mod(specmult_mn2o,1.0_rb) fmn2omf = minorfrac(lay)*fmn2o ! In atmospheres where the amount of N2O is too great to be considered ! a minor species, adjust the column amount of N2O by an empirical factor ! to obtain the proper contribution. chi_n2o = coln2o(lay)/coldry(lay) ratn2o = 1.e20_rb*chi_n2o/chi_mls(4,jp(lay)+1) if (ratn2o .gt. 1.5_rb) then adjfac = 0.5_rb+(ratn2o-0.5_rb)**0.65_rb adjcoln2o = adjfac*chi_mls(4,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcoln2o = coln2o(lay) endif speccomb_planck = colh2o(lay)+refrat_planck_a*colco2(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl= 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(3) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(3) + js1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm .gt. 0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif if (specparm1 .lt. 0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1 .gt. 0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif do ig = 1, ng3 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) n2om1 = ka_mn2o(jmn2o,indm,ig) + fmn2o * & (ka_mn2o(jmn2o+1,indm,ig) - ka_mn2o(jmn2o,indm,ig)) n2om2 = ka_mn2o(jmn2o,indm+1,ig) + fmn2o * & (ka_mn2o(jmn2o+1,indm+1,ig) - ka_mn2o(jmn2o,indm+1,ig)) absn2o = n2om1 + minorfrac(lay) * (n2om2 - n2om1) if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm .gt. 0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif if (specparm1 .lt. 0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1 .gt. 0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif taug(lay,ngs2+ig) = tau_major + tau_major1 & + tauself + taufor & + adjcoln2o*absn2o fracs(lay,ngs2+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers speccomb = colh2o(lay) + rat_h2oco2(lay)*colco2(lay) specparm = colh2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 4._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) speccomb1 = colh2o(lay) + rat_h2oco2_1(lay)*colco2(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 4._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) speccomb_mn2o = colh2o(lay) + refrat_m_b*colco2(lay) specparm_mn2o = colh2o(lay)/speccomb_mn2o if (specparm_mn2o .ge. oneminus) specparm_mn2o = oneminus specmult_mn2o = 4._rb*specparm_mn2o jmn2o = 1 + int(specmult_mn2o) fmn2o = mod(specmult_mn2o,1.0_rb) fmn2omf = minorfrac(lay)*fmn2o ! In atmospheres where the amount of N2O is too great to be considered ! a minor species, adjust the column amount of N2O by an empirical factor ! to obtain the proper contribution. chi_n2o = coln2o(lay)/coldry(lay) ratn2o = 1.e20*chi_n2o/chi_mls(4,jp(lay)+1) if (ratn2o .gt. 1.5_rb) then adjfac = 0.5_rb+(ratn2o-0.5_rb)**0.65_rb adjcoln2o = adjfac*chi_mls(4,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcoln2o = coln2o(lay) endif speccomb_planck = colh2o(lay)+refrat_planck_b*colco2(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 4._rb*specparm_planck jpl= 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(3) + js ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(3) + js1 indf = indfor(lay) indm = indminor(lay) do ig = 1, ng3 taufor = forfac(lay) * (forref(indf,ig) + & forfrac(lay) * (forref(indf+1,ig) - forref(indf,ig))) n2om1 = kb_mn2o(jmn2o,indm,ig) + fmn2o * & (kb_mn2o(jmn2o+1,indm,ig)-kb_mn2o(jmn2o,indm,ig)) n2om2 = kb_mn2o(jmn2o,indm+1,ig) + fmn2o * & (kb_mn2o(jmn2o+1,indm+1,ig)-kb_mn2o(jmn2o,indm+1,ig)) absn2o = n2om1 + minorfrac(lay) * (n2om2 - n2om1) taug(lay,ngs2+ig) = speccomb * & (fac000 * absb(ind0,ig) + & fac100 * absb(ind0+1,ig) + & fac010 * absb(ind0+5,ig) + & fac110 * absb(ind0+6,ig)) & + speccomb1 * & (fac001 * absb(ind1,ig) + & fac101 * absb(ind1+1,ig) + & fac011 * absb(ind1+5,ig) + & fac111 * absb(ind1+6,ig)) & + taufor & + adjcoln2o*absn2o fracs(lay,ngs2+ig) = fracrefb(ig,jpl) + fpl * & (fracrefb(ig,jpl+1)-fracrefb(ig,jpl)) enddo enddo end subroutine taugb3 !---------------------------------------------------------------------------- subroutine taugb4 !---------------------------------------------------------------------------- ! ! band 4: 630-700 cm-1 (low key - h2o,co2; high key - o3,co2) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng4, ngs3 use rrlw_ref, only : chi_mls use rrlw_kg04, only : fracrefa, fracrefb, absa, ka, absb, kb, & selfref, forref ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, ig integer(kind=im) :: js, js1, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor real(kind=rb) :: refrat_planck_a, refrat_planck_b real(kind=rb) :: tau_major, tau_major1 ! P = 142.5940 mb refrat_planck_a = chi_mls(1,11)/chi_mls(2,11) ! P = 95.58350 mb refrat_planck_b = chi_mls(3,13)/chi_mls(2,13) ! Compute the optical depth by interpolating in ln(pressure) and ! temperature, and appropriate species. Below laytrop, the water ! vapor self-continuum and foreign continuum is interpolated (in temperature) ! separately. ! Lower atmosphere loop do lay = 1, laytrop speccomb = colh2o(lay) + rat_h2oco2(lay)*colco2(lay) specparm = colh2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) speccomb1 = colh2o(lay) + rat_h2oco2_1(lay)*colco2(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) speccomb_planck = colh2o(lay)+refrat_planck_a*colco2(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl= 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(4) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(4) + js1 inds = indself(lay) indf = indfor(lay) if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm .gt. 0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif if (specparm1 .lt. 0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1 .gt. 0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif do ig = 1, ng4 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm .gt. 0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif if (specparm1 .lt. 0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1 .gt. 0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif taug(lay,ngs3+ig) = tau_major + tau_major1 & + tauself + taufor fracs(lay,ngs3+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers speccomb = colo3(lay) + rat_o3co2(lay)*colco2(lay) specparm = colo3(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 4._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) speccomb1 = colo3(lay) + rat_o3co2_1(lay)*colco2(lay) specparm1 = colo3(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 4._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) speccomb_planck = colo3(lay)+refrat_planck_b*colco2(lay) specparm_planck = colo3(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 4._rb*specparm_planck jpl= 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(4) + js ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(4) + js1 do ig = 1, ng4 taug(lay,ngs3+ig) = speccomb * & (fac000 * absb(ind0,ig) + & fac100 * absb(ind0+1,ig) + & fac010 * absb(ind0+5,ig) + & fac110 * absb(ind0+6,ig)) & + speccomb1 * & (fac001 * absb(ind1,ig) + & fac101 * absb(ind1+1,ig) + & fac011 * absb(ind1+5,ig) + & fac111 * absb(ind1+6,ig)) fracs(lay,ngs3+ig) = fracrefb(ig,jpl) + fpl * & (fracrefb(ig,jpl+1)-fracrefb(ig,jpl)) enddo ! Empirical modification to code to improve stratospheric cooling rates ! for co2. Revised to apply weighting for g-point reduction in this band. taug(lay,ngs3+8)=taug(lay,ngs3+8)*0.92 taug(lay,ngs3+9)=taug(lay,ngs3+9)*0.88 taug(lay,ngs3+10)=taug(lay,ngs3+10)*1.07 taug(lay,ngs3+11)=taug(lay,ngs3+11)*1.1 taug(lay,ngs3+12)=taug(lay,ngs3+12)*0.99 taug(lay,ngs3+13)=taug(lay,ngs3+13)*0.88 taug(lay,ngs3+14)=taug(lay,ngs3+14)*0.943 enddo end subroutine taugb4 !---------------------------------------------------------------------------- subroutine taugb5 !---------------------------------------------------------------------------- ! ! band 5: 700-820 cm-1 (low key - h2o,co2; low minor - o3, ccl4) ! (high key - o3,co2) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng5, ngs4 use rrlw_ref, only : chi_mls use rrlw_kg05, only : fracrefa, fracrefb, absa, ka, absb, kb, & ka_mo3, selfref, forref, ccl4 ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig integer(kind=im) :: js, js1, jmo3, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_mo3, specparm_mo3, specmult_mo3, fmo3 real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor, o3m1, o3m2, abso3 real(kind=rb) :: refrat_planck_a, refrat_planck_b, refrat_m_a real(kind=rb) :: tau_major, tau_major1 ! Minor gas mapping level : ! lower - o3, p = 317.34 mbar, t = 240.77 k ! lower - ccl4 ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower/upper atmosphere. ! P = 473.420 mb refrat_planck_a = chi_mls(1,5)/chi_mls(2,5) ! P = 0.2369 mb refrat_planck_b = chi_mls(3,43)/chi_mls(2,43) ! P = 317.3480 refrat_m_a = chi_mls(1,7)/chi_mls(2,7) ! Compute the optical depth by interpolating in ln(pressure) and ! temperature, and appropriate species. Below laytrop, the ! water vapor self-continuum and foreign continuum is ! interpolated (in temperature) separately. ! Lower atmosphere loop do lay = 1, laytrop speccomb = colh2o(lay) + rat_h2oco2(lay)*colco2(lay) specparm = colh2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) speccomb1 = colh2o(lay) + rat_h2oco2_1(lay)*colco2(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) speccomb_mo3 = colh2o(lay) + refrat_m_a*colco2(lay) specparm_mo3 = colh2o(lay)/speccomb_mo3 if (specparm_mo3 .ge. oneminus) specparm_mo3 = oneminus specmult_mo3 = 8._rb*specparm_mo3 jmo3 = 1 + int(specmult_mo3) fmo3 = mod(specmult_mo3,1.0_rb) speccomb_planck = colh2o(lay)+refrat_planck_a*colco2(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl= 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(5) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(5) + js1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm .gt. 0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif if (specparm1 .lt. 0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1 .gt. 0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif do ig = 1, ng5 tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) o3m1 = ka_mo3(jmo3,indm,ig) + fmo3 * & (ka_mo3(jmo3+1,indm,ig)-ka_mo3(jmo3,indm,ig)) o3m2 = ka_mo3(jmo3,indm+1,ig) + fmo3 * & (ka_mo3(jmo3+1,indm+1,ig)-ka_mo3(jmo3,indm+1,ig)) abso3 = o3m1 + minorfrac(lay)*(o3m2-o3m1) if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm .gt. 0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif if (specparm1 .lt. 0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1 .gt. 0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif taug(lay,ngs4+ig) = tau_major + tau_major1 & + tauself + taufor & + abso3*colo3(lay) & + wx(1,lay) * ccl4(ig) fracs(lay,ngs4+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers speccomb = colo3(lay) + rat_o3co2(lay)*colco2(lay) specparm = colo3(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 4._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) speccomb1 = colo3(lay) + rat_o3co2_1(lay)*colco2(lay) specparm1 = colo3(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 4._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) speccomb_planck = colo3(lay)+refrat_planck_b*colco2(lay) specparm_planck = colo3(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 4._rb*specparm_planck jpl= 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(5) + js ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(5) + js1 do ig = 1, ng5 taug(lay,ngs4+ig) = speccomb * & (fac000 * absb(ind0,ig) + & fac100 * absb(ind0+1,ig) + & fac010 * absb(ind0+5,ig) + & fac110 * absb(ind0+6,ig)) & + speccomb1 * & (fac001 * absb(ind1,ig) + & fac101 * absb(ind1+1,ig) + & fac011 * absb(ind1+5,ig) + & fac111 * absb(ind1+6,ig)) & + wx(1,lay) * ccl4(ig) fracs(lay,ngs4+ig) = fracrefb(ig,jpl) + fpl * & (fracrefb(ig,jpl+1)-fracrefb(ig,jpl)) enddo enddo end subroutine taugb5 !---------------------------------------------------------------------------- subroutine taugb6 !---------------------------------------------------------------------------- ! ! band 6: 820-980 cm-1 (low key - h2o; low minor - co2) ! (high key - nothing; high minor - cfc11, cfc12) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ngs5 ! use parrrtm, only : ng6, ngs5 use rrlw_ref, only : chi_mls use rrlw_kg06 ! use rrlw_kg06, only : fracrefa, absa, ka, ka_mco2, & ! selfref, forref, cfc11adj, cfc12 ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig real(kind=rb) :: chi_co2, ratco2, adjfac, adjcolco2 real(kind=rb) :: tauself, taufor, absco2 ! Minor gas mapping level: ! lower - co2, p = 706.2720 mb, t = 294.2 k ! upper - cfc11, cfc12 ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. The water vapor self-continuum and foreign continuum ! is interpolated (in temperature) separately. ! Lower atmosphere loop do lay = 1, laytrop ! In atmospheres where the amount of CO2 is too great to be considered ! a minor species, adjust the column amount of CO2 by an empirical factor ! to obtain the proper contribution. chi_co2 = colco2(lay)/(coldry(lay)) ratco2 = 1.e20_rb*chi_co2/chi_mls(2,jp(lay)+1) if (ratco2 .gt. 3.0_rb) then adjfac = 2.0_rb+(ratco2-2.0_rb)**0.77_rb adjcolco2 = adjfac*chi_mls(2,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcolco2 = colco2(lay) endif ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(6) + 1 ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(6) + 1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) do ig = 1, ng6 tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) absco2 = (ka_mco2(indm,ig) + minorfrac(lay) * & (ka_mco2(indm+1,ig) - ka_mco2(indm,ig))) taug(lay,ngs5+ig) = colh2o(lay) * & (fac00(lay) * absa(ind0,ig) + & fac10(lay) * absa(ind0+1,ig) + & fac01(lay) * absa(ind1,ig) + & fac11(lay) * absa(ind1+1,ig)) & + tauself + taufor & + adjcolco2 * absco2 & + wx(2,lay) * cfc11adj(ig) & + wx(3,lay) * cfc12(ig) fracs(lay,ngs5+ig) = fracrefa(ig) enddo enddo ! Upper atmosphere loop ! Nothing important goes on above laytrop in this band. do lay = laytrop+1, nlayers do ig = 1, ng6 taug(lay,ngs5+ig) = 0.0_rb & + wx(2,lay) * cfc11adj(ig) & + wx(3,lay) * cfc12(ig) fracs(lay,ngs5+ig) = fracrefa(ig) enddo enddo end subroutine taugb6 !---------------------------------------------------------------------------- subroutine taugb7 !---------------------------------------------------------------------------- ! ! band 7: 980-1080 cm-1 (low key - h2o,o3; low minor - co2) ! (high key - o3; high minor - co2) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng7, ngs6 use rrlw_ref, only : chi_mls use rrlw_kg07, only : fracrefa, fracrefb, absa, ka, absb, kb, & ka_mco2, kb_mco2, selfref, forref ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig integer(kind=im) :: js, js1, jmco2, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_mco2, specparm_mco2, specmult_mco2, fmco2 real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor, co2m1, co2m2, absco2 real(kind=rb) :: chi_co2, ratco2, adjfac, adjcolco2 real(kind=rb) :: refrat_planck_a, refrat_m_a real(kind=rb) :: tau_major, tau_major1 ! Minor gas mapping level : ! lower - co2, p = 706.2620 mbar, t= 278.94 k ! upper - co2, p = 12.9350 mbar, t = 234.01 k ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower atmosphere. ! P = 706.2620 mb refrat_planck_a = chi_mls(1,3)/chi_mls(3,3) ! P = 706.2720 mb refrat_m_a = chi_mls(1,3)/chi_mls(3,3) ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below laytrop, the water ! vapor self-continuum and foreign continuum is interpolated ! (in temperature) separately. ! Lower atmosphere loop do lay = 1, laytrop speccomb = colh2o(lay) + rat_h2oo3(lay)*colo3(lay) specparm = colh2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) speccomb1 = colh2o(lay) + rat_h2oo3_1(lay)*colo3(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) speccomb_mco2 = colh2o(lay) + refrat_m_a*colo3(lay) specparm_mco2 = colh2o(lay)/speccomb_mco2 if (specparm_mco2 .ge. oneminus) specparm_mco2 = oneminus specmult_mco2 = 8._rb*specparm_mco2 jmco2 = 1 + int(specmult_mco2) fmco2 = mod(specmult_mco2,1.0_rb) ! In atmospheres where the amount of CO2 is too great to be considered ! a minor species, adjust the column amount of CO2 by an empirical factor ! to obtain the proper contribution. chi_co2 = colco2(lay)/(coldry(lay)) ratco2 = 1.e20*chi_co2/chi_mls(2,jp(lay)+1) if (ratco2 .gt. 3.0_rb) then adjfac = 3.0_rb+(ratco2-3.0_rb)**0.79_rb adjcolco2 = adjfac*chi_mls(2,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcolco2 = colco2(lay) endif speccomb_planck = colh2o(lay)+refrat_planck_a*colo3(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl= 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(7) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(7) + js1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm .gt. 0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif if (specparm1 .lt. 0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1 .gt. 0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif do ig = 1, ng7 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) co2m1 = ka_mco2(jmco2,indm,ig) + fmco2 * & (ka_mco2(jmco2+1,indm,ig) - ka_mco2(jmco2,indm,ig)) co2m2 = ka_mco2(jmco2,indm+1,ig) + fmco2 * & (ka_mco2(jmco2+1,indm+1,ig) - ka_mco2(jmco2,indm+1,ig)) absco2 = co2m1 + minorfrac(lay) * (co2m2 - co2m1) if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm .gt. 0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif if (specparm1 .lt. 0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1 .gt. 0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif taug(lay,ngs6+ig) = tau_major + tau_major1 & + tauself + taufor & + adjcolco2*absco2 fracs(lay,ngs6+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers ! In atmospheres where the amount of CO2 is too great to be considered ! a minor species, adjust the column amount of CO2 by an empirical factor ! to obtain the proper contribution. chi_co2 = colco2(lay)/(coldry(lay)) ratco2 = 1.e20*chi_co2/chi_mls(2,jp(lay)+1) if (ratco2 .gt. 3.0_rb) then adjfac = 2.0_rb+(ratco2-2.0_rb)**0.79_rb adjcolco2 = adjfac*chi_mls(2,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcolco2 = colco2(lay) endif ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(7) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(7) + 1 indm = indminor(lay) do ig = 1, ng7 absco2 = kb_mco2(indm,ig) + minorfrac(lay) * & (kb_mco2(indm+1,ig) - kb_mco2(indm,ig)) taug(lay,ngs6+ig) = colo3(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) & + adjcolco2 * absco2 fracs(lay,ngs6+ig) = fracrefb(ig) enddo ! Empirical modification to code to improve stratospheric cooling rates ! for o3. Revised to apply weighting for g-point reduction in this band. taug(lay,ngs6+6)=taug(lay,ngs6+6)*0.92_rb taug(lay,ngs6+7)=taug(lay,ngs6+7)*0.88_rb taug(lay,ngs6+8)=taug(lay,ngs6+8)*1.07_rb taug(lay,ngs6+9)=taug(lay,ngs6+9)*1.1_rb taug(lay,ngs6+10)=taug(lay,ngs6+10)*0.99_rb taug(lay,ngs6+11)=taug(lay,ngs6+11)*0.855_rb enddo end subroutine taugb7 !---------------------------------------------------------------------------- subroutine taugb8 !---------------------------------------------------------------------------- ! ! band 8: 1080-1180 cm-1 (low key - h2o; low minor - co2,o3,n2o) ! (high key - o3; high minor - co2, n2o) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng8, ngs7 use rrlw_ref, only : chi_mls use rrlw_kg08, only : fracrefa, fracrefb, absa, ka, absb, kb, & ka_mco2, ka_mn2o, ka_mo3, kb_mco2, kb_mn2o, & selfref, forref, cfc12, cfc22adj ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig real(kind=rb) :: tauself, taufor, absco2, abso3, absn2o real(kind=rb) :: chi_co2, ratco2, adjfac, adjcolco2 ! Minor gas mapping level: ! lower - co2, p = 1053.63 mb, t = 294.2 k ! lower - o3, p = 317.348 mb, t = 240.77 k ! lower - n2o, p = 706.2720 mb, t= 278.94 k ! lower - cfc12,cfc11 ! upper - co2, p = 35.1632 mb, t = 223.28 k ! upper - n2o, p = 8.716e-2 mb, t = 226.03 k ! Compute the optical depth by interpolating in ln(pressure) and ! temperature, and appropriate species. Below laytrop, the water vapor ! self-continuum and foreign continuum is interpolated (in temperature) ! separately. ! Lower atmosphere loop do lay = 1, laytrop ! In atmospheres where the amount of CO2 is too great to be considered ! a minor species, adjust the column amount of CO2 by an empirical factor ! to obtain the proper contribution. chi_co2 = colco2(lay)/(coldry(lay)) ratco2 = 1.e20_rb*chi_co2/chi_mls(2,jp(lay)+1) if (ratco2 .gt. 3.0_rb) then adjfac = 2.0_rb+(ratco2-2.0_rb)**0.65_rb adjcolco2 = adjfac*chi_mls(2,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcolco2 = colco2(lay) endif ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(8) + 1 ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(8) + 1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) do ig = 1, ng8 tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) absco2 = (ka_mco2(indm,ig) + minorfrac(lay) * & (ka_mco2(indm+1,ig) - ka_mco2(indm,ig))) abso3 = (ka_mo3(indm,ig) + minorfrac(lay) * & (ka_mo3(indm+1,ig) - ka_mo3(indm,ig))) absn2o = (ka_mn2o(indm,ig) + minorfrac(lay) * & (ka_mn2o(indm+1,ig) - ka_mn2o(indm,ig))) taug(lay,ngs7+ig) = colh2o(lay) * & (fac00(lay) * absa(ind0,ig) + & fac10(lay) * absa(ind0+1,ig) + & fac01(lay) * absa(ind1,ig) + & fac11(lay) * absa(ind1+1,ig)) & + tauself + taufor & + adjcolco2*absco2 & + colo3(lay) * abso3 & + coln2o(lay) * absn2o & + wx(3,lay) * cfc12(ig) & + wx(4,lay) * cfc22adj(ig) fracs(lay,ngs7+ig) = fracrefa(ig) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers ! In atmospheres where the amount of CO2 is too great to be considered ! a minor species, adjust the column amount of CO2 by an empirical factor ! to obtain the proper contribution. chi_co2 = colco2(lay)/coldry(lay) ratco2 = 1.e20_rb*chi_co2/chi_mls(2,jp(lay)+1) if (ratco2 .gt. 3.0_rb) then adjfac = 2.0_rb+(ratco2-2.0_rb)**0.65_rb adjcolco2 = adjfac*chi_mls(2,jp(lay)+1) * coldry(lay)*1.e-20_rb else adjcolco2 = colco2(lay) endif ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(8) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(8) + 1 indm = indminor(lay) do ig = 1, ng8 absco2 = (kb_mco2(indm,ig) + minorfrac(lay) * & (kb_mco2(indm+1,ig) - kb_mco2(indm,ig))) absn2o = (kb_mn2o(indm,ig) + minorfrac(lay) * & (kb_mn2o(indm+1,ig) - kb_mn2o(indm,ig))) taug(lay,ngs7+ig) = colo3(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) & + adjcolco2*absco2 & + coln2o(lay)*absn2o & + wx(3,lay) * cfc12(ig) & + wx(4,lay) * cfc22adj(ig) fracs(lay,ngs7+ig) = fracrefb(ig) enddo enddo end subroutine taugb8 !---------------------------------------------------------------------------- subroutine taugb9 !---------------------------------------------------------------------------- ! ! band 9: 1180-1390 cm-1 (low key - h2o,ch4; low minor - n2o) ! (high key - ch4; high minor - n2o) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng9, ngs8 use rrlw_ref, only : chi_mls use rrlw_kg09, only : fracrefa, fracrefb, absa, ka, absb, kb, & ka_mn2o, kb_mn2o, selfref, forref ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig integer(kind=im) :: js, js1, jmn2o, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_mn2o, specparm_mn2o, specmult_mn2o, fmn2o real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor, n2om1, n2om2, absn2o real(kind=rb) :: chi_n2o, ratn2o, adjfac, adjcoln2o real(kind=rb) :: refrat_planck_a, refrat_m_a real(kind=rb) :: tau_major, tau_major1 ! Minor gas mapping level : ! lower - n2o, p = 706.272 mbar, t = 278.94 k ! upper - n2o, p = 95.58 mbar, t = 215.7 k ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower/upper atmosphere. ! P = 212 mb refrat_planck_a = chi_mls(1,9)/chi_mls(6,9) ! P = 706.272 mb refrat_m_a = chi_mls(1,3)/chi_mls(6,3) ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below laytrop, the water ! vapor self-continuum and foreign continuum is interpolated ! (in temperature) separately. ! Lower atmosphere loop do lay = 1, laytrop speccomb = colh2o(lay) + rat_h2och4(lay)*colch4(lay) specparm = colh2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) speccomb1 = colh2o(lay) + rat_h2och4_1(lay)*colch4(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) speccomb_mn2o = colh2o(lay) + refrat_m_a*colch4(lay) specparm_mn2o = colh2o(lay)/speccomb_mn2o if (specparm_mn2o .ge. oneminus) specparm_mn2o = oneminus specmult_mn2o = 8._rb*specparm_mn2o jmn2o = 1 + int(specmult_mn2o) fmn2o = mod(specmult_mn2o,1.0_rb) ! In atmospheres where the amount of N2O is too great to be considered ! a minor species, adjust the column amount of N2O by an empirical factor ! to obtain the proper contribution. chi_n2o = coln2o(lay)/(coldry(lay)) ratn2o = 1.e20_rb*chi_n2o/chi_mls(4,jp(lay)+1) if (ratn2o .gt. 1.5_rb) then adjfac = 0.5_rb+(ratn2o-0.5_rb)**0.65_rb adjcoln2o = adjfac*chi_mls(4,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcoln2o = coln2o(lay) endif speccomb_planck = colh2o(lay)+refrat_planck_a*colch4(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl= 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(9) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(9) + js1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm .gt. 0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif if (specparm1 .lt. 0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1 .gt. 0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif do ig = 1, ng9 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) n2om1 = ka_mn2o(jmn2o,indm,ig) + fmn2o * & (ka_mn2o(jmn2o+1,indm,ig) - ka_mn2o(jmn2o,indm,ig)) n2om2 = ka_mn2o(jmn2o,indm+1,ig) + fmn2o * & (ka_mn2o(jmn2o+1,indm+1,ig) - ka_mn2o(jmn2o,indm+1,ig)) absn2o = n2om1 + minorfrac(lay) * (n2om2 - n2om1) if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm .gt. 0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif if (specparm1 .lt. 0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1 .gt. 0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif taug(lay,ngs8+ig) = tau_major + tau_major1 & + tauself + taufor & + adjcoln2o*absn2o fracs(lay,ngs8+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers ! In atmospheres where the amount of N2O is too great to be considered ! a minor species, adjust the column amount of N2O by an empirical factor ! to obtain the proper contribution. chi_n2o = coln2o(lay)/(coldry(lay)) ratn2o = 1.e20_rb*chi_n2o/chi_mls(4,jp(lay)+1) if (ratn2o .gt. 1.5_rb) then adjfac = 0.5_rb+(ratn2o-0.5_rb)**0.65_rb adjcoln2o = adjfac*chi_mls(4,jp(lay)+1)*coldry(lay)*1.e-20_rb else adjcoln2o = coln2o(lay) endif ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(9) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(9) + 1 indm = indminor(lay) do ig = 1, ng9 absn2o = kb_mn2o(indm,ig) + minorfrac(lay) * & (kb_mn2o(indm+1,ig) - kb_mn2o(indm,ig)) taug(lay,ngs8+ig) = colch4(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) & + adjcoln2o*absn2o fracs(lay,ngs8+ig) = fracrefb(ig) enddo enddo end subroutine taugb9 !---------------------------------------------------------------------------- subroutine taugb10 !---------------------------------------------------------------------------- ! ! band 10: 1390-1480 cm-1 (low key - h2o; high key - h2o) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng10, ngs9 use rrlw_kg10, only : fracrefa, fracrefb, absa, ka, absb, kb, & selfref, forref ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, ig real(kind=rb) :: tauself, taufor ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. Below laytrop, the water vapor self-continuum and ! foreign continuum is interpolated (in temperature) separately. ! Lower atmosphere loop do lay = 1, laytrop ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(10) + 1 ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(10) + 1 inds = indself(lay) indf = indfor(lay) do ig = 1, ng10 tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) taug(lay,ngs9+ig) = colh2o(lay) * & (fac00(lay) * absa(ind0,ig) + & fac10(lay) * absa(ind0+1,ig) + & fac01(lay) * absa(ind1,ig) + & fac11(lay) * absa(ind1+1,ig)) & + tauself + taufor fracs(lay,ngs9+ig) = fracrefa(ig) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(10) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(10) + 1 indf = indfor(lay) do ig = 1, ng10 taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) taug(lay,ngs9+ig) = colh2o(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) & + taufor fracs(lay,ngs9+ig) = fracrefb(ig) enddo enddo end subroutine taugb10 !---------------------------------------------------------------------------- subroutine taugb11 !---------------------------------------------------------------------------- ! ! band 11: 1480-1800 cm-1 (low - h2o; low minor - o2) ! (high key - h2o; high minor - o2) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng11, ngs10 use rrlw_kg11, only : fracrefa, fracrefb, absa, ka, absb, kb, & ka_mo2, kb_mo2, selfref, forref ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig real(kind=rb) :: scaleo2, tauself, taufor, tauo2 ! Minor gas mapping level : ! lower - o2, p = 706.2720 mbar, t = 278.94 k ! upper - o2, p = 4.758820 mbarm t = 250.85 k ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. Below laytrop, the water vapor self-continuum and ! foreign continuum is interpolated (in temperature) separately. ! Lower atmosphere loop do lay = 1, laytrop ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(11) + 1 ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(11) + 1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) scaleo2 = colo2(lay)*scaleminor(lay) do ig = 1, ng11 tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) tauo2 = scaleo2 * (ka_mo2(indm,ig) + minorfrac(lay) * & (ka_mo2(indm+1,ig) - ka_mo2(indm,ig))) taug(lay,ngs10+ig) = colh2o(lay) * & (fac00(lay) * absa(ind0,ig) + & fac10(lay) * absa(ind0+1,ig) + & fac01(lay) * absa(ind1,ig) + & fac11(lay) * absa(ind1+1,ig)) & + tauself + taufor & + tauo2 fracs(lay,ngs10+ig) = fracrefa(ig) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(11) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(11) + 1 indf = indfor(lay) indm = indminor(lay) scaleo2 = colo2(lay)*scaleminor(lay) do ig = 1, ng11 taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) tauo2 = scaleo2 * (kb_mo2(indm,ig) + minorfrac(lay) * & (kb_mo2(indm+1,ig) - kb_mo2(indm,ig))) taug(lay,ngs10+ig) = colh2o(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) & + taufor & + tauo2 fracs(lay,ngs10+ig) = fracrefb(ig) enddo enddo end subroutine taugb11 !---------------------------------------------------------------------------- subroutine taugb12 !---------------------------------------------------------------------------- ! ! band 12: 1800-2080 cm-1 (low - h2o,co2; high - nothing) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng12, ngs11 use rrlw_ref, only : chi_mls use rrlw_kg12, only : fracrefa, absa, ka, & selfref, forref ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, ig integer(kind=im) :: js, js1, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor real(kind=rb) :: refrat_planck_a real(kind=rb) :: tau_major, tau_major1 ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower/upper atmosphere. ! P = 174.164 mb refrat_planck_a = chi_mls(1,10)/chi_mls(2,10) ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below laytrop, the water ! vapor self-continuum adn foreign continuum is interpolated ! (in temperature) separately. ! Lower atmosphere loop do lay = 1, laytrop speccomb = colh2o(lay) + rat_h2oco2(lay)*colco2(lay) specparm = colh2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) speccomb1 = colh2o(lay) + rat_h2oco2_1(lay)*colco2(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) speccomb_planck = colh2o(lay)+refrat_planck_a*colco2(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl= 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(12) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(12) + js1 inds = indself(lay) indf = indfor(lay) if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm .gt. 0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif if (specparm1 .lt. 0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1 .gt. 0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif do ig = 1, ng12 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm .gt. 0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif if (specparm1 .lt. 0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1 .gt. 0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif taug(lay,ngs11+ig) = tau_major + tau_major1 & + tauself + taufor fracs(lay,ngs11+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers do ig = 1, ng12 taug(lay,ngs11+ig) = 0.0_rb fracs(lay,ngs11+ig) = 0.0_rb enddo enddo end subroutine taugb12 !---------------------------------------------------------------------------- subroutine taugb13 !---------------------------------------------------------------------------- ! ! band 13: 2080-2250 cm-1 (low key - h2o,n2o; high minor - o3 minor) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng13, ngs12 use rrlw_ref, only : chi_mls use rrlw_kg13, only : fracrefa, fracrefb, absa, ka, & ka_mco2, ka_mco, kb_mo3, selfref, forref ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig integer(kind=im) :: js, js1, jmco2, jmco, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_mco2, specparm_mco2, specmult_mco2, fmco2 real(kind=rb) :: speccomb_mco, specparm_mco, specmult_mco, fmco real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor, co2m1, co2m2, absco2 real(kind=rb) :: com1, com2, absco, abso3 real(kind=rb) :: chi_co2, ratco2, adjfac, adjcolco2 real(kind=rb) :: refrat_planck_a, refrat_m_a, refrat_m_a3 real(kind=rb) :: tau_major, tau_major1 ! Minor gas mapping levels : ! lower - co2, p = 1053.63 mb, t = 294.2 k ! lower - co, p = 706 mb, t = 278.94 k ! upper - o3, p = 95.5835 mb, t = 215.7 k ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower/upper atmosphere. ! P = 473.420 mb (Level 5) refrat_planck_a = chi_mls(1,5)/chi_mls(4,5) ! P = 1053. (Level 1) refrat_m_a = chi_mls(1,1)/chi_mls(4,1) ! P = 706. (Level 3) refrat_m_a3 = chi_mls(1,3)/chi_mls(4,3) ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below laytrop, the water ! vapor self-continuum and foreign continuum is interpolated ! (in temperature) separately. ! Lower atmosphere loop do lay = 1, laytrop speccomb = colh2o(lay) + rat_h2on2o(lay)*coln2o(lay) specparm = colh2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) speccomb1 = colh2o(lay) + rat_h2on2o_1(lay)*coln2o(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) speccomb_mco2 = colh2o(lay) + refrat_m_a*coln2o(lay) specparm_mco2 = colh2o(lay)/speccomb_mco2 if (specparm_mco2 .ge. oneminus) specparm_mco2 = oneminus specmult_mco2 = 8._rb*specparm_mco2 jmco2 = 1 + int(specmult_mco2) fmco2 = mod(specmult_mco2,1.0_rb) ! In atmospheres where the amount of CO2 is too great to be considered ! a minor species, adjust the column amount of CO2 by an empirical factor ! to obtain the proper contribution. chi_co2 = colco2(lay)/(coldry(lay)) ratco2 = 1.e20_rb*chi_co2/3.55e-4_rb if (ratco2 .gt. 3.0_rb) then adjfac = 2.0_rb+(ratco2-2.0_rb)**0.68_rb adjcolco2 = adjfac*3.55e-4*coldry(lay)*1.e-20_rb else adjcolco2 = colco2(lay) endif speccomb_mco = colh2o(lay) + refrat_m_a3*coln2o(lay) specparm_mco = colh2o(lay)/speccomb_mco if (specparm_mco .ge. oneminus) specparm_mco = oneminus specmult_mco = 8._rb*specparm_mco jmco = 1 + int(specmult_mco) fmco = mod(specmult_mco,1.0_rb) speccomb_planck = colh2o(lay)+refrat_planck_a*coln2o(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl= 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(13) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(13) + js1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm .gt. 0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif if (specparm1 .lt. 0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1 .gt. 0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif do ig = 1, ng13 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) co2m1 = ka_mco2(jmco2,indm,ig) + fmco2 * & (ka_mco2(jmco2+1,indm,ig) - ka_mco2(jmco2,indm,ig)) co2m2 = ka_mco2(jmco2,indm+1,ig) + fmco2 * & (ka_mco2(jmco2+1,indm+1,ig) - ka_mco2(jmco2,indm+1,ig)) absco2 = co2m1 + minorfrac(lay) * (co2m2 - co2m1) com1 = ka_mco(jmco,indm,ig) + fmco * & (ka_mco(jmco+1,indm,ig) - ka_mco(jmco,indm,ig)) com2 = ka_mco(jmco,indm+1,ig) + fmco * & (ka_mco(jmco+1,indm+1,ig) - ka_mco(jmco,indm+1,ig)) absco = com1 + minorfrac(lay) * (com2 - com1) if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm .gt. 0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif if (specparm1 .lt. 0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1 .gt. 0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif taug(lay,ngs12+ig) = tau_major + tau_major1 & + tauself + taufor & + adjcolco2*absco2 & + colco(lay)*absco fracs(lay,ngs12+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers indm = indminor(lay) do ig = 1, ng13 abso3 = kb_mo3(indm,ig) + minorfrac(lay) * & (kb_mo3(indm+1,ig) - kb_mo3(indm,ig)) taug(lay,ngs12+ig) = colo3(lay)*abso3 fracs(lay,ngs12+ig) = fracrefb(ig) enddo enddo end subroutine taugb13 !---------------------------------------------------------------------------- subroutine taugb14 !---------------------------------------------------------------------------- ! ! band 14: 2250-2380 cm-1 (low - co2; high - co2) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng14, ngs13 use rrlw_kg14, only : fracrefa, fracrefb, absa, ka, absb, kb, & selfref, forref ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, ig real(kind=rb) :: tauself, taufor ! Compute the optical depth by interpolating in ln(pressure) and ! temperature. Below laytrop, the water vapor self-continuum ! and foreign continuum is interpolated (in temperature) separately. ! Lower atmosphere loop do lay = 1, laytrop ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(14) + 1 ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(14) + 1 inds = indself(lay) indf = indfor(lay) do ig = 1, ng14 tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) taug(lay,ngs13+ig) = colco2(lay) * & (fac00(lay) * absa(ind0,ig) + & fac10(lay) * absa(ind0+1,ig) + & fac01(lay) * absa(ind1,ig) + & fac11(lay) * absa(ind1+1,ig)) & + tauself + taufor fracs(lay,ngs13+ig) = fracrefa(ig) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(14) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(14) + 1 do ig = 1, ng14 taug(lay,ngs13+ig) = colco2(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) fracs(lay,ngs13+ig) = fracrefb(ig) enddo enddo end subroutine taugb14 !---------------------------------------------------------------------------- subroutine taugb15 !---------------------------------------------------------------------------- ! ! band 15: 2380-2600 cm-1 (low - n2o,co2; low minor - n2) ! (high - nothing) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng15, ngs14 use rrlw_ref, only : chi_mls use rrlw_kg15, only : fracrefa, absa, ka, & ka_mn2, selfref, forref ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig integer(kind=im) :: js, js1, jmn2, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_mn2, specparm_mn2, specmult_mn2, fmn2 real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: scalen2, tauself, taufor, n2m1, n2m2, taun2 real(kind=rb) :: refrat_planck_a, refrat_m_a real(kind=rb) :: tau_major, tau_major1 ! Minor gas mapping level : ! Lower - Nitrogen Continuum, P = 1053., T = 294. ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower atmosphere. ! P = 1053. mb (Level 1) refrat_planck_a = chi_mls(4,1)/chi_mls(2,1) ! P = 1053. refrat_m_a = chi_mls(4,1)/chi_mls(2,1) ! Compute the optical depth by interpolating in ln(pressure), ! temperature, and appropriate species. Below laytrop, the water ! vapor self-continuum and foreign continuum is interpolated ! (in temperature) separately. ! Lower atmosphere loop do lay = 1, laytrop speccomb = coln2o(lay) + rat_n2oco2(lay)*colco2(lay) specparm = coln2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) speccomb1 = coln2o(lay) + rat_n2oco2_1(lay)*colco2(lay) specparm1 = coln2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) speccomb_mn2 = coln2o(lay) + refrat_m_a*colco2(lay) specparm_mn2 = coln2o(lay)/speccomb_mn2 if (specparm_mn2 .ge. oneminus) specparm_mn2 = oneminus specmult_mn2 = 8._rb*specparm_mn2 jmn2 = 1 + int(specmult_mn2) fmn2 = mod(specmult_mn2,1.0_rb) speccomb_planck = coln2o(lay)+refrat_planck_a*colco2(lay) specparm_planck = coln2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl= 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(15) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(15) + js1 inds = indself(lay) indf = indfor(lay) indm = indminor(lay) scalen2 = colbrd(lay)*scaleminor(lay) if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm .gt. 0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif if (specparm1 .lt. 0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1 .gt. 0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif do ig = 1, ng15 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) n2m1 = ka_mn2(jmn2,indm,ig) + fmn2 * & (ka_mn2(jmn2+1,indm,ig) - ka_mn2(jmn2,indm,ig)) n2m2 = ka_mn2(jmn2,indm+1,ig) + fmn2 * & (ka_mn2(jmn2+1,indm+1,ig) - ka_mn2(jmn2,indm+1,ig)) taun2 = scalen2 * (n2m1 + minorfrac(lay) * (n2m2 - n2m1)) if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm .gt. 0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif if (specparm1 .lt. 0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1 .gt. 0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif taug(lay,ngs14+ig) = tau_major + tau_major1 & + tauself + taufor & + taun2 fracs(lay,ngs14+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers do ig = 1, ng15 taug(lay,ngs14+ig) = 0.0_rb fracs(lay,ngs14+ig) = 0.0_rb enddo enddo end subroutine taugb15 !---------------------------------------------------------------------------- subroutine taugb16 !---------------------------------------------------------------------------- ! ! band 16: 2600-3250 cm-1 (low key- h2o,ch4; high key - ch4) !---------------------------------------------------------------------------- ! ------- Modules ------- use parrrtm, only : ng16, ngs15 use rrlw_ref, only : chi_mls use rrlw_kg16, only : fracrefa, fracrefb, absa, ka, absb, kb, & selfref, forref ! ------- Declarations ------- ! Local integer(kind=im) :: lay, ind0, ind1, inds, indf, ig integer(kind=im) :: js, js1, jpl real(kind=rb) :: speccomb, specparm, specmult, fs real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl real(kind=rb) :: p, p4, fk0, fk1, fk2 real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 real(kind=rb) :: tauself, taufor real(kind=rb) :: refrat_planck_a real(kind=rb) :: tau_major, tau_major1 ! Calculate reference ratio to be used in calculation of Planck ! fraction in lower atmosphere. ! P = 387. mb (Level 6) refrat_planck_a = chi_mls(1,6)/chi_mls(6,6) ! Compute the optical depth by interpolating in ln(pressure), ! temperature,and appropriate species. Below laytrop, the water ! vapor self-continuum and foreign continuum is interpolated ! (in temperature) separately. ! Lower atmosphere loop do lay = 1, laytrop speccomb = colh2o(lay) + rat_h2och4(lay)*colch4(lay) specparm = colh2o(lay)/speccomb if (specparm .ge. oneminus) specparm = oneminus specmult = 8._rb*(specparm) js = 1 + int(specmult) fs = mod(specmult,1.0_rb) speccomb1 = colh2o(lay) + rat_h2och4_1(lay)*colch4(lay) specparm1 = colh2o(lay)/speccomb1 if (specparm1 .ge. oneminus) specparm1 = oneminus specmult1 = 8._rb*(specparm1) js1 = 1 + int(specmult1) fs1 = mod(specmult1,1.0_rb) speccomb_planck = colh2o(lay)+refrat_planck_a*colch4(lay) specparm_planck = colh2o(lay)/speccomb_planck if (specparm_planck .ge. oneminus) specparm_planck=oneminus specmult_planck = 8._rb*specparm_planck jpl= 1 + int(specmult_planck) fpl = mod(specmult_planck,1.0_rb) ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(16) + js ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(16) + js1 inds = indself(lay) indf = indfor(lay) if (specparm .lt. 0.125_rb) then p = fs - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else if (specparm .gt. 0.875_rb) then p = -fs p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac000 = fk0*fac00(lay) fac100 = fk1*fac00(lay) fac200 = fk2*fac00(lay) fac010 = fk0*fac10(lay) fac110 = fk1*fac10(lay) fac210 = fk2*fac10(lay) else fac000 = (1._rb - fs) * fac00(lay) fac010 = (1._rb - fs) * fac10(lay) fac100 = fs * fac00(lay) fac110 = fs * fac10(lay) endif if (specparm1 .lt. 0.125_rb) then p = fs1 - 1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else if (specparm1 .gt. 0.875_rb) then p = -fs1 p4 = p**4 fk0 = p4 fk1 = 1 - p - 2.0_rb*p4 fk2 = p + p4 fac001 = fk0*fac01(lay) fac101 = fk1*fac01(lay) fac201 = fk2*fac01(lay) fac011 = fk0*fac11(lay) fac111 = fk1*fac11(lay) fac211 = fk2*fac11(lay) else fac001 = (1._rb - fs1) * fac01(lay) fac011 = (1._rb - fs1) * fac11(lay) fac101 = fs1 * fac01(lay) fac111 = fs1 * fac11(lay) endif do ig = 1, ng16 tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & (selfref(inds+1,ig) - selfref(inds,ig))) taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & (forref(indf+1,ig) - forref(indf,ig))) if (specparm .lt. 0.125_rb) then tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac200 * absa(ind0+2,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig) + & fac210 * absa(ind0+11,ig)) else if (specparm .gt. 0.875_rb) then tau_major = speccomb * & (fac200 * absa(ind0-1,ig) + & fac100 * absa(ind0,ig) + & fac000 * absa(ind0+1,ig) + & fac210 * absa(ind0+8,ig) + & fac110 * absa(ind0+9,ig) + & fac010 * absa(ind0+10,ig)) else tau_major = speccomb * & (fac000 * absa(ind0,ig) + & fac100 * absa(ind0+1,ig) + & fac010 * absa(ind0+9,ig) + & fac110 * absa(ind0+10,ig)) endif if (specparm1 .lt. 0.125_rb) then tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac201 * absa(ind1+2,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig) + & fac211 * absa(ind1+11,ig)) else if (specparm1 .gt. 0.875_rb) then tau_major1 = speccomb1 * & (fac201 * absa(ind1-1,ig) + & fac101 * absa(ind1,ig) + & fac001 * absa(ind1+1,ig) + & fac211 * absa(ind1+8,ig) + & fac111 * absa(ind1+9,ig) + & fac011 * absa(ind1+10,ig)) else tau_major1 = speccomb1 * & (fac001 * absa(ind1,ig) + & fac101 * absa(ind1+1,ig) + & fac011 * absa(ind1+9,ig) + & fac111 * absa(ind1+10,ig)) endif taug(lay,ngs15+ig) = tau_major + tau_major1 & + tauself + taufor fracs(lay,ngs15+ig) = fracrefa(ig,jpl) + fpl * & (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) enddo enddo ! Upper atmosphere loop do lay = laytrop+1, nlayers ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(16) + 1 ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(16) + 1 do ig = 1, ng16 taug(lay,ngs15+ig) = colch4(lay) * & (fac00(lay) * absb(ind0,ig) + & fac10(lay) * absb(ind0+1,ig) + & fac01(lay) * absb(ind1,ig) + & fac11(lay) * absb(ind1+1,ig)) fracs(lay,ngs15+ig) = fracrefb(ig) enddo enddo end subroutine taugb16 end subroutine taumol end module rrtmg_lw_taumol ! path: $Source: /cvsroot/NWP/WRFV3/phys/module_ra_rrtmg_lw.F,v $ ! author: $Author: trn $ ! revision: $Revision: 1.3 $ ! created: $Date: 2009/04/16 19:54:22 $ ! module rrtmg_lw_init ! -------------------------------------------------------------------------- ! | | ! | Copyright 2002-2008, Atmospheric & Environmental Research, Inc. (AER). | ! | This software may be used, copied, or redistributed as long as it is | ! | not sold and this copyright notice is reproduced on each copy made. | ! | This model is provided as is without any express or implied warranties. | ! | (http://www.rtweb.aer.com/) | ! | | ! -------------------------------------------------------------------------- ! ------- Modules ------- use parkind, only : im => kind_im, rb => kind_rb use rrlw_wvn use rrtmg_lw_setcoef, only: lwatmref, lwavplank ! Steven Cavallo: added for buffer layer adjustment implicit none integer , save :: nlayers contains ! ************************************************************************** subroutine rrtmg_lw_ini(cpdair) ! ************************************************************************** ! ! Original version: Michael J. Iacono; July, 1998 ! First revision for GCMs: September, 1998 ! Second revision for RRTM_V3.0: September, 2002 ! ! This subroutine performs calculations necessary for the initialization ! of the longwave model. Lookup tables are computed for use in the LW ! radiative transfer, and input absorption coefficient data for each ! spectral band are reduced from 256 g-point intervals to 140. ! ************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw use rrlw_tbl, only: ntbl, tblint, pade, bpade, tau_tbl, exp_tbl, tfn_tbl use rrlw_vsn, only: hvrini, hnamini real(kind=rb), intent(in) :: cpdair ! Specific heat capacity of dry air ! at constant pressure at 273 K ! (J kg-1 K-1) ! ------- Local ------- integer(kind=im) :: itr, ibnd, igc, ig, ind, ipr integer(kind=im) :: igcsm, iprsm real(kind=rb) :: wtsum, wtsm(mg) ! real(kind=rb) :: tfn ! real(kind=rb), parameter :: expeps = 1.e-20 ! Smallest value for exponential table ! ------- Definitions ------- ! Arrays for 10000-point look-up tables: ! TAU_TBL Clear-sky optical depth (used in cloudy radiative transfer) ! EXP_TBL Exponential lookup table for ransmittance ! TFN_TBL Tau transition function; i.e. the transition of the Planck ! function from that for the mean layer temperature to that for ! the layer boundary temperature as a function of optical depth. ! The "linear in tau" method is used to make the table. ! PADE Pade approximation constant (= 0.278) ! BPADE Inverse of the Pade approximation constant ! !jm not thread safe hvrini = '$Revision: 1.3 $' ! Initialize model data call lwdatinit(cpdair) call lwcmbdat ! g-point interval reduction data call lwcldpr ! cloud optical properties call lwatmref ! reference MLS profile call lwavplank ! Planck function ! Moved to module_ra_rrtmg_lw for WRF ! call lw_kgb01 ! molecular absorption coefficients ! call lw_kgb02 ! call lw_kgb03 ! call lw_kgb04 ! call lw_kgb05 ! call lw_kgb06 ! call lw_kgb07 ! call lw_kgb08 ! call lw_kgb09 ! call lw_kgb10 ! call lw_kgb11 ! call lw_kgb12 ! call lw_kgb13 ! call lw_kgb14 ! call lw_kgb15 ! call lw_kgb16 ! Compute lookup tables for transmittance, tau transition function, ! and clear sky tau (for the cloudy sky radiative transfer). Tau is ! computed as a function of the tau transition function, transmittance ! is calculated as a function of tau, and the tau transition function ! is calculated using the linear in tau formulation at values of tau ! above 0.01. TF is approximated as tau/6 for tau < 0.01. All tables ! are computed at intervals of 0.001. The inverse of the constant used ! in the Pade approximation to the tau transition function is set to b. tau_tbl(0) = 0.0_rb tau_tbl(ntbl) = 1.e10_rb exp_tbl(0) = 1.0_rb exp_tbl(ntbl) = expeps tfn_tbl(0) = 0.0_rb tfn_tbl(ntbl) = 1.0_rb bpade = 1.0_rb / pade do itr = 1, ntbl-1 tfn = float(itr) / float(ntbl) tau_tbl(itr) = bpade * tfn / (1._rb - tfn) exp_tbl(itr) = exp(-tau_tbl(itr)) if (exp_tbl(itr) .le. expeps) exp_tbl(itr) = expeps if (tau_tbl(itr) .lt. 0.06_rb) then tfn_tbl(itr) = tau_tbl(itr)/6._rb else tfn_tbl(itr) = 1._rb-2._rb*((1._rb/tau_tbl(itr))-(exp_tbl(itr)/(1.-exp_tbl(itr)))) endif enddo ! Perform g-point reduction from 16 per band (256 total points) to ! a band dependant number (140 total points) for all absorption ! coefficient input data and Planck fraction input data. ! Compute relative weighting for new g-point combinations. igcsm = 0 do ibnd = 1,nbndlw iprsm = 0 if (ngc(ibnd).lt.mg) then do igc = 1,ngc(ibnd) igcsm = igcsm + 1 wtsum = 0._rb do ipr = 1, ngn(igcsm) iprsm = iprsm + 1 wtsum = wtsum + wt(iprsm) enddo wtsm(igc) = wtsum enddo do ig = 1, ng(ibnd) ind = (ibnd-1)*mg + ig rwgt(ind) = wt(ig)/wtsm(ngm(ind)) enddo else do ig = 1, ng(ibnd) igcsm = igcsm + 1 ind = (ibnd-1)*mg + ig rwgt(ind) = 1.0_rb enddo endif enddo ! Reduce g-points for absorption coefficient data in each LW spectral band. call cmbgb1 call cmbgb2 call cmbgb3 call cmbgb4 call cmbgb5 call cmbgb6 call cmbgb7 call cmbgb8 call cmbgb9 call cmbgb10 call cmbgb11 call cmbgb12 call cmbgb13 call cmbgb14 call cmbgb15 call cmbgb16 end subroutine rrtmg_lw_ini !*************************************************************************** subroutine lwdatinit(cpdair) !*************************************************************************** ! --------- Modules ---------- use parrrtm, only : maxxsec, maxinpx use rrlw_con, only: heatfac, grav, planck, boltz, & clight, avogad, alosmt, gascon, radcn1, radcn2, & sbcnst, secdy, fluxfac, oneminus, pi use rrlw_vsn save real(kind=rb), intent(in) :: cpdair ! Specific heat capacity of dry air ! at constant pressure at 273 K ! (J kg-1 K-1) ! Longwave spectral band limits (wavenumbers) wavenum1(:) = (/ 10._rb, 350._rb, 500._rb, 630._rb, 700._rb, 820._rb, & 980._rb,1080._rb,1180._rb,1390._rb,1480._rb,1800._rb, & 2080._rb,2250._rb,2380._rb,2600._rb/) wavenum2(:) = (/350._rb, 500._rb, 630._rb, 700._rb, 820._rb, 980._rb, & 1080._rb,1180._rb,1390._rb,1480._rb,1800._rb,2080._rb, & 2250._rb,2380._rb,2600._rb,3250._rb/) delwave(:) = (/340._rb, 150._rb, 130._rb, 70._rb, 120._rb, 160._rb, & 100._rb, 100._rb, 210._rb, 90._rb, 320._rb, 280._rb, & 170._rb, 130._rb, 220._rb, 650._rb/) ! Spectral band information ng(:) = (/16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16/) nspa(:) = (/1,1,9,9,9,1,9,1,9,1,1,9,9,1,9,9/) nspb(:) = (/1,1,5,5,5,0,1,1,1,1,1,0,0,1,0,0/) ! nxmol - number of cross-sections input by user ! ixindx(i) - index of cross-section molecule corresponding to Ith ! cross-section specified by user ! = 0 -- not allowed in rrtm ! = 1 -- ccl4 ! = 2 -- cfc11 ! = 3 -- cfc12 ! = 4 -- cfc22 nxmol = 4 ixindx(1) = 1 ixindx(2) = 2 ixindx(3) = 3 ixindx(4) = 4 ixindx(5:maxinpx) = 0 ! Fundamental physical constants from NIST 2002 grav = 9.8066_rb ! Acceleration of gravity ! (m s-2) planck = 6.62606876e-27_rb ! Planck constant ! (ergs s; g cm2 s-1) boltz = 1.3806503e-16_rb ! Boltzmann constant ! (ergs K-1; g cm2 s-2 K-1) clight = 2.99792458e+10_rb ! Speed of light in a vacuum ! (cm s-1) avogad = 6.02214199e+23_rb ! Avogadro constant ! (mol-1) alosmt = 2.6867775e+19_rb ! Loschmidt constant ! (cm-3) gascon = 8.31447200e+07_rb ! Molar gas constant ! (ergs mol-1 K-1) radcn1 = 1.191042722e-12_rb ! First radiation constant ! (W cm2 sr-1) radcn2 = 1.4387752_rb ! Second radiation constant ! (cm K) sbcnst = 5.670400e-04_rb ! Stefan-Boltzmann constant ! (W cm-2 K-4) secdy = 8.6400e4_rb ! Number of seconds per day ! (s d-1) !jm moved here for thread safety, 20141107 oneminus = 1._rb - 1.e-6_rb pi = 2._rb * asin(1._rb) fluxfac = pi * 2.e4_rb ! orig: fluxfac = pi * 2.d4 ! ! units are generally cgs ! ! The first and second radiation constants are taken from NIST. ! They were previously obtained from the relations: ! radcn1 = 2.*planck*clight*clight*1.e-07 ! radcn2 = planck*clight/boltz ! Heatfac is the factor by which delta-flux / delta-pressure is ! multiplied, with flux in W/m-2 and pressure in mbar, to get ! the heating rate in units of degrees/day. It is equal to: ! Original value: ! (g)x(#sec/day)x(1e-5)/(specific heat of air at const. p) ! Here, cpdair (1.004) is in units of J g-1 K-1, and the ! constant (1.e-5) converts mb to Pa and g-1 to kg-1. ! = (9.8066)(86400)(1e-5)/(1.004) ! heatfac = 8.4391_rb ! ! Modified value for consistency with CAM3: ! (g)x(#sec/day)x(1e-5)/(specific heat of air at const. p) ! Here, cpdair (1.00464) is in units of J g-1 K-1, and the ! constant (1.e-5) converts mb to Pa and g-1 to kg-1. ! = (9.80616)(86400)(1e-5)/(1.00464) ! heatfac = 8.43339130434_rb ! ! Calculated value: ! (grav) x (#sec/day) / (specific heat of dry air at const. p x 1.e2) ! Here, cpdair is in units of J kg-1 K-1, and the constant (1.e2) ! converts mb to Pa when heatfac is multiplied by W m-2 mb-1. heatfac = grav * secdy / (cpdair * 1.e2_rb) end subroutine lwdatinit !*************************************************************************** subroutine lwcmbdat !*************************************************************************** save ! ------- Definitions ------- ! Arrays for the g-point reduction from 256 to 140 for the 16 LW bands: ! This mapping from 256 to 140 points has been carefully selected to ! minimize the effect on the resulting fluxes and cooling rates, and ! caution should be used if the mapping is modified. The full 256 ! g-point set can be restored with ngptlw=256, ngc=16*16, ngn=256*1., etc. ! ngptlw The total number of new g-points ! ngc The number of new g-points in each band ! ngs The cumulative sum of new g-points for each band ! ngm The index of each new g-point relative to the original ! 16 g-points for each band. ! ngn The number of original g-points that are combined to make ! each new g-point in each band. ! ngb The band index for each new g-point. ! wt RRTM weights for 16 g-points. ! ------- Data statements ------- ngc(:) = (/10,12,16,14,16,8,12,8,12,6,8,8,4,2,2,2/) ngs(:) = (/10,22,38,52,68,76,88,96,108,114,122,130,134,136,138,140/) ngm(:) = (/1,2,3,3,4,4,5,5,6,6,7,7,8,8,9,10, & ! band 1 1,2,3,4,5,6,7,8,9,9,10,10,11,11,12,12, & ! band 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, & ! band 3 1,2,3,4,5,6,7,8,9,10,11,12,13,14,14,14, & ! band 4 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, & ! band 5 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8, & ! band 6 1,1,2,2,3,4,5,6,7,8,9,10,11,11,12,12, & ! band 7 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8, & ! band 8 1,2,3,4,5,6,7,8,9,9,10,10,11,11,12,12, & ! band 9 1,1,2,2,3,3,4,4,5,5,5,5,6,6,6,6, & ! band 10 1,2,3,3,4,4,5,5,6,6,7,7,7,8,8,8, & ! band 11 1,2,3,4,5,5,6,6,7,7,7,7,8,8,8,8, & ! band 12 1,1,1,2,2,2,3,3,3,3,4,4,4,4,4,4, & ! band 13 1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2, & ! band 14 1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2, & ! band 15 1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2/) ! band 16 ngn(:) = (/1,1,2,2,2,2,2,2,1,1, & ! band 1 1,1,1,1,1,1,1,1,2,2,2,2, & ! band 2 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, & ! band 3 1,1,1,1,1,1,1,1,1,1,1,1,1,3, & ! band 4 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, & ! band 5 2,2,2,2,2,2,2,2, & ! band 6 2,2,1,1,1,1,1,1,1,1,2,2, & ! band 7 2,2,2,2,2,2,2,2, & ! band 8 1,1,1,1,1,1,1,1,2,2,2,2, & ! band 9 2,2,2,2,4,4, & ! band 10 1,1,2,2,2,2,3,3, & ! band 11 1,1,1,1,2,2,4,4, & ! band 12 3,3,4,6, & ! band 13 8,8, & ! band 14 8,8, & ! band 15 4,12/) ! band 16 ngb(:) = (/1,1,1,1,1,1,1,1,1,1, & ! band 1 2,2,2,2,2,2,2,2,2,2,2,2, & ! band 2 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, & ! band 3 4,4,4,4,4,4,4,4,4,4,4,4,4,4, & ! band 4 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, & ! band 5 6,6,6,6,6,6,6,6, & ! band 6 7,7,7,7,7,7,7,7,7,7,7,7, & ! band 7 8,8,8,8,8,8,8,8, & ! band 8 9,9,9,9,9,9,9,9,9,9,9,9, & ! band 9 10,10,10,10,10,10, & ! band 10 11,11,11,11,11,11,11,11, & ! band 11 12,12,12,12,12,12,12,12, & ! band 12 13,13,13,13, & ! band 13 14,14, & ! band 14 15,15, & ! band 15 16,16/) ! band 16 wt(:) = (/ 0.1527534276_rb, 0.1491729617_rb, 0.1420961469_rb, & 0.1316886544_rb, 0.1181945205_rb, 0.1019300893_rb, & 0.0832767040_rb, 0.0626720116_rb, 0.0424925000_rb, & 0.0046269894_rb, 0.0038279891_rb, 0.0030260086_rb, & 0.0022199750_rb, 0.0014140010_rb, 0.0005330000_rb, & 0.0000750000_rb/) end subroutine lwcmbdat !*************************************************************************** subroutine cmbgb1 !*************************************************************************** ! ! Original version: MJIacono; July 1998 ! Revision for GCMs: MJIacono; September 1998 ! Revision for RRTMG: MJIacono, September 2002 ! Revision for F90 reformatting: MJIacono, June 2006 ! ! The subroutines CMBGB1->CMBGB16 input the absorption coefficient ! data for each band, which are defined for 16 g-points and 16 spectral ! bands. The data are combined with appropriate weighting following the ! g-point mapping arrays specified in RRTMINIT. Plank fraction data ! in arrays FRACREFA and FRACREFB are combined without weighting. All ! g-point reduced data are put into new arrays for use in RRTM. ! ! band 1: 10-350 cm-1 (low key - h2o; low minor - n2) ! (high key - h2o; high minor - n2) ! note: previous versions of rrtm band 1: ! 10-250 cm-1 (low - h2o; high - h2o) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng1 use rrlw_kg01, only: fracrefao, fracrefbo, kao, kbo, kao_mn2, kbo_mn2, & selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, ka_mn2, kb_mn2, & selfref, forref ! ------- Local ------- integer(kind=im) :: jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumk1, sumk2, sumf1, sumf2 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(1) sumk = 0. do ipr = 1, ngn(igc) iprsm = iprsm + 1 sumk = sumk + kao(jt,jp,iprsm)*rwgt(iprsm) enddo ka(jt,jp,igc) = sumk enddo enddo do jp = 13,59 iprsm = 0 do igc = 1,ngc(1) sumk = 0. do ipr = 1, ngn(igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm) enddo kb(jt,jp,igc) = sumk enddo enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(1) sumk = 0. do ipr = 1, ngn(igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(1) sumk = 0. do ipr = 1, ngn(igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm) enddo forref(jt,igc) = sumk enddo enddo do jt = 1,19 iprsm = 0 do igc = 1,ngc(1) sumk1 = 0. sumk2 = 0. do ipr = 1, ngn(igc) iprsm = iprsm + 1 sumk1 = sumk1 + kao_mn2(jt,iprsm)*rwgt(iprsm) sumk2 = sumk2 + kbo_mn2(jt,iprsm)*rwgt(iprsm) enddo ka_mn2(jt,igc) = sumk1 kb_mn2(jt,igc) = sumk2 enddo enddo iprsm = 0 do igc = 1,ngc(1) sumf1 = 0. sumf2 = 0. do ipr = 1, ngn(igc) iprsm = iprsm + 1 sumf1= sumf1+ fracrefao(iprsm) sumf2= sumf2+ fracrefbo(iprsm) enddo fracrefa(igc) = sumf1 fracrefb(igc) = sumf2 enddo end subroutine cmbgb1 !*************************************************************************** subroutine cmbgb2 !*************************************************************************** ! ! band 2: 350-500 cm-1 (low key - h2o; high key - h2o) ! ! note: previous version of rrtm band 2: ! 250 - 500 cm-1 (low - h2o; high - h2o) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng2 use rrlw_kg02, only: fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, selfref, forref ! ------- Local ------- integer(kind=im) :: jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf1, sumf2 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(2) sumk = 0. do ipr = 1, ngn(ngs(1)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jt,jp,iprsm)*rwgt(iprsm+16) enddo ka(jt,jp,igc) = sumk enddo enddo do jp = 13,59 iprsm = 0 do igc = 1,ngc(2) sumk = 0. do ipr = 1, ngn(ngs(1)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+16) enddo kb(jt,jp,igc) = sumk enddo enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(2) sumk = 0. do ipr = 1, ngn(ngs(1)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+16) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(2) sumk = 0. do ipr = 1, ngn(ngs(1)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+16) enddo forref(jt,igc) = sumk enddo enddo iprsm = 0 do igc = 1,ngc(2) sumf1 = 0. sumf2 = 0. do ipr = 1, ngn(ngs(1)+igc) iprsm = iprsm + 1 sumf1= sumf1+ fracrefao(iprsm) sumf2= sumf2+ fracrefbo(iprsm) enddo fracrefa(igc) = sumf1 fracrefb(igc) = sumf2 enddo end subroutine cmbgb2 !*************************************************************************** subroutine cmbgb3 !*************************************************************************** ! ! band 3: 500-630 cm-1 (low key - h2o,co2; low minor - n2o) ! (high key - h2o,co2; high minor - n2o) ! ! old band 3: 500-630 cm-1 (low - h2o,co2; high - h2o,co2) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng3 use rrlw_kg03, only: fracrefao, fracrefbo, kao, kbo, kao_mn2o, kbo_mn2o, & selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, ka_mn2o, kb_mn2o, & selfref, forref ! ------- Local ------- integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(3) sumk = 0. do ipr = 1, ngn(ngs(2)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+32) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo do jn = 1,5 do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(3) sumk = 0. do ipr = 1, ngn(ngs(2)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jn,jt,jp,iprsm)*rwgt(iprsm+32) enddo kb(jn,jt,jp,igc) = sumk enddo enddo enddo enddo do jn = 1,9 do jt = 1,19 iprsm = 0 do igc = 1,ngc(3) sumk = 0. do ipr = 1, ngn(ngs(2)+igc) iprsm = iprsm + 1 sumk = sumk + kao_mn2o(jn,jt,iprsm)*rwgt(iprsm+32) enddo ka_mn2o(jn,jt,igc) = sumk enddo enddo enddo do jn = 1,5 do jt = 1,19 iprsm = 0 do igc = 1,ngc(3) sumk = 0. do ipr = 1, ngn(ngs(2)+igc) iprsm = iprsm + 1 sumk = sumk + kbo_mn2o(jn,jt,iprsm)*rwgt(iprsm+32) enddo kb_mn2o(jn,jt,igc) = sumk enddo enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(3) sumk = 0. do ipr = 1, ngn(ngs(2)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+32) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(3) sumk = 0. do ipr = 1, ngn(ngs(2)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+32) enddo forref(jt,igc) = sumk enddo enddo do jp = 1,9 iprsm = 0 do igc = 1,ngc(3) sumf = 0. do ipr = 1, ngn(ngs(2)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo do jp = 1,5 iprsm = 0 do igc = 1,ngc(3) sumf = 0. do ipr = 1, ngn(ngs(2)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefbo(iprsm,jp) enddo fracrefb(igc,jp) = sumf enddo enddo end subroutine cmbgb3 !*************************************************************************** subroutine cmbgb4 !*************************************************************************** ! ! band 4: 630-700 cm-1 (low key - h2o,co2; high key - o3,co2) ! ! old band 4: 630-700 cm-1 (low - h2o,co2; high - o3,co2) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng4 use rrlw_kg04, only: fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, selfref, forref ! ------- Local ------- integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(4) sumk = 0. do ipr = 1, ngn(ngs(3)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+48) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo do jn = 1,5 do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(4) sumk = 0. do ipr = 1, ngn(ngs(3)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jn,jt,jp,iprsm)*rwgt(iprsm+48) enddo kb(jn,jt,jp,igc) = sumk enddo enddo enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(4) sumk = 0. do ipr = 1, ngn(ngs(3)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+48) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(4) sumk = 0. do ipr = 1, ngn(ngs(3)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+48) enddo forref(jt,igc) = sumk enddo enddo do jp = 1,9 iprsm = 0 do igc = 1,ngc(4) sumf = 0. do ipr = 1, ngn(ngs(3)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo do jp = 1,5 iprsm = 0 do igc = 1,ngc(4) sumf = 0. do ipr = 1, ngn(ngs(3)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefbo(iprsm,jp) enddo fracrefb(igc,jp) = sumf enddo enddo end subroutine cmbgb4 !*************************************************************************** subroutine cmbgb5 !*************************************************************************** ! ! band 5: 700-820 cm-1 (low key - h2o,co2; low minor - o3, ccl4) ! (high key - o3,co2) ! ! old band 5: 700-820 cm-1 (low - h2o,co2; high - o3,co2) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng5 use rrlw_kg05, only: fracrefao, fracrefbo, kao, kbo, kao_mo3, ccl4o, & selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, ka_mo3, ccl4, & selfref, forref ! ------- Local ------- integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(5) sumk = 0. do ipr = 1, ngn(ngs(4)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+64) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo do jn = 1,5 do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(5) sumk = 0. do ipr = 1, ngn(ngs(4)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jn,jt,jp,iprsm)*rwgt(iprsm+64) enddo kb(jn,jt,jp,igc) = sumk enddo enddo enddo enddo do jn = 1,9 do jt = 1,19 iprsm = 0 do igc = 1,ngc(5) sumk = 0. do ipr = 1, ngn(ngs(4)+igc) iprsm = iprsm + 1 sumk = sumk + kao_mo3(jn,jt,iprsm)*rwgt(iprsm+64) enddo ka_mo3(jn,jt,igc) = sumk enddo enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(5) sumk = 0. do ipr = 1, ngn(ngs(4)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+64) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(5) sumk = 0. do ipr = 1, ngn(ngs(4)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+64) enddo forref(jt,igc) = sumk enddo enddo do jp = 1,9 iprsm = 0 do igc = 1,ngc(5) sumf = 0. do ipr = 1, ngn(ngs(4)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo do jp = 1,5 iprsm = 0 do igc = 1,ngc(5) sumf = 0. do ipr = 1, ngn(ngs(4)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefbo(iprsm,jp) enddo fracrefb(igc,jp) = sumf enddo enddo iprsm = 0 do igc = 1,ngc(5) sumk = 0. do ipr = 1, ngn(ngs(4)+igc) iprsm = iprsm + 1 sumk = sumk + ccl4o(iprsm)*rwgt(iprsm+64) enddo ccl4(igc) = sumk enddo end subroutine cmbgb5 !*************************************************************************** subroutine cmbgb6 !*************************************************************************** ! ! band 6: 820-980 cm-1 (low key - h2o; low minor - co2) ! (high key - nothing; high minor - cfc11, cfc12) ! ! old band 6: 820-980 cm-1 (low - h2o; high - nothing) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw ! use parrrtm, only : mg, nbndlw, ngptlw, ng6 use rrlw_kg06 ! use rrlw_kg06, only: fracrefao, kao, kao_mco2, cfc11adjo, cfc12o, & ! selfrefo, forrefo, & ! fracrefa, absa, ka, ka_mco2, cfc11adj, cfc12, & ! selfref, forref ! ------- Local ------- integer(kind=im) :: jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf, sumk1, sumk2 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(6) sumk = 0. do ipr = 1, ngn(ngs(5)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jt,jp,iprsm)*rwgt(iprsm+80) enddo ka(jt,jp,igc) = sumk enddo enddo enddo do jt = 1,19 iprsm = 0 do igc = 1,ngc(6) sumk = 0. do ipr = 1, ngn(ngs(5)+igc) iprsm = iprsm + 1 sumk = sumk + kao_mco2(jt,iprsm)*rwgt(iprsm+80) enddo ka_mco2(jt,igc) = sumk enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(6) sumk = 0. do ipr = 1, ngn(ngs(5)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+80) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(6) sumk = 0. do ipr = 1, ngn(ngs(5)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+80) enddo forref(jt,igc) = sumk enddo enddo iprsm = 0 do igc = 1,ngc(6) sumf = 0. sumk1= 0. sumk2= 0. do ipr = 1, ngn(ngs(5)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm) sumk1= sumk1+ cfc11adjo(iprsm)*rwgt(iprsm+80) sumk2= sumk2+ cfc12o(iprsm)*rwgt(iprsm+80) enddo fracrefa(igc) = sumf cfc11adj(igc) = sumk1 cfc12(igc) = sumk2 enddo end subroutine cmbgb6 !*************************************************************************** subroutine cmbgb7 !*************************************************************************** ! ! band 7: 980-1080 cm-1 (low key - h2o,o3; low minor - co2) ! (high key - o3; high minor - co2) ! ! old band 7: 980-1080 cm-1 (low - h2o,o3; high - o3) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng7 use rrlw_kg07, only: fracrefao, fracrefbo, kao, kbo, kao_mco2, kbo_mco2, & selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, ka_mco2, kb_mco2, & selfref, forref ! ------- Local ------- integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(7) sumk = 0. do ipr = 1, ngn(ngs(6)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+96) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(7) sumk = 0. do ipr = 1, ngn(ngs(6)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+96) enddo kb(jt,jp,igc) = sumk enddo enddo enddo do jn = 1,9 do jt = 1,19 iprsm = 0 do igc = 1,ngc(7) sumk = 0. do ipr = 1, ngn(ngs(6)+igc) iprsm = iprsm + 1 sumk = sumk + kao_mco2(jn,jt,iprsm)*rwgt(iprsm+96) enddo ka_mco2(jn,jt,igc) = sumk enddo enddo enddo do jt = 1,19 iprsm = 0 do igc = 1,ngc(7) sumk = 0. do ipr = 1, ngn(ngs(6)+igc) iprsm = iprsm + 1 sumk = sumk + kbo_mco2(jt,iprsm)*rwgt(iprsm+96) enddo kb_mco2(jt,igc) = sumk enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(7) sumk = 0. do ipr = 1, ngn(ngs(6)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+96) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(7) sumk = 0. do ipr = 1, ngn(ngs(6)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+96) enddo forref(jt,igc) = sumk enddo enddo do jp = 1,9 iprsm = 0 do igc = 1,ngc(7) sumf = 0. do ipr = 1, ngn(ngs(6)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo iprsm = 0 do igc = 1,ngc(7) sumf = 0. do ipr = 1, ngn(ngs(6)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefbo(iprsm) enddo fracrefb(igc) = sumf enddo end subroutine cmbgb7 !*************************************************************************** subroutine cmbgb8 !*************************************************************************** ! ! band 8: 1080-1180 cm-1 (low key - h2o; low minor - co2,o3,n2o) ! (high key - o3; high minor - co2, n2o) ! ! old band 8: 1080-1180 cm-1 (low (i.e.>~300mb) - h2o; high - o3) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng8 use rrlw_kg08, only: fracrefao, fracrefbo, kao, kao_mco2, kao_mn2o, & kao_mo3, kbo, kbo_mco2, kbo_mn2o, selfrefo, forrefo, & cfc12o, cfc22adjo, & fracrefa, fracrefb, absa, ka, ka_mco2, ka_mn2o, & ka_mo3, absb, kb, kb_mco2, kb_mn2o, selfref, forref, & cfc12, cfc22adj ! ------- Local ------- integer(kind=im) :: jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumk1, sumk2, sumk3, sumk4, sumk5, sumf1, sumf2 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(8) sumk = 0. do ipr = 1, ngn(ngs(7)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jt,jp,iprsm)*rwgt(iprsm+112) enddo ka(jt,jp,igc) = sumk enddo enddo enddo do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(8) sumk = 0. do ipr = 1, ngn(ngs(7)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+112) enddo kb(jt,jp,igc) = sumk enddo enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(8) sumk = 0. do ipr = 1, ngn(ngs(7)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+112) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(8) sumk = 0. do ipr = 1, ngn(ngs(7)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+112) enddo forref(jt,igc) = sumk enddo enddo do jt = 1,19 iprsm = 0 do igc = 1,ngc(8) sumk1 = 0. sumk2 = 0. sumk3 = 0. sumk4 = 0. sumk5 = 0. do ipr = 1, ngn(ngs(7)+igc) iprsm = iprsm + 1 sumk1 = sumk1 + kao_mco2(jt,iprsm)*rwgt(iprsm+112) sumk2 = sumk2 + kbo_mco2(jt,iprsm)*rwgt(iprsm+112) sumk3 = sumk3 + kao_mo3(jt,iprsm)*rwgt(iprsm+112) sumk4 = sumk4 + kao_mn2o(jt,iprsm)*rwgt(iprsm+112) sumk5 = sumk5 + kbo_mn2o(jt,iprsm)*rwgt(iprsm+112) enddo ka_mco2(jt,igc) = sumk1 kb_mco2(jt,igc) = sumk2 ka_mo3(jt,igc) = sumk3 ka_mn2o(jt,igc) = sumk4 kb_mn2o(jt,igc) = sumk5 enddo enddo iprsm = 0 do igc = 1,ngc(8) sumf1= 0. sumf2= 0. sumk1= 0. sumk2= 0. do ipr = 1, ngn(ngs(7)+igc) iprsm = iprsm + 1 sumf1= sumf1+ fracrefao(iprsm) sumf2= sumf2+ fracrefbo(iprsm) sumk1= sumk1+ cfc12o(iprsm)*rwgt(iprsm+112) sumk2= sumk2+ cfc22adjo(iprsm)*rwgt(iprsm+112) enddo fracrefa(igc) = sumf1 fracrefb(igc) = sumf2 cfc12(igc) = sumk1 cfc22adj(igc) = sumk2 enddo end subroutine cmbgb8 !*************************************************************************** subroutine cmbgb9 !*************************************************************************** ! ! band 9: 1180-1390 cm-1 (low key - h2o,ch4; low minor - n2o) ! (high key - ch4; high minor - n2o)! ! old band 9: 1180-1390 cm-1 (low - h2o,ch4; high - ch4) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng9 use rrlw_kg09, only: fracrefao, fracrefbo, kao, kao_mn2o, & kbo, kbo_mn2o, selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, ka_mn2o, & absb, kb, kb_mn2o, selfref, forref ! ------- Local ------- integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(9) sumk = 0. do ipr = 1, ngn(ngs(8)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+128) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(9) sumk = 0. do ipr = 1, ngn(ngs(8)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+128) enddo kb(jt,jp,igc) = sumk enddo enddo enddo do jn = 1,9 do jt = 1,19 iprsm = 0 do igc = 1,ngc(9) sumk = 0. do ipr = 1, ngn(ngs(8)+igc) iprsm = iprsm + 1 sumk = sumk + kao_mn2o(jn,jt,iprsm)*rwgt(iprsm+128) enddo ka_mn2o(jn,jt,igc) = sumk enddo enddo enddo do jt = 1,19 iprsm = 0 do igc = 1,ngc(9) sumk = 0. do ipr = 1, ngn(ngs(8)+igc) iprsm = iprsm + 1 sumk = sumk + kbo_mn2o(jt,iprsm)*rwgt(iprsm+128) enddo kb_mn2o(jt,igc) = sumk enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(9) sumk = 0. do ipr = 1, ngn(ngs(8)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+128) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(9) sumk = 0. do ipr = 1, ngn(ngs(8)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+128) enddo forref(jt,igc) = sumk enddo enddo do jp = 1,9 iprsm = 0 do igc = 1,ngc(9) sumf = 0. do ipr = 1, ngn(ngs(8)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo iprsm = 0 do igc = 1,ngc(9) sumf = 0. do ipr = 1, ngn(ngs(8)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefbo(iprsm) enddo fracrefb(igc) = sumf enddo end subroutine cmbgb9 !*************************************************************************** subroutine cmbgb10 !*************************************************************************** ! ! band 10: 1390-1480 cm-1 (low key - h2o; high key - h2o) ! ! old band 10: 1390-1480 cm-1 (low - h2o; high - h2o) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng10 use rrlw_kg10, only: fracrefao, fracrefbo, kao, kbo, & selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, & selfref, forref ! ------- Local ------- integer(kind=im) :: jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf1, sumf2 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(10) sumk = 0. do ipr = 1, ngn(ngs(9)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jt,jp,iprsm)*rwgt(iprsm+144) enddo ka(jt,jp,igc) = sumk enddo enddo enddo do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(10) sumk = 0. do ipr = 1, ngn(ngs(9)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+144) enddo kb(jt,jp,igc) = sumk enddo enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(10) sumk = 0. do ipr = 1, ngn(ngs(9)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+144) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(10) sumk = 0. do ipr = 1, ngn(ngs(9)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+144) enddo forref(jt,igc) = sumk enddo enddo iprsm = 0 do igc = 1,ngc(10) sumf1= 0. sumf2= 0. do ipr = 1, ngn(ngs(9)+igc) iprsm = iprsm + 1 sumf1= sumf1+ fracrefao(iprsm) sumf2= sumf2+ fracrefbo(iprsm) enddo fracrefa(igc) = sumf1 fracrefb(igc) = sumf2 enddo end subroutine cmbgb10 !*************************************************************************** subroutine cmbgb11 !*************************************************************************** ! ! band 11: 1480-1800 cm-1 (low - h2o; low minor - o2) ! (high key - h2o; high minor - o2) ! ! old band 11: 1480-1800 cm-1 (low - h2o; low minor - o2) ! (high key - h2o; high minor - o2) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng11 use rrlw_kg11, only: fracrefao, fracrefbo, kao, kao_mo2, & kbo, kbo_mo2, selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, ka_mo2, & absb, kb, kb_mo2, selfref, forref ! ------- Local ------- integer(kind=im) :: jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumk1, sumk2, sumf1, sumf2 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(11) sumk = 0. do ipr = 1, ngn(ngs(10)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jt,jp,iprsm)*rwgt(iprsm+160) enddo ka(jt,jp,igc) = sumk enddo enddo enddo do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(11) sumk = 0. do ipr = 1, ngn(ngs(10)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+160) enddo kb(jt,jp,igc) = sumk enddo enddo enddo do jt = 1,19 iprsm = 0 do igc = 1,ngc(11) sumk1 = 0. sumk2 = 0. do ipr = 1, ngn(ngs(10)+igc) iprsm = iprsm + 1 sumk1 = sumk1 + kao_mo2(jt,iprsm)*rwgt(iprsm+160) sumk2 = sumk2 + kbo_mo2(jt,iprsm)*rwgt(iprsm+160) enddo ka_mo2(jt,igc) = sumk1 kb_mo2(jt,igc) = sumk2 enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(11) sumk = 0. do ipr = 1, ngn(ngs(10)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+160) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(11) sumk = 0. do ipr = 1, ngn(ngs(10)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+160) enddo forref(jt,igc) = sumk enddo enddo iprsm = 0 do igc = 1,ngc(11) sumf1= 0. sumf2= 0. do ipr = 1, ngn(ngs(10)+igc) iprsm = iprsm + 1 sumf1= sumf1+ fracrefao(iprsm) sumf2= sumf2+ fracrefbo(iprsm) enddo fracrefa(igc) = sumf1 fracrefb(igc) = sumf2 enddo end subroutine cmbgb11 !*************************************************************************** subroutine cmbgb12 !*************************************************************************** ! ! band 12: 1800-2080 cm-1 (low - h2o,co2; high - nothing) ! ! old band 12: 1800-2080 cm-1 (low - h2o,co2; high - nothing) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng12 use rrlw_kg12, only: fracrefao, kao, selfrefo, forrefo, & fracrefa, absa, ka, selfref, forref ! ------- Local ------- integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(12) sumk = 0. do ipr = 1, ngn(ngs(11)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+176) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(12) sumk = 0. do ipr = 1, ngn(ngs(11)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+176) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(12) sumk = 0. do ipr = 1, ngn(ngs(11)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+176) enddo forref(jt,igc) = sumk enddo enddo do jp = 1,9 iprsm = 0 do igc = 1,ngc(12) sumf = 0. do ipr = 1, ngn(ngs(11)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo end subroutine cmbgb12 !*************************************************************************** subroutine cmbgb13 !*************************************************************************** ! ! band 13: 2080-2250 cm-1 (low key - h2o,n2o; high minor - o3 minor) ! ! old band 13: 2080-2250 cm-1 (low - h2o,n2o; high - nothing) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng13 use rrlw_kg13, only: fracrefao, fracrefbo, kao, kao_mco2, kao_mco, & kbo_mo3, selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, ka_mco2, ka_mco, & kb_mo3, selfref, forref ! ------- Local ------- integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumk1, sumk2, sumf do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(13) sumk = 0. do ipr = 1, ngn(ngs(12)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+192) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo do jn = 1,9 do jt = 1,19 iprsm = 0 do igc = 1,ngc(13) sumk1 = 0. sumk2 = 0. do ipr = 1, ngn(ngs(12)+igc) iprsm = iprsm + 1 sumk1 = sumk1 + kao_mco2(jn,jt,iprsm)*rwgt(iprsm+192) sumk2 = sumk2 + kao_mco(jn,jt,iprsm)*rwgt(iprsm+192) enddo ka_mco2(jn,jt,igc) = sumk1 ka_mco(jn,jt,igc) = sumk2 enddo enddo enddo do jt = 1,19 iprsm = 0 do igc = 1,ngc(13) sumk = 0. do ipr = 1, ngn(ngs(12)+igc) iprsm = iprsm + 1 sumk = sumk + kbo_mo3(jt,iprsm)*rwgt(iprsm+192) enddo kb_mo3(jt,igc) = sumk enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(13) sumk = 0. do ipr = 1, ngn(ngs(12)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+192) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(13) sumk = 0. do ipr = 1, ngn(ngs(12)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+192) enddo forref(jt,igc) = sumk enddo enddo iprsm = 0 do igc = 1,ngc(13) sumf = 0. do ipr = 1, ngn(ngs(12)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefbo(iprsm) enddo fracrefb(igc) = sumf enddo do jp = 1,9 iprsm = 0 do igc = 1,ngc(13) sumf = 0. do ipr = 1, ngn(ngs(12)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo end subroutine cmbgb13 !*************************************************************************** subroutine cmbgb14 !*************************************************************************** ! ! band 14: 2250-2380 cm-1 (low - co2; high - co2) ! ! old band 14: 2250-2380 cm-1 (low - co2; high - co2) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng14 use rrlw_kg14, only: fracrefao, fracrefbo, kao, kbo, & selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, & selfref, forref ! ------- Local ------- integer(kind=im) :: jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf1, sumf2 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(14) sumk = 0. do ipr = 1, ngn(ngs(13)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jt,jp,iprsm)*rwgt(iprsm+208) enddo ka(jt,jp,igc) = sumk enddo enddo enddo do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(14) sumk = 0. do ipr = 1, ngn(ngs(13)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+208) enddo kb(jt,jp,igc) = sumk enddo enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(14) sumk = 0. do ipr = 1, ngn(ngs(13)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+208) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(14) sumk = 0. do ipr = 1, ngn(ngs(13)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+208) enddo forref(jt,igc) = sumk enddo enddo iprsm = 0 do igc = 1,ngc(14) sumf1= 0. sumf2= 0. do ipr = 1, ngn(ngs(13)+igc) iprsm = iprsm + 1 sumf1= sumf1+ fracrefao(iprsm) sumf2= sumf2+ fracrefbo(iprsm) enddo fracrefa(igc) = sumf1 fracrefb(igc) = sumf2 enddo end subroutine cmbgb14 !*************************************************************************** subroutine cmbgb15 !*************************************************************************** ! ! band 15: 2380-2600 cm-1 (low - n2o,co2; low minor - n2) ! (high - nothing) ! ! old band 15: 2380-2600 cm-1 (low - n2o,co2; high - nothing) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng15 use rrlw_kg15, only: fracrefao, kao, kao_mn2, selfrefo, forrefo, & fracrefa, absa, ka, ka_mn2, selfref, forref ! ------- Local ------- integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(15) sumk = 0. do ipr = 1, ngn(ngs(14)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+224) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo do jn = 1,9 do jt = 1,19 iprsm = 0 do igc = 1,ngc(15) sumk = 0. do ipr = 1, ngn(ngs(14)+igc) iprsm = iprsm + 1 sumk = sumk + kao_mn2(jn,jt,iprsm)*rwgt(iprsm+224) enddo ka_mn2(jn,jt,igc) = sumk enddo enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(15) sumk = 0. do ipr = 1, ngn(ngs(14)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+224) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(15) sumk = 0. do ipr = 1, ngn(ngs(14)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+224) enddo forref(jt,igc) = sumk enddo enddo do jp = 1,9 iprsm = 0 do igc = 1,ngc(15) sumf = 0. do ipr = 1, ngn(ngs(14)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo end subroutine cmbgb15 !*************************************************************************** subroutine cmbgb16 !*************************************************************************** ! ! band 16: 2600-3250 cm-1 (low key- h2o,ch4; high key - ch4) ! ! old band 16: 2600-3000 cm-1 (low - h2o,ch4; high - nothing) !*************************************************************************** use parrrtm, only : mg, nbndlw, ngptlw, ng16 use rrlw_kg16, only: fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo, & fracrefa, fracrefb, absa, ka, absb, kb, selfref, forref ! ------- Local ------- integer(kind=im) :: jn, jt, jp, igc, ipr, iprsm real(kind=rb) :: sumk, sumf do jn = 1,9 do jt = 1,5 do jp = 1,13 iprsm = 0 do igc = 1,ngc(16) sumk = 0. do ipr = 1, ngn(ngs(15)+igc) iprsm = iprsm + 1 sumk = sumk + kao(jn,jt,jp,iprsm)*rwgt(iprsm+240) enddo ka(jn,jt,jp,igc) = sumk enddo enddo enddo enddo do jt = 1,5 do jp = 13,59 iprsm = 0 do igc = 1,ngc(16) sumk = 0. do ipr = 1, ngn(ngs(15)+igc) iprsm = iprsm + 1 sumk = sumk + kbo(jt,jp,iprsm)*rwgt(iprsm+240) enddo kb(jt,jp,igc) = sumk enddo enddo enddo do jt = 1,10 iprsm = 0 do igc = 1,ngc(16) sumk = 0. do ipr = 1, ngn(ngs(15)+igc) iprsm = iprsm + 1 sumk = sumk + selfrefo(jt,iprsm)*rwgt(iprsm+240) enddo selfref(jt,igc) = sumk enddo enddo do jt = 1,4 iprsm = 0 do igc = 1,ngc(16) sumk = 0. do ipr = 1, ngn(ngs(15)+igc) iprsm = iprsm + 1 sumk = sumk + forrefo(jt,iprsm)*rwgt(iprsm+240) enddo forref(jt,igc) = sumk enddo enddo iprsm = 0 do igc = 1,ngc(16) sumf = 0. do ipr = 1, ngn(ngs(15)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefbo(iprsm) enddo fracrefb(igc) = sumf enddo do jp = 1,9 iprsm = 0 do igc = 1,ngc(16) sumf = 0. do ipr = 1, ngn(ngs(15)+igc) iprsm = iprsm + 1 sumf = sumf + fracrefao(iprsm,jp) enddo fracrefa(igc,jp) = sumf enddo enddo end subroutine cmbgb16 !*************************************************************************** subroutine lwcldpr !*************************************************************************** ! --------- Modules ---------- use rrlw_cld, only: abscld1, absliq0, absliq1, & absice0, absice1, absice2, absice3 save ! ABSCLDn is the liquid water absorption coefficient (m2/g). ! For INFLAG = 1. abscld1 = 0.0602410_rb ! ! Everything below is for INFLAG = 2. ! ABSICEn(J,IB) are the parameters needed to compute the liquid water ! absorption coefficient in spectral region IB for ICEFLAG=n. The units ! of ABSICEn(1,IB) are m2/g and ABSICEn(2,IB) has units (microns (m2/g)). ! For ICEFLAG = 0. absice0(:)= (/0.005_rb, 1.0_rb/) ! For ICEFLAG = 1. absice1(1,:) = (/0.0036_rb, 0.0068_rb, 0.0003_rb, 0.0016_rb, 0.0020_rb/) absice1(2,:) = (/1.136_rb , 0.600_rb , 1.338_rb , 1.166_rb , 1.118_rb /) ! For ICEFLAG = 2. In each band, the absorption ! coefficients are listed for a range of effective radii from 5.0 ! to 131.0 microns in increments of 3.0 microns. ! Spherical Ice Particle Parameterization ! absorption units (abs coef/iwc): [(m^-1)/(g m^-3)] absice2(:,1) = (/ & ! band 1 7.798999e-02_rb,6.340479e-02_rb,5.417973e-02_rb,4.766245e-02_rb,4.272663e-02_rb, & 3.880939e-02_rb,3.559544e-02_rb,3.289241e-02_rb,3.057511e-02_rb,2.855800e-02_rb, & 2.678022e-02_rb,2.519712e-02_rb,2.377505e-02_rb,2.248806e-02_rb,2.131578e-02_rb, & 2.024194e-02_rb,1.925337e-02_rb,1.833926e-02_rb,1.749067e-02_rb,1.670007e-02_rb, & 1.596113e-02_rb,1.526845e-02_rb,1.461739e-02_rb,1.400394e-02_rb,1.342462e-02_rb, & 1.287639e-02_rb,1.235656e-02_rb,1.186279e-02_rb,1.139297e-02_rb,1.094524e-02_rb, & 1.051794e-02_rb,1.010956e-02_rb,9.718755e-03_rb,9.344316e-03_rb,8.985139e-03_rb, & 8.640223e-03_rb,8.308656e-03_rb,7.989606e-03_rb,7.682312e-03_rb,7.386076e-03_rb, & 7.100255e-03_rb,6.824258e-03_rb,6.557540e-03_rb/) absice2(:,2) = (/ & ! band 2 2.784879e-02_rb,2.709863e-02_rb,2.619165e-02_rb,2.529230e-02_rb,2.443225e-02_rb, & 2.361575e-02_rb,2.284021e-02_rb,2.210150e-02_rb,2.139548e-02_rb,2.071840e-02_rb, & 2.006702e-02_rb,1.943856e-02_rb,1.883064e-02_rb,1.824120e-02_rb,1.766849e-02_rb, & 1.711099e-02_rb,1.656737e-02_rb,1.603647e-02_rb,1.551727e-02_rb,1.500886e-02_rb, & 1.451045e-02_rb,1.402132e-02_rb,1.354084e-02_rb,1.306842e-02_rb,1.260355e-02_rb, & 1.214575e-02_rb,1.169460e-02_rb,1.124971e-02_rb,1.081072e-02_rb,1.037731e-02_rb, & 9.949167e-03_rb,9.526021e-03_rb,9.107615e-03_rb,8.693714e-03_rb,8.284096e-03_rb, & 7.878558e-03_rb,7.476910e-03_rb,7.078974e-03_rb,6.684586e-03_rb,6.293589e-03_rb, & 5.905839e-03_rb,5.521200e-03_rb,5.139543e-03_rb/) absice2(:,3) = (/ & ! band 3 1.065397e-01_rb,8.005726e-02_rb,6.546428e-02_rb,5.589131e-02_rb,4.898681e-02_rb, & 4.369932e-02_rb,3.947901e-02_rb,3.600676e-02_rb,3.308299e-02_rb,3.057561e-02_rb, & 2.839325e-02_rb,2.647040e-02_rb,2.475872e-02_rb,2.322164e-02_rb,2.183091e-02_rb, & 2.056430e-02_rb,1.940407e-02_rb,1.833586e-02_rb,1.734787e-02_rb,1.643034e-02_rb, & 1.557512e-02_rb,1.477530e-02_rb,1.402501e-02_rb,1.331924e-02_rb,1.265364e-02_rb, & 1.202445e-02_rb,1.142838e-02_rb,1.086257e-02_rb,1.032445e-02_rb,9.811791e-03_rb, & 9.322587e-03_rb,8.855053e-03_rb,8.407591e-03_rb,7.978763e-03_rb,7.567273e-03_rb, & 7.171949e-03_rb,6.791728e-03_rb,6.425642e-03_rb,6.072809e-03_rb,5.732424e-03_rb, & 5.403748e-03_rb,5.086103e-03_rb,4.778865e-03_rb/) absice2(:,4) = (/ & ! band 4 1.804566e-01_rb,1.168987e-01_rb,8.680442e-02_rb,6.910060e-02_rb,5.738174e-02_rb, & 4.902332e-02_rb,4.274585e-02_rb,3.784923e-02_rb,3.391734e-02_rb,3.068690e-02_rb, & 2.798301e-02_rb,2.568480e-02_rb,2.370600e-02_rb,2.198337e-02_rb,2.046940e-02_rb, & 1.912777e-02_rb,1.793016e-02_rb,1.685420e-02_rb,1.588193e-02_rb,1.499882e-02_rb, & 1.419293e-02_rb,1.345440e-02_rb,1.277496e-02_rb,1.214769e-02_rb,1.156669e-02_rb, & 1.102694e-02_rb,1.052412e-02_rb,1.005451e-02_rb,9.614854e-03_rb,9.202335e-03_rb, & 8.814470e-03_rb,8.449077e-03_rb,8.104223e-03_rb,7.778195e-03_rb,7.469466e-03_rb, & 7.176671e-03_rb,6.898588e-03_rb,6.634117e-03_rb,6.382264e-03_rb,6.142134e-03_rb, & 5.912913e-03_rb,5.693862e-03_rb,5.484308e-03_rb/) absice2(:,5) = (/ & ! band 5 2.131806e-01_rb,1.311372e-01_rb,9.407171e-02_rb,7.299442e-02_rb,5.941273e-02_rb, & 4.994043e-02_rb,4.296242e-02_rb,3.761113e-02_rb,3.337910e-02_rb,2.994978e-02_rb, & 2.711556e-02_rb,2.473461e-02_rb,2.270681e-02_rb,2.095943e-02_rb,1.943839e-02_rb, & 1.810267e-02_rb,1.692057e-02_rb,1.586719e-02_rb,1.492275e-02_rb,1.407132e-02_rb, & 1.329989e-02_rb,1.259780e-02_rb,1.195618e-02_rb,1.136761e-02_rb,1.082583e-02_rb, & 1.032552e-02_rb,9.862158e-03_rb,9.431827e-03_rb,9.031157e-03_rb,8.657217e-03_rb, & 8.307449e-03_rb,7.979609e-03_rb,7.671724e-03_rb,7.382048e-03_rb,7.109032e-03_rb, & 6.851298e-03_rb,6.607615e-03_rb,6.376881e-03_rb,6.158105e-03_rb,5.950394e-03_rb, & 5.752942e-03_rb,5.565019e-03_rb,5.385963e-03_rb/) absice2(:,6) = (/ & ! band 6 1.546177e-01_rb,1.039251e-01_rb,7.910347e-02_rb,6.412429e-02_rb,5.399997e-02_rb, & 4.664937e-02_rb,4.104237e-02_rb,3.660781e-02_rb,3.300218e-02_rb,3.000586e-02_rb, & 2.747148e-02_rb,2.529633e-02_rb,2.340647e-02_rb,2.174723e-02_rb,2.027731e-02_rb, & 1.896487e-02_rb,1.778492e-02_rb,1.671761e-02_rb,1.574692e-02_rb,1.485978e-02_rb, & 1.404543e-02_rb,1.329489e-02_rb,1.260066e-02_rb,1.195636e-02_rb,1.135657e-02_rb, & 1.079664e-02_rb,1.027257e-02_rb,9.780871e-03_rb,9.318505e-03_rb,8.882815e-03_rb, & 8.471458e-03_rb,8.082364e-03_rb,7.713696e-03_rb,7.363817e-03_rb,7.031264e-03_rb, & 6.714725e-03_rb,6.413021e-03_rb,6.125086e-03_rb,5.849958e-03_rb,5.586764e-03_rb, & 5.334707e-03_rb,5.093066e-03_rb,4.861179e-03_rb/) absice2(:,7) = (/ & ! band 7 7.583404e-02_rb,6.181558e-02_rb,5.312027e-02_rb,4.696039e-02_rb,4.225986e-02_rb, & 3.849735e-02_rb,3.538340e-02_rb,3.274182e-02_rb,3.045798e-02_rb,2.845343e-02_rb, & 2.667231e-02_rb,2.507353e-02_rb,2.362606e-02_rb,2.230595e-02_rb,2.109435e-02_rb, & 1.997617e-02_rb,1.893916e-02_rb,1.797328e-02_rb,1.707016e-02_rb,1.622279e-02_rb, & 1.542523e-02_rb,1.467241e-02_rb,1.395997e-02_rb,1.328414e-02_rb,1.264164e-02_rb, & 1.202958e-02_rb,1.144544e-02_rb,1.088697e-02_rb,1.035218e-02_rb,9.839297e-03_rb, & 9.346733e-03_rb,8.873057e-03_rb,8.416980e-03_rb,7.977335e-03_rb,7.553066e-03_rb, & 7.143210e-03_rb,6.746888e-03_rb,6.363297e-03_rb,5.991700e-03_rb,5.631422e-03_rb, & 5.281840e-03_rb,4.942378e-03_rb,4.612505e-03_rb/) absice2(:,8) = (/ & ! band 8 9.022185e-02_rb,6.922700e-02_rb,5.710674e-02_rb,4.898377e-02_rb,4.305946e-02_rb, & 3.849553e-02_rb,3.484183e-02_rb,3.183220e-02_rb,2.929794e-02_rb,2.712627e-02_rb, & 2.523856e-02_rb,2.357810e-02_rb,2.210286e-02_rb,2.078089e-02_rb,1.958747e-02_rb, & 1.850310e-02_rb,1.751218e-02_rb,1.660205e-02_rb,1.576232e-02_rb,1.498440e-02_rb, & 1.426107e-02_rb,1.358624e-02_rb,1.295474e-02_rb,1.236212e-02_rb,1.180456e-02_rb, & 1.127874e-02_rb,1.078175e-02_rb,1.031106e-02_rb,9.864433e-03_rb,9.439878e-03_rb, & 9.035637e-03_rb,8.650140e-03_rb,8.281981e-03_rb,7.929895e-03_rb,7.592746e-03_rb, & 7.269505e-03_rb,6.959238e-03_rb,6.661100e-03_rb,6.374317e-03_rb,6.098185e-03_rb, & 5.832059e-03_rb,5.575347e-03_rb,5.327504e-03_rb/) absice2(:,9) = (/ & ! band 9 1.294087e-01_rb,8.788217e-02_rb,6.728288e-02_rb,5.479720e-02_rb,4.635049e-02_rb, & 4.022253e-02_rb,3.555576e-02_rb,3.187259e-02_rb,2.888498e-02_rb,2.640843e-02_rb, & 2.431904e-02_rb,2.253038e-02_rb,2.098024e-02_rb,1.962267e-02_rb,1.842293e-02_rb, & 1.735426e-02_rb,1.639571e-02_rb,1.553060e-02_rb,1.474552e-02_rb,1.402953e-02_rb, & 1.337363e-02_rb,1.277033e-02_rb,1.221336e-02_rb,1.169741e-02_rb,1.121797e-02_rb, & 1.077117e-02_rb,1.035369e-02_rb,9.962643e-03_rb,9.595509e-03_rb,9.250088e-03_rb, & 8.924447e-03_rb,8.616876e-03_rb,8.325862e-03_rb,8.050057e-03_rb,7.788258e-03_rb, & 7.539388e-03_rb,7.302478e-03_rb,7.076656e-03_rb,6.861134e-03_rb,6.655197e-03_rb, & 6.458197e-03_rb,6.269543e-03_rb,6.088697e-03_rb/) absice2(:,10) = (/ & ! band 10 1.593628e-01_rb,1.014552e-01_rb,7.458955e-02_rb,5.903571e-02_rb,4.887582e-02_rb, & 4.171159e-02_rb,3.638480e-02_rb,3.226692e-02_rb,2.898717e-02_rb,2.631256e-02_rb, & 2.408925e-02_rb,2.221156e-02_rb,2.060448e-02_rb,1.921325e-02_rb,1.799699e-02_rb, & 1.692456e-02_rb,1.597177e-02_rb,1.511961e-02_rb,1.435289e-02_rb,1.365933e-02_rb, & 1.302890e-02_rb,1.245334e-02_rb,1.192576e-02_rb,1.144037e-02_rb,1.099230e-02_rb, & 1.057739e-02_rb,1.019208e-02_rb,9.833302e-03_rb,9.498395e-03_rb,9.185047e-03_rb, & 8.891237e-03_rb,8.615185e-03_rb,8.355325e-03_rb,8.110267e-03_rb,7.878778e-03_rb, & 7.659759e-03_rb,7.452224e-03_rb,7.255291e-03_rb,7.068166e-03_rb,6.890130e-03_rb, & 6.720536e-03_rb,6.558794e-03_rb,6.404371e-03_rb/) absice2(:,11) = (/ & ! band 11 1.656227e-01_rb,1.032129e-01_rb,7.487359e-02_rb,5.871431e-02_rb,4.828355e-02_rb, & 4.099989e-02_rb,3.562924e-02_rb,3.150755e-02_rb,2.824593e-02_rb,2.560156e-02_rb, & 2.341503e-02_rb,2.157740e-02_rb,2.001169e-02_rb,1.866199e-02_rb,1.748669e-02_rb, & 1.645421e-02_rb,1.554015e-02_rb,1.472535e-02_rb,1.399457e-02_rb,1.333553e-02_rb, & 1.273821e-02_rb,1.219440e-02_rb,1.169725e-02_rb,1.124104e-02_rb,1.082096e-02_rb, & 1.043290e-02_rb,1.007336e-02_rb,9.739338e-03_rb,9.428223e-03_rb,9.137756e-03_rb, & 8.865964e-03_rb,8.611115e-03_rb,8.371686e-03_rb,8.146330e-03_rb,7.933852e-03_rb, & 7.733187e-03_rb,7.543386e-03_rb,7.363597e-03_rb,7.193056e-03_rb,7.031072e-03_rb, & 6.877024e-03_rb,6.730348e-03_rb,6.590531e-03_rb/) absice2(:,12) = (/ & ! band 12 9.194591e-02_rb,6.446867e-02_rb,4.962034e-02_rb,4.042061e-02_rb,3.418456e-02_rb, & 2.968856e-02_rb,2.629900e-02_rb,2.365572e-02_rb,2.153915e-02_rb,1.980791e-02_rb, & 1.836689e-02_rb,1.714979e-02_rb,1.610900e-02_rb,1.520946e-02_rb,1.442476e-02_rb, & 1.373468e-02_rb,1.312345e-02_rb,1.257858e-02_rb,1.209010e-02_rb,1.164990e-02_rb, & 1.125136e-02_rb,1.088901e-02_rb,1.055827e-02_rb,1.025531e-02_rb,9.976896e-03_rb, & 9.720255e-03_rb,9.483022e-03_rb,9.263160e-03_rb,9.058902e-03_rb,8.868710e-03_rb, & 8.691240e-03_rb,8.525312e-03_rb,8.369886e-03_rb,8.224042e-03_rb,8.086961e-03_rb, & 7.957917e-03_rb,7.836258e-03_rb,7.721400e-03_rb,7.612821e-03_rb,7.510045e-03_rb, & 7.412648e-03_rb,7.320242e-03_rb,7.232476e-03_rb/) absice2(:,13) = (/ & ! band 13 1.437021e-01_rb,8.872535e-02_rb,6.392420e-02_rb,4.991833e-02_rb,4.096790e-02_rb, & 3.477881e-02_rb,3.025782e-02_rb,2.681909e-02_rb,2.412102e-02_rb,2.195132e-02_rb, & 2.017124e-02_rb,1.868641e-02_rb,1.743044e-02_rb,1.635529e-02_rb,1.542540e-02_rb, & 1.461388e-02_rb,1.390003e-02_rb,1.326766e-02_rb,1.270395e-02_rb,1.219860e-02_rb, & 1.174326e-02_rb,1.133107e-02_rb,1.095637e-02_rb,1.061442e-02_rb,1.030126e-02_rb, & 1.001352e-02_rb,9.748340e-03_rb,9.503256e-03_rb,9.276155e-03_rb,9.065205e-03_rb, & 8.868808e-03_rb,8.685571e-03_rb,8.514268e-03_rb,8.353820e-03_rb,8.203272e-03_rb, & 8.061776e-03_rb,7.928578e-03_rb,7.803001e-03_rb,7.684443e-03_rb,7.572358e-03_rb, & 7.466258e-03_rb,7.365701e-03_rb,7.270286e-03_rb/) absice2(:,14) = (/ & ! band 14 1.288870e-01_rb,8.160295e-02_rb,5.964745e-02_rb,4.703790e-02_rb,3.888637e-02_rb, & 3.320115e-02_rb,2.902017e-02_rb,2.582259e-02_rb,2.330224e-02_rb,2.126754e-02_rb, & 1.959258e-02_rb,1.819130e-02_rb,1.700289e-02_rb,1.598320e-02_rb,1.509942e-02_rb, & 1.432666e-02_rb,1.364572e-02_rb,1.304156e-02_rb,1.250220e-02_rb,1.201803e-02_rb, & 1.158123e-02_rb,1.118537e-02_rb,1.082513e-02_rb,1.049605e-02_rb,1.019440e-02_rb, & 9.916989e-03_rb,9.661116e-03_rb,9.424457e-03_rb,9.205005e-03_rb,9.001022e-03_rb, & 8.810992e-03_rb,8.633588e-03_rb,8.467646e-03_rb,8.312137e-03_rb,8.166151e-03_rb, & 8.028878e-03_rb,7.899597e-03_rb,7.777663e-03_rb,7.662498e-03_rb,7.553581e-03_rb, & 7.450444e-03_rb,7.352662e-03_rb,7.259851e-03_rb/) absice2(:,15) = (/ & ! band 15 8.254229e-02_rb,5.808787e-02_rb,4.492166e-02_rb,3.675028e-02_rb,3.119623e-02_rb, & 2.718045e-02_rb,2.414450e-02_rb,2.177073e-02_rb,1.986526e-02_rb,1.830306e-02_rb, & 1.699991e-02_rb,1.589698e-02_rb,1.495199e-02_rb,1.413374e-02_rb,1.341870e-02_rb, & 1.278883e-02_rb,1.223002e-02_rb,1.173114e-02_rb,1.128322e-02_rb,1.087900e-02_rb, & 1.051254e-02_rb,1.017890e-02_rb,9.873991e-03_rb,9.594347e-03_rb,9.337044e-03_rb, & 9.099589e-03_rb,8.879842e-03_rb,8.675960e-03_rb,8.486341e-03_rb,8.309594e-03_rb, & 8.144500e-03_rb,7.989986e-03_rb,7.845109e-03_rb,7.709031e-03_rb,7.581007e-03_rb, & 7.460376e-03_rb,7.346544e-03_rb,7.238978e-03_rb,7.137201e-03_rb,7.040780e-03_rb, & 6.949325e-03_rb,6.862483e-03_rb,6.779931e-03_rb/) absice2(:,16) = (/ & ! band 16 1.382062e-01_rb,8.643227e-02_rb,6.282935e-02_rb,4.934783e-02_rb,4.063891e-02_rb, & 3.455591e-02_rb,3.007059e-02_rb,2.662897e-02_rb,2.390631e-02_rb,2.169972e-02_rb, & 1.987596e-02_rb,1.834393e-02_rb,1.703924e-02_rb,1.591513e-02_rb,1.493679e-02_rb, & 1.407780e-02_rb,1.331775e-02_rb,1.264061e-02_rb,1.203364e-02_rb,1.148655e-02_rb, & 1.099099e-02_rb,1.054006e-02_rb,1.012807e-02_rb,9.750215e-03_rb,9.402477e-03_rb, & 9.081428e-03_rb,8.784143e-03_rb,8.508107e-03_rb,8.251146e-03_rb,8.011373e-03_rb, & 7.787140e-03_rb,7.577002e-03_rb,7.379687e-03_rb,7.194071e-03_rb,7.019158e-03_rb, & 6.854061e-03_rb,6.697986e-03_rb,6.550224e-03_rb,6.410138e-03_rb,6.277153e-03_rb, & 6.150751e-03_rb,6.030462e-03_rb,5.915860e-03_rb/) ! ICEFLAG = 3; Fu parameterization. Particle size 5 - 140 micron in ! increments of 3 microns. ! units = m2/g ! Hexagonal Ice Particle Parameterization ! absorption units (abs coef/iwc): [(m^-1)/(g m^-3)] absice3(:,1) = (/ & ! band 1 3.110649e-03_rb,4.666352e-02_rb,6.606447e-02_rb,6.531678e-02_rb,6.012598e-02_rb, & 5.437494e-02_rb,4.906411e-02_rb,4.441146e-02_rb,4.040585e-02_rb,3.697334e-02_rb, & 3.403027e-02_rb,3.149979e-02_rb,2.931596e-02_rb,2.742365e-02_rb,2.577721e-02_rb, & 2.433888e-02_rb,2.307732e-02_rb,2.196644e-02_rb,2.098437e-02_rb,2.011264e-02_rb, & 1.933561e-02_rb,1.863992e-02_rb,1.801407e-02_rb,1.744812e-02_rb,1.693346e-02_rb, & 1.646252e-02_rb,1.602866e-02_rb,1.562600e-02_rb,1.524933e-02_rb,1.489399e-02_rb, & 1.455580e-02_rb,1.423098e-02_rb,1.391612e-02_rb,1.360812e-02_rb,1.330413e-02_rb, & 1.300156e-02_rb,1.269801e-02_rb,1.239127e-02_rb,1.207928e-02_rb,1.176014e-02_rb, & 1.143204e-02_rb,1.109334e-02_rb,1.074243e-02_rb,1.037786e-02_rb,9.998198e-03_rb, & 9.602126e-03_rb/) absice3(:,2) = (/ & ! band 2 3.984966e-04_rb,1.681097e-02_rb,2.627680e-02_rb,2.767465e-02_rb,2.700722e-02_rb, & 2.579180e-02_rb,2.448677e-02_rb,2.323890e-02_rb,2.209096e-02_rb,2.104882e-02_rb, & 2.010547e-02_rb,1.925003e-02_rb,1.847128e-02_rb,1.775883e-02_rb,1.710358e-02_rb, & 1.649769e-02_rb,1.593449e-02_rb,1.540829e-02_rb,1.491429e-02_rb,1.444837e-02_rb, & 1.400704e-02_rb,1.358729e-02_rb,1.318654e-02_rb,1.280258e-02_rb,1.243346e-02_rb, & 1.207750e-02_rb,1.173325e-02_rb,1.139941e-02_rb,1.107487e-02_rb,1.075861e-02_rb, & 1.044975e-02_rb,1.014753e-02_rb,9.851229e-03_rb,9.560240e-03_rb,9.274003e-03_rb, & 8.992020e-03_rb,8.713845e-03_rb,8.439074e-03_rb,8.167346e-03_rb,7.898331e-03_rb, & 7.631734e-03_rb,7.367286e-03_rb,7.104742e-03_rb,6.843882e-03_rb,6.584504e-03_rb, & 6.326424e-03_rb/) absice3(:,3) = (/ & ! band 3 6.933163e-02_rb,8.540475e-02_rb,7.701816e-02_rb,6.771158e-02_rb,5.986953e-02_rb, & 5.348120e-02_rb,4.824962e-02_rb,4.390563e-02_rb,4.024411e-02_rb,3.711404e-02_rb, & 3.440426e-02_rb,3.203200e-02_rb,2.993478e-02_rb,2.806474e-02_rb,2.638464e-02_rb, & 2.486516e-02_rb,2.348288e-02_rb,2.221890e-02_rb,2.105780e-02_rb,1.998687e-02_rb, & 1.899552e-02_rb,1.807490e-02_rb,1.721750e-02_rb,1.641693e-02_rb,1.566773e-02_rb, & 1.496515e-02_rb,1.430509e-02_rb,1.368398e-02_rb,1.309865e-02_rb,1.254634e-02_rb, & 1.202456e-02_rb,1.153114e-02_rb,1.106409e-02_rb,1.062166e-02_rb,1.020224e-02_rb, & 9.804381e-03_rb,9.426771e-03_rb,9.068205e-03_rb,8.727578e-03_rb,8.403876e-03_rb, & 8.096160e-03_rb,7.803564e-03_rb,7.525281e-03_rb,7.260560e-03_rb,7.008697e-03_rb, & 6.769036e-03_rb/) absice3(:,4) = (/ & ! band 4 1.765735e-01_rb,1.382700e-01_rb,1.095129e-01_rb,8.987475e-02_rb,7.591185e-02_rb, & 6.554169e-02_rb,5.755500e-02_rb,5.122083e-02_rb,4.607610e-02_rb,4.181475e-02_rb, & 3.822697e-02_rb,3.516432e-02_rb,3.251897e-02_rb,3.021073e-02_rb,2.817876e-02_rb, & 2.637607e-02_rb,2.476582e-02_rb,2.331871e-02_rb,2.201113e-02_rb,2.082388e-02_rb, & 1.974115e-02_rb,1.874983e-02_rb,1.783894e-02_rb,1.699922e-02_rb,1.622280e-02_rb, & 1.550296e-02_rb,1.483390e-02_rb,1.421064e-02_rb,1.362880e-02_rb,1.308460e-02_rb, & 1.257468e-02_rb,1.209611e-02_rb,1.164628e-02_rb,1.122287e-02_rb,1.082381e-02_rb, & 1.044725e-02_rb,1.009154e-02_rb,9.755166e-03_rb,9.436783e-03_rb,9.135163e-03_rb, & 8.849193e-03_rb,8.577856e-03_rb,8.320225e-03_rb,8.075451e-03_rb,7.842755e-03_rb, & 7.621418e-03_rb/) absice3(:,5) = (/ & ! band 5 2.339673e-01_rb,1.692124e-01_rb,1.291656e-01_rb,1.033837e-01_rb,8.562949e-02_rb, & 7.273526e-02_rb,6.298262e-02_rb,5.537015e-02_rb,4.927787e-02_rb,4.430246e-02_rb, & 4.017061e-02_rb,3.669072e-02_rb,3.372455e-02_rb,3.116995e-02_rb,2.894977e-02_rb, & 2.700471e-02_rb,2.528842e-02_rb,2.376420e-02_rb,2.240256e-02_rb,2.117959e-02_rb, & 2.007567e-02_rb,1.907456e-02_rb,1.816271e-02_rb,1.732874e-02_rb,1.656300e-02_rb, & 1.585725e-02_rb,1.520445e-02_rb,1.459852e-02_rb,1.403419e-02_rb,1.350689e-02_rb, & 1.301260e-02_rb,1.254781e-02_rb,1.210941e-02_rb,1.169468e-02_rb,1.130118e-02_rb, & 1.092675e-02_rb,1.056945e-02_rb,1.022757e-02_rb,9.899560e-03_rb,9.584021e-03_rb, & 9.279705e-03_rb,8.985479e-03_rb,8.700322e-03_rb,8.423306e-03_rb,8.153590e-03_rb, & 7.890412e-03_rb/) absice3(:,6) = (/ & ! band 6 1.145369e-01_rb,1.174566e-01_rb,9.917866e-02_rb,8.332990e-02_rb,7.104263e-02_rb, & 6.153370e-02_rb,5.405472e-02_rb,4.806281e-02_rb,4.317918e-02_rb,3.913795e-02_rb, & 3.574916e-02_rb,3.287437e-02_rb,3.041067e-02_rb,2.828017e-02_rb,2.642292e-02_rb, & 2.479206e-02_rb,2.335051e-02_rb,2.206851e-02_rb,2.092195e-02_rb,1.989108e-02_rb, & 1.895958e-02_rb,1.811385e-02_rb,1.734245e-02_rb,1.663573e-02_rb,1.598545e-02_rb, & 1.538456e-02_rb,1.482700e-02_rb,1.430750e-02_rb,1.382150e-02_rb,1.336499e-02_rb, & 1.293447e-02_rb,1.252685e-02_rb,1.213939e-02_rb,1.176968e-02_rb,1.141555e-02_rb, & 1.107508e-02_rb,1.074655e-02_rb,1.042839e-02_rb,1.011923e-02_rb,9.817799e-03_rb, & 9.522962e-03_rb,9.233688e-03_rb,8.949041e-03_rb,8.668171e-03_rb,8.390301e-03_rb, & 8.114723e-03_rb/) absice3(:,7) = (/ & ! band 7 1.222345e-02_rb,5.344230e-02_rb,5.523465e-02_rb,5.128759e-02_rb,4.676925e-02_rb, & 4.266150e-02_rb,3.910561e-02_rb,3.605479e-02_rb,3.342843e-02_rb,3.115052e-02_rb, & 2.915776e-02_rb,2.739935e-02_rb,2.583499e-02_rb,2.443266e-02_rb,2.316681e-02_rb, & 2.201687e-02_rb,2.096619e-02_rb,2.000112e-02_rb,1.911044e-02_rb,1.828481e-02_rb, & 1.751641e-02_rb,1.679866e-02_rb,1.612598e-02_rb,1.549360e-02_rb,1.489742e-02_rb, & 1.433392e-02_rb,1.380002e-02_rb,1.329305e-02_rb,1.281068e-02_rb,1.235084e-02_rb, & 1.191172e-02_rb,1.149171e-02_rb,1.108936e-02_rb,1.070341e-02_rb,1.033271e-02_rb, & 9.976220e-03_rb,9.633021e-03_rb,9.302273e-03_rb,8.983216e-03_rb,8.675161e-03_rb, & 8.377478e-03_rb,8.089595e-03_rb,7.810986e-03_rb,7.541170e-03_rb,7.279706e-03_rb, & 7.026186e-03_rb/) absice3(:,8) = (/ & ! band 8 6.711058e-02_rb,6.918198e-02_rb,6.127484e-02_rb,5.411944e-02_rb,4.836902e-02_rb, & 4.375293e-02_rb,3.998077e-02_rb,3.683587e-02_rb,3.416508e-02_rb,3.186003e-02_rb, & 2.984290e-02_rb,2.805671e-02_rb,2.645895e-02_rb,2.501733e-02_rb,2.370689e-02_rb, & 2.250808e-02_rb,2.140532e-02_rb,2.038609e-02_rb,1.944018e-02_rb,1.855918e-02_rb, & 1.773609e-02_rb,1.696504e-02_rb,1.624106e-02_rb,1.555990e-02_rb,1.491793e-02_rb, & 1.431197e-02_rb,1.373928e-02_rb,1.319743e-02_rb,1.268430e-02_rb,1.219799e-02_rb, & 1.173682e-02_rb,1.129925e-02_rb,1.088393e-02_rb,1.048961e-02_rb,1.011516e-02_rb, & 9.759543e-03_rb,9.421813e-03_rb,9.101089e-03_rb,8.796559e-03_rb,8.507464e-03_rb, & 8.233098e-03_rb,7.972798e-03_rb,7.725942e-03_rb,7.491940e-03_rb,7.270238e-03_rb, & 7.060305e-03_rb/) absice3(:,9) = (/ & ! band 9 1.236780e-01_rb,9.222386e-02_rb,7.383997e-02_rb,6.204072e-02_rb,5.381029e-02_rb, & 4.770678e-02_rb,4.296928e-02_rb,3.916131e-02_rb,3.601540e-02_rb,3.335878e-02_rb, & 3.107493e-02_rb,2.908247e-02_rb,2.732282e-02_rb,2.575276e-02_rb,2.433968e-02_rb, & 2.305852e-02_rb,2.188966e-02_rb,2.081757e-02_rb,1.982974e-02_rb,1.891599e-02_rb, & 1.806794e-02_rb,1.727865e-02_rb,1.654227e-02_rb,1.585387e-02_rb,1.520924e-02_rb, & 1.460476e-02_rb,1.403730e-02_rb,1.350416e-02_rb,1.300293e-02_rb,1.253153e-02_rb, & 1.208808e-02_rb,1.167094e-02_rb,1.127862e-02_rb,1.090979e-02_rb,1.056323e-02_rb, & 1.023786e-02_rb,9.932665e-03_rb,9.646744e-03_rb,9.379250e-03_rb,9.129409e-03_rb, & 8.896500e-03_rb,8.679856e-03_rb,8.478852e-03_rb,8.292904e-03_rb,8.121463e-03_rb, & 7.964013e-03_rb/) absice3(:,10) = (/ & ! band 10 1.655966e-01_rb,1.134205e-01_rb,8.714344e-02_rb,7.129241e-02_rb,6.063739e-02_rb, & 5.294203e-02_rb,4.709309e-02_rb,4.247476e-02_rb,3.871892e-02_rb,3.559206e-02_rb, & 3.293893e-02_rb,3.065226e-02_rb,2.865558e-02_rb,2.689288e-02_rb,2.532221e-02_rb, & 2.391150e-02_rb,2.263582e-02_rb,2.147549e-02_rb,2.041476e-02_rb,1.944089e-02_rb, & 1.854342e-02_rb,1.771371e-02_rb,1.694456e-02_rb,1.622989e-02_rb,1.556456e-02_rb, & 1.494415e-02_rb,1.436491e-02_rb,1.382354e-02_rb,1.331719e-02_rb,1.284339e-02_rb, & 1.239992e-02_rb,1.198486e-02_rb,1.159647e-02_rb,1.123323e-02_rb,1.089375e-02_rb, & 1.057679e-02_rb,1.028124e-02_rb,1.000607e-02_rb,9.750376e-03_rb,9.513303e-03_rb, & 9.294082e-03_rb,9.092003e-03_rb,8.906412e-03_rb,8.736702e-03_rb,8.582314e-03_rb, & 8.442725e-03_rb/) absice3(:,11) = (/ & ! band 11 1.775615e-01_rb,1.180046e-01_rb,8.929607e-02_rb,7.233500e-02_rb,6.108333e-02_rb, & 5.303642e-02_rb,4.696927e-02_rb,4.221206e-02_rb,3.836768e-02_rb,3.518576e-02_rb, & 3.250063e-02_rb,3.019825e-02_rb,2.819758e-02_rb,2.643943e-02_rb,2.487953e-02_rb, & 2.348414e-02_rb,2.222705e-02_rb,2.108762e-02_rb,2.004936e-02_rb,1.909892e-02_rb, & 1.822539e-02_rb,1.741975e-02_rb,1.667449e-02_rb,1.598330e-02_rb,1.534084e-02_rb, & 1.474253e-02_rb,1.418446e-02_rb,1.366325e-02_rb,1.317597e-02_rb,1.272004e-02_rb, & 1.229321e-02_rb,1.189350e-02_rb,1.151915e-02_rb,1.116859e-02_rb,1.084042e-02_rb, & 1.053338e-02_rb,1.024636e-02_rb,9.978326e-03_rb,9.728357e-03_rb,9.495613e-03_rb, & 9.279327e-03_rb,9.078798e-03_rb,8.893383e-03_rb,8.722488e-03_rb,8.565568e-03_rb, & 8.422115e-03_rb/) absice3(:,12) = (/ & ! band 12 9.465447e-02_rb,6.432047e-02_rb,5.060973e-02_rb,4.267283e-02_rb,3.741843e-02_rb, & 3.363096e-02_rb,3.073531e-02_rb,2.842405e-02_rb,2.651789e-02_rb,2.490518e-02_rb, & 2.351273e-02_rb,2.229056e-02_rb,2.120335e-02_rb,2.022541e-02_rb,1.933763e-02_rb, & 1.852546e-02_rb,1.777763e-02_rb,1.708528e-02_rb,1.644134e-02_rb,1.584009e-02_rb, & 1.527684e-02_rb,1.474774e-02_rb,1.424955e-02_rb,1.377957e-02_rb,1.333549e-02_rb, & 1.291534e-02_rb,1.251743e-02_rb,1.214029e-02_rb,1.178265e-02_rb,1.144337e-02_rb, & 1.112148e-02_rb,1.081609e-02_rb,1.052642e-02_rb,1.025178e-02_rb,9.991540e-03_rb, & 9.745130e-03_rb,9.512038e-03_rb,9.291797e-03_rb,9.083980e-03_rb,8.888195e-03_rb, & 8.704081e-03_rb,8.531306e-03_rb,8.369560e-03_rb,8.218558e-03_rb,8.078032e-03_rb, & 7.947730e-03_rb/) absice3(:,13) = (/ & ! band 13 1.560311e-01_rb,9.961097e-02_rb,7.502949e-02_rb,6.115022e-02_rb,5.214952e-02_rb, & 4.578149e-02_rb,4.099731e-02_rb,3.724174e-02_rb,3.419343e-02_rb,3.165356e-02_rb, & 2.949251e-02_rb,2.762222e-02_rb,2.598073e-02_rb,2.452322e-02_rb,2.321642e-02_rb, & 2.203516e-02_rb,2.096002e-02_rb,1.997579e-02_rb,1.907036e-02_rb,1.823401e-02_rb, & 1.745879e-02_rb,1.673819e-02_rb,1.606678e-02_rb,1.544003e-02_rb,1.485411e-02_rb, & 1.430574e-02_rb,1.379215e-02_rb,1.331092e-02_rb,1.285996e-02_rb,1.243746e-02_rb, & 1.204183e-02_rb,1.167164e-02_rb,1.132567e-02_rb,1.100281e-02_rb,1.070207e-02_rb, & 1.042258e-02_rb,1.016352e-02_rb,9.924197e-03_rb,9.703953e-03_rb,9.502199e-03_rb, & 9.318400e-03_rb,9.152066e-03_rb,9.002749e-03_rb,8.870038e-03_rb,8.753555e-03_rb, & 8.652951e-03_rb/) absice3(:,14) = (/ & ! band 14 1.559547e-01_rb,9.896700e-02_rb,7.441231e-02_rb,6.061469e-02_rb,5.168730e-02_rb, & 4.537821e-02_rb,4.064106e-02_rb,3.692367e-02_rb,3.390714e-02_rb,3.139438e-02_rb, & 2.925702e-02_rb,2.740783e-02_rb,2.578547e-02_rb,2.434552e-02_rb,2.305506e-02_rb, & 2.188910e-02_rb,2.082842e-02_rb,1.985789e-02_rb,1.896553e-02_rb,1.814165e-02_rb, & 1.737839e-02_rb,1.666927e-02_rb,1.600891e-02_rb,1.539279e-02_rb,1.481712e-02_rb, & 1.427865e-02_rb,1.377463e-02_rb,1.330266e-02_rb,1.286068e-02_rb,1.244689e-02_rb, & 1.205973e-02_rb,1.169780e-02_rb,1.135989e-02_rb,1.104492e-02_rb,1.075192e-02_rb, & 1.048004e-02_rb,1.022850e-02_rb,9.996611e-03_rb,9.783753e-03_rb,9.589361e-03_rb, & 9.412924e-03_rb,9.253977e-03_rb,9.112098e-03_rb,8.986903e-03_rb,8.878039e-03_rb, & 8.785184e-03_rb/) absice3(:,15) = (/ & ! band 15 1.102926e-01_rb,7.176622e-02_rb,5.530316e-02_rb,4.606056e-02_rb,4.006116e-02_rb, & 3.579628e-02_rb,3.256909e-02_rb,3.001360e-02_rb,2.791920e-02_rb,2.615617e-02_rb, & 2.464023e-02_rb,2.331426e-02_rb,2.213817e-02_rb,2.108301e-02_rb,2.012733e-02_rb, & 1.925493e-02_rb,1.845331e-02_rb,1.771269e-02_rb,1.702531e-02_rb,1.638493e-02_rb, & 1.578648e-02_rb,1.522579e-02_rb,1.469940e-02_rb,1.420442e-02_rb,1.373841e-02_rb, & 1.329931e-02_rb,1.288535e-02_rb,1.249502e-02_rb,1.212700e-02_rb,1.178015e-02_rb, & 1.145348e-02_rb,1.114612e-02_rb,1.085730e-02_rb,1.058633e-02_rb,1.033263e-02_rb, & 1.009564e-02_rb,9.874895e-03_rb,9.669960e-03_rb,9.480449e-03_rb,9.306014e-03_rb, & 9.146339e-03_rb,9.001138e-03_rb,8.870154e-03_rb,8.753148e-03_rb,8.649907e-03_rb, & 8.560232e-03_rb/) absice3(:,16) = (/ & ! band 16 1.688344e-01_rb,1.077072e-01_rb,7.994467e-02_rb,6.403862e-02_rb,5.369850e-02_rb, & 4.641582e-02_rb,4.099331e-02_rb,3.678724e-02_rb,3.342069e-02_rb,3.065831e-02_rb, & 2.834557e-02_rb,2.637680e-02_rb,2.467733e-02_rb,2.319286e-02_rb,2.188299e-02_rb, & 2.071701e-02_rb,1.967121e-02_rb,1.872692e-02_rb,1.786931e-02_rb,1.708641e-02_rb, & 1.636846e-02_rb,1.570743e-02_rb,1.509665e-02_rb,1.453052e-02_rb,1.400433e-02_rb, & 1.351407e-02_rb,1.305631e-02_rb,1.262810e-02_rb,1.222688e-02_rb,1.185044e-02_rb, & 1.149683e-02_rb,1.116436e-02_rb,1.085153e-02_rb,1.055701e-02_rb,1.027961e-02_rb, & 1.001831e-02_rb,9.772141e-03_rb,9.540280e-03_rb,9.321966e-03_rb,9.116517e-03_rb, & 8.923315e-03_rb,8.741803e-03_rb,8.571472e-03_rb,8.411860e-03_rb,8.262543e-03_rb, & 8.123136e-03_rb/) ! For LIQFLAG = 0. absliq0 = 0.0903614_rb ! For LIQFLAG = 1. In each band, the absorption ! coefficients are listed for a range of effective radii from 2.5 ! to 59.5 microns in increments of 1.0 micron. absliq1(:, 1) = (/ & ! band 1 1.64047e-03_rb, 6.90533e-02_rb, 7.72017e-02_rb, 7.78054e-02_rb, 7.69523e-02_rb, & 7.58058e-02_rb, 7.46400e-02_rb, 7.35123e-02_rb, 7.24162e-02_rb, 7.13225e-02_rb, & 6.99145e-02_rb, 6.66409e-02_rb, 6.36582e-02_rb, 6.09425e-02_rb, 5.84593e-02_rb, & 5.61743e-02_rb, 5.40571e-02_rb, 5.20812e-02_rb, 5.02245e-02_rb, 4.84680e-02_rb, & 4.67959e-02_rb, 4.51944e-02_rb, 4.36516e-02_rb, 4.21570e-02_rb, 4.07015e-02_rb, & 3.92766e-02_rb, 3.78747e-02_rb, 3.64886e-02_rb, 3.53632e-02_rb, 3.41992e-02_rb, & 3.31016e-02_rb, 3.20643e-02_rb, 3.10817e-02_rb, 3.01490e-02_rb, 2.92620e-02_rb, & 2.84171e-02_rb, 2.76108e-02_rb, 2.68404e-02_rb, 2.61031e-02_rb, 2.53966e-02_rb, & 2.47189e-02_rb, 2.40678e-02_rb, 2.34418e-02_rb, 2.28392e-02_rb, 2.22586e-02_rb, & 2.16986e-02_rb, 2.11580e-02_rb, 2.06356e-02_rb, 2.01305e-02_rb, 1.96417e-02_rb, & 1.91682e-02_rb, 1.87094e-02_rb, 1.82643e-02_rb, 1.78324e-02_rb, 1.74129e-02_rb, & 1.70052e-02_rb, 1.66088e-02_rb, 1.62231e-02_rb/) absliq1(:, 2) = (/ & ! band 2 2.19486e-01_rb, 1.80687e-01_rb, 1.59150e-01_rb, 1.44731e-01_rb, 1.33703e-01_rb, & 1.24355e-01_rb, 1.15756e-01_rb, 1.07318e-01_rb, 9.86119e-02_rb, 8.92739e-02_rb, & 8.34911e-02_rb, 7.70773e-02_rb, 7.15240e-02_rb, 6.66615e-02_rb, 6.23641e-02_rb, & 5.85359e-02_rb, 5.51020e-02_rb, 5.20032e-02_rb, 4.91916e-02_rb, 4.66283e-02_rb, & 4.42813e-02_rb, 4.21236e-02_rb, 4.01330e-02_rb, 3.82905e-02_rb, 3.65797e-02_rb, & 3.49869e-02_rb, 3.35002e-02_rb, 3.21090e-02_rb, 3.08957e-02_rb, 2.97601e-02_rb, & 2.86966e-02_rb, 2.76984e-02_rb, 2.67599e-02_rb, 2.58758e-02_rb, 2.50416e-02_rb, & 2.42532e-02_rb, 2.35070e-02_rb, 2.27997e-02_rb, 2.21284e-02_rb, 2.14904e-02_rb, & 2.08834e-02_rb, 2.03051e-02_rb, 1.97536e-02_rb, 1.92271e-02_rb, 1.87239e-02_rb, & 1.82425e-02_rb, 1.77816e-02_rb, 1.73399e-02_rb, 1.69162e-02_rb, 1.65094e-02_rb, & 1.61187e-02_rb, 1.57430e-02_rb, 1.53815e-02_rb, 1.50334e-02_rb, 1.46981e-02_rb, & 1.43748e-02_rb, 1.40628e-02_rb, 1.37617e-02_rb/) absliq1(:, 3) = (/ & ! band 3 2.95174e-01_rb, 2.34765e-01_rb, 1.98038e-01_rb, 1.72114e-01_rb, 1.52083e-01_rb, & 1.35654e-01_rb, 1.21613e-01_rb, 1.09252e-01_rb, 9.81263e-02_rb, 8.79448e-02_rb, & 8.12566e-02_rb, 7.44563e-02_rb, 6.86374e-02_rb, 6.36042e-02_rb, 5.92094e-02_rb, & 5.53402e-02_rb, 5.19087e-02_rb, 4.88455e-02_rb, 4.60951e-02_rb, 4.36124e-02_rb, & 4.13607e-02_rb, 3.93096e-02_rb, 3.74338e-02_rb, 3.57119e-02_rb, 3.41261e-02_rb, & 3.26610e-02_rb, 3.13036e-02_rb, 3.00425e-02_rb, 2.88497e-02_rb, 2.78077e-02_rb, & 2.68317e-02_rb, 2.59158e-02_rb, 2.50545e-02_rb, 2.42430e-02_rb, 2.34772e-02_rb, & 2.27533e-02_rb, 2.20679e-02_rb, 2.14181e-02_rb, 2.08011e-02_rb, 2.02145e-02_rb, & 1.96561e-02_rb, 1.91239e-02_rb, 1.86161e-02_rb, 1.81311e-02_rb, 1.76673e-02_rb, & 1.72234e-02_rb, 1.67981e-02_rb, 1.63903e-02_rb, 1.59989e-02_rb, 1.56230e-02_rb, & 1.52615e-02_rb, 1.49138e-02_rb, 1.45791e-02_rb, 1.42565e-02_rb, 1.39455e-02_rb, & 1.36455e-02_rb, 1.33559e-02_rb, 1.30761e-02_rb/) absliq1(:, 4) = (/ & ! band 4 3.00925e-01_rb, 2.36949e-01_rb, 1.96947e-01_rb, 1.68692e-01_rb, 1.47190e-01_rb, & 1.29986e-01_rb, 1.15719e-01_rb, 1.03568e-01_rb, 9.30028e-02_rb, 8.36658e-02_rb, & 7.71075e-02_rb, 7.07002e-02_rb, 6.52284e-02_rb, 6.05024e-02_rb, 5.63801e-02_rb, & 5.27534e-02_rb, 4.95384e-02_rb, 4.66690e-02_rb, 4.40925e-02_rb, 4.17664e-02_rb, & 3.96559e-02_rb, 3.77326e-02_rb, 3.59727e-02_rb, 3.43561e-02_rb, 3.28662e-02_rb, & 3.14885e-02_rb, 3.02110e-02_rb, 2.90231e-02_rb, 2.78948e-02_rb, 2.69109e-02_rb, & 2.59884e-02_rb, 2.51217e-02_rb, 2.43058e-02_rb, 2.35364e-02_rb, 2.28096e-02_rb, & 2.21218e-02_rb, 2.14700e-02_rb, 2.08515e-02_rb, 2.02636e-02_rb, 1.97041e-02_rb, & 1.91711e-02_rb, 1.86625e-02_rb, 1.81769e-02_rb, 1.77126e-02_rb, 1.72683e-02_rb, & 1.68426e-02_rb, 1.64344e-02_rb, 1.60427e-02_rb, 1.56664e-02_rb, 1.53046e-02_rb, & 1.49565e-02_rb, 1.46214e-02_rb, 1.42985e-02_rb, 1.39871e-02_rb, 1.36866e-02_rb, & 1.33965e-02_rb, 1.31162e-02_rb, 1.28453e-02_rb/) absliq1(:, 5) = (/ & ! band 5 2.64691e-01_rb, 2.12018e-01_rb, 1.78009e-01_rb, 1.53539e-01_rb, 1.34721e-01_rb, & 1.19580e-01_rb, 1.06996e-01_rb, 9.62772e-02_rb, 8.69710e-02_rb, 7.87670e-02_rb, & 7.29272e-02_rb, 6.70920e-02_rb, 6.20977e-02_rb, 5.77732e-02_rb, 5.39910e-02_rb, & 5.06538e-02_rb, 4.76866e-02_rb, 4.50301e-02_rb, 4.26374e-02_rb, 4.04704e-02_rb, & 3.84981e-02_rb, 3.66948e-02_rb, 3.50394e-02_rb, 3.35141e-02_rb, 3.21038e-02_rb, & 3.07957e-02_rb, 2.95788e-02_rb, 2.84438e-02_rb, 2.73790e-02_rb, 2.64390e-02_rb, & 2.55565e-02_rb, 2.47263e-02_rb, 2.39437e-02_rb, 2.32047e-02_rb, 2.25056e-02_rb, & 2.18433e-02_rb, 2.12149e-02_rb, 2.06177e-02_rb, 2.00495e-02_rb, 1.95081e-02_rb, & 1.89917e-02_rb, 1.84984e-02_rb, 1.80269e-02_rb, 1.75755e-02_rb, 1.71431e-02_rb, & 1.67283e-02_rb, 1.63303e-02_rb, 1.59478e-02_rb, 1.55801e-02_rb, 1.52262e-02_rb, & 1.48853e-02_rb, 1.45568e-02_rb, 1.42400e-02_rb, 1.39342e-02_rb, 1.36388e-02_rb, & 1.33533e-02_rb, 1.30773e-02_rb, 1.28102e-02_rb/) absliq1(:, 6) = (/ & ! band 6 8.81182e-02_rb, 1.06745e-01_rb, 9.79753e-02_rb, 8.99625e-02_rb, 8.35200e-02_rb, & 7.81899e-02_rb, 7.35939e-02_rb, 6.94696e-02_rb, 6.56266e-02_rb, 6.19148e-02_rb, & 5.83355e-02_rb, 5.49306e-02_rb, 5.19642e-02_rb, 4.93325e-02_rb, 4.69659e-02_rb, & 4.48148e-02_rb, 4.28431e-02_rb, 4.10231e-02_rb, 3.93332e-02_rb, 3.77563e-02_rb, & 3.62785e-02_rb, 3.48882e-02_rb, 3.35758e-02_rb, 3.23333e-02_rb, 3.11536e-02_rb, & 3.00310e-02_rb, 2.89601e-02_rb, 2.79365e-02_rb, 2.70502e-02_rb, 2.62618e-02_rb, & 2.55025e-02_rb, 2.47728e-02_rb, 2.40726e-02_rb, 2.34013e-02_rb, 2.27583e-02_rb, & 2.21422e-02_rb, 2.15522e-02_rb, 2.09869e-02_rb, 2.04453e-02_rb, 1.99260e-02_rb, & 1.94280e-02_rb, 1.89501e-02_rb, 1.84913e-02_rb, 1.80506e-02_rb, 1.76270e-02_rb, & 1.72196e-02_rb, 1.68276e-02_rb, 1.64500e-02_rb, 1.60863e-02_rb, 1.57357e-02_rb, & 1.53975e-02_rb, 1.50710e-02_rb, 1.47558e-02_rb, 1.44511e-02_rb, 1.41566e-02_rb, & 1.38717e-02_rb, 1.35960e-02_rb, 1.33290e-02_rb/) absliq1(:, 7) = (/ & ! band 7 4.32174e-02_rb, 7.36078e-02_rb, 6.98340e-02_rb, 6.65231e-02_rb, 6.41948e-02_rb, & 6.23551e-02_rb, 6.06638e-02_rb, 5.88680e-02_rb, 5.67124e-02_rb, 5.38629e-02_rb, & 4.99579e-02_rb, 4.86289e-02_rb, 4.70120e-02_rb, 4.52854e-02_rb, 4.35466e-02_rb, & 4.18480e-02_rb, 4.02169e-02_rb, 3.86658e-02_rb, 3.71992e-02_rb, 3.58168e-02_rb, & 3.45155e-02_rb, 3.32912e-02_rb, 3.21390e-02_rb, 3.10538e-02_rb, 3.00307e-02_rb, & 2.90651e-02_rb, 2.81524e-02_rb, 2.72885e-02_rb, 2.62821e-02_rb, 2.55744e-02_rb, & 2.48799e-02_rb, 2.42029e-02_rb, 2.35460e-02_rb, 2.29108e-02_rb, 2.22981e-02_rb, & 2.17079e-02_rb, 2.11402e-02_rb, 2.05945e-02_rb, 2.00701e-02_rb, 1.95663e-02_rb, & 1.90824e-02_rb, 1.86174e-02_rb, 1.81706e-02_rb, 1.77411e-02_rb, 1.73281e-02_rb, & 1.69307e-02_rb, 1.65483e-02_rb, 1.61801e-02_rb, 1.58254e-02_rb, 1.54835e-02_rb, & 1.51538e-02_rb, 1.48358e-02_rb, 1.45288e-02_rb, 1.42322e-02_rb, 1.39457e-02_rb, & 1.36687e-02_rb, 1.34008e-02_rb, 1.31416e-02_rb/) absliq1(:, 8) = (/ & ! band 8 1.41881e-01_rb, 7.15419e-02_rb, 6.30335e-02_rb, 6.11132e-02_rb, 6.01931e-02_rb, & 5.92420e-02_rb, 5.78968e-02_rb, 5.58876e-02_rb, 5.28923e-02_rb, 4.84462e-02_rb, & 4.60839e-02_rb, 4.56013e-02_rb, 4.45410e-02_rb, 4.31866e-02_rb, 4.17026e-02_rb, & 4.01850e-02_rb, 3.86892e-02_rb, 3.72461e-02_rb, 3.58722e-02_rb, 3.45749e-02_rb, & 3.33564e-02_rb, 3.22155e-02_rb, 3.11494e-02_rb, 3.01541e-02_rb, 2.92253e-02_rb, & 2.83584e-02_rb, 2.75488e-02_rb, 2.67925e-02_rb, 2.57692e-02_rb, 2.50704e-02_rb, & 2.43918e-02_rb, 2.37350e-02_rb, 2.31005e-02_rb, 2.24888e-02_rb, 2.18996e-02_rb, & 2.13325e-02_rb, 2.07870e-02_rb, 2.02623e-02_rb, 1.97577e-02_rb, 1.92724e-02_rb, & 1.88056e-02_rb, 1.83564e-02_rb, 1.79241e-02_rb, 1.75079e-02_rb, 1.71070e-02_rb, & 1.67207e-02_rb, 1.63482e-02_rb, 1.59890e-02_rb, 1.56424e-02_rb, 1.53077e-02_rb, & 1.49845e-02_rb, 1.46722e-02_rb, 1.43702e-02_rb, 1.40782e-02_rb, 1.37955e-02_rb, & 1.35219e-02_rb, 1.32569e-02_rb, 1.30000e-02_rb/) absliq1(:, 9) = (/ & ! band 9 6.72726e-02_rb, 6.61013e-02_rb, 6.47866e-02_rb, 6.33780e-02_rb, 6.18985e-02_rb, & 6.03335e-02_rb, 5.86136e-02_rb, 5.65876e-02_rb, 5.39839e-02_rb, 5.03536e-02_rb, & 4.71608e-02_rb, 4.63630e-02_rb, 4.50313e-02_rb, 4.34526e-02_rb, 4.17876e-02_rb, & 4.01261e-02_rb, 3.85171e-02_rb, 3.69860e-02_rb, 3.55442e-02_rb, 3.41954e-02_rb, & 3.29384e-02_rb, 3.17693e-02_rb, 3.06832e-02_rb, 2.96745e-02_rb, 2.87374e-02_rb, & 2.78662e-02_rb, 2.70557e-02_rb, 2.63008e-02_rb, 2.52450e-02_rb, 2.45424e-02_rb, & 2.38656e-02_rb, 2.32144e-02_rb, 2.25885e-02_rb, 2.19873e-02_rb, 2.14099e-02_rb, & 2.08554e-02_rb, 2.03230e-02_rb, 1.98116e-02_rb, 1.93203e-02_rb, 1.88482e-02_rb, & 1.83944e-02_rb, 1.79578e-02_rb, 1.75378e-02_rb, 1.71335e-02_rb, 1.67440e-02_rb, & 1.63687e-02_rb, 1.60069e-02_rb, 1.56579e-02_rb, 1.53210e-02_rb, 1.49958e-02_rb, & 1.46815e-02_rb, 1.43778e-02_rb, 1.40841e-02_rb, 1.37999e-02_rb, 1.35249e-02_rb, & 1.32585e-02_rb, 1.30004e-02_rb, 1.27502e-02_rb/) absliq1(:,10) = (/ & ! band 10 7.97040e-02_rb, 7.63844e-02_rb, 7.36499e-02_rb, 7.13525e-02_rb, 6.93043e-02_rb, & 6.72807e-02_rb, 6.50227e-02_rb, 6.22395e-02_rb, 5.86093e-02_rb, 5.37815e-02_rb, & 5.14682e-02_rb, 4.97214e-02_rb, 4.77392e-02_rb, 4.56961e-02_rb, 4.36858e-02_rb, & 4.17569e-02_rb, 3.99328e-02_rb, 3.82224e-02_rb, 3.66265e-02_rb, 3.51416e-02_rb, & 3.37617e-02_rb, 3.24798e-02_rb, 3.12887e-02_rb, 3.01812e-02_rb, 2.91505e-02_rb, & 2.81900e-02_rb, 2.72939e-02_rb, 2.64568e-02_rb, 2.54165e-02_rb, 2.46832e-02_rb, & 2.39783e-02_rb, 2.33017e-02_rb, 2.26531e-02_rb, 2.20314e-02_rb, 2.14359e-02_rb, & 2.08653e-02_rb, 2.03187e-02_rb, 1.97947e-02_rb, 1.92924e-02_rb, 1.88106e-02_rb, & 1.83483e-02_rb, 1.79043e-02_rb, 1.74778e-02_rb, 1.70678e-02_rb, 1.66735e-02_rb, & 1.62941e-02_rb, 1.59286e-02_rb, 1.55766e-02_rb, 1.52371e-02_rb, 1.49097e-02_rb, & 1.45937e-02_rb, 1.42885e-02_rb, 1.39936e-02_rb, 1.37085e-02_rb, 1.34327e-02_rb, & 1.31659e-02_rb, 1.29075e-02_rb, 1.26571e-02_rb/) absliq1(:,11) = (/ & ! band 11 1.49438e-01_rb, 1.33535e-01_rb, 1.21542e-01_rb, 1.11743e-01_rb, 1.03263e-01_rb, & 9.55774e-02_rb, 8.83382e-02_rb, 8.12943e-02_rb, 7.42533e-02_rb, 6.70609e-02_rb, & 6.38761e-02_rb, 5.97788e-02_rb, 5.59841e-02_rb, 5.25318e-02_rb, 4.94132e-02_rb, & 4.66014e-02_rb, 4.40644e-02_rb, 4.17706e-02_rb, 3.96910e-02_rb, 3.77998e-02_rb, & 3.60742e-02_rb, 3.44947e-02_rb, 3.30442e-02_rb, 3.17079e-02_rb, 3.04730e-02_rb, & 2.93283e-02_rb, 2.82642e-02_rb, 2.72720e-02_rb, 2.61789e-02_rb, 2.53277e-02_rb, & 2.45237e-02_rb, 2.37635e-02_rb, 2.30438e-02_rb, 2.23615e-02_rb, 2.17140e-02_rb, & 2.10987e-02_rb, 2.05133e-02_rb, 1.99557e-02_rb, 1.94241e-02_rb, 1.89166e-02_rb, & 1.84317e-02_rb, 1.79679e-02_rb, 1.75238e-02_rb, 1.70983e-02_rb, 1.66901e-02_rb, & 1.62983e-02_rb, 1.59219e-02_rb, 1.55599e-02_rb, 1.52115e-02_rb, 1.48761e-02_rb, & 1.45528e-02_rb, 1.42411e-02_rb, 1.39402e-02_rb, 1.36497e-02_rb, 1.33690e-02_rb, & 1.30976e-02_rb, 1.28351e-02_rb, 1.25810e-02_rb/) absliq1(:,12) = (/ & ! band 12 3.71985e-02_rb, 3.88586e-02_rb, 3.99070e-02_rb, 4.04351e-02_rb, 4.04610e-02_rb, & 3.99834e-02_rb, 3.89953e-02_rb, 3.74886e-02_rb, 3.54551e-02_rb, 3.28870e-02_rb, & 3.32576e-02_rb, 3.22444e-02_rb, 3.12384e-02_rb, 3.02584e-02_rb, 2.93146e-02_rb, & 2.84120e-02_rb, 2.75525e-02_rb, 2.67361e-02_rb, 2.59618e-02_rb, 2.52280e-02_rb, & 2.45327e-02_rb, 2.38736e-02_rb, 2.32487e-02_rb, 2.26558e-02_rb, 2.20929e-02_rb, & 2.15579e-02_rb, 2.10491e-02_rb, 2.05648e-02_rb, 1.99749e-02_rb, 1.95704e-02_rb, & 1.91731e-02_rb, 1.87839e-02_rb, 1.84032e-02_rb, 1.80315e-02_rb, 1.76689e-02_rb, & 1.73155e-02_rb, 1.69712e-02_rb, 1.66362e-02_rb, 1.63101e-02_rb, 1.59928e-02_rb, & 1.56842e-02_rb, 1.53840e-02_rb, 1.50920e-02_rb, 1.48080e-02_rb, 1.45318e-02_rb, & 1.42631e-02_rb, 1.40016e-02_rb, 1.37472e-02_rb, 1.34996e-02_rb, 1.32586e-02_rb, & 1.30239e-02_rb, 1.27954e-02_rb, 1.25728e-02_rb, 1.23559e-02_rb, 1.21445e-02_rb, & 1.19385e-02_rb, 1.17376e-02_rb, 1.15417e-02_rb/) absliq1(:,13) = (/ & ! band 13 3.11868e-02_rb, 4.48357e-02_rb, 4.90224e-02_rb, 4.96406e-02_rb, 4.86806e-02_rb, & 4.69610e-02_rb, 4.48630e-02_rb, 4.25795e-02_rb, 4.02138e-02_rb, 3.78236e-02_rb, & 3.74266e-02_rb, 3.60384e-02_rb, 3.47074e-02_rb, 3.34434e-02_rb, 3.22499e-02_rb, & 3.11264e-02_rb, 3.00704e-02_rb, 2.90784e-02_rb, 2.81463e-02_rb, 2.72702e-02_rb, & 2.64460e-02_rb, 2.56698e-02_rb, 2.49381e-02_rb, 2.42475e-02_rb, 2.35948e-02_rb, & 2.29774e-02_rb, 2.23925e-02_rb, 2.18379e-02_rb, 2.11793e-02_rb, 2.07076e-02_rb, & 2.02470e-02_rb, 1.97981e-02_rb, 1.93613e-02_rb, 1.89367e-02_rb, 1.85243e-02_rb, & 1.81240e-02_rb, 1.77356e-02_rb, 1.73588e-02_rb, 1.69935e-02_rb, 1.66392e-02_rb, & 1.62956e-02_rb, 1.59624e-02_rb, 1.56393e-02_rb, 1.53259e-02_rb, 1.50219e-02_rb, & 1.47268e-02_rb, 1.44404e-02_rb, 1.41624e-02_rb, 1.38925e-02_rb, 1.36302e-02_rb, & 1.33755e-02_rb, 1.31278e-02_rb, 1.28871e-02_rb, 1.26530e-02_rb, 1.24253e-02_rb, & 1.22038e-02_rb, 1.19881e-02_rb, 1.17782e-02_rb/) absliq1(:,14) = (/ & ! band 14 1.58988e-02_rb, 3.50652e-02_rb, 4.00851e-02_rb, 4.07270e-02_rb, 3.98101e-02_rb, & 3.83306e-02_rb, 3.66829e-02_rb, 3.50327e-02_rb, 3.34497e-02_rb, 3.19609e-02_rb, & 3.13712e-02_rb, 3.03348e-02_rb, 2.93415e-02_rb, 2.83973e-02_rb, 2.75037e-02_rb, & 2.66604e-02_rb, 2.58654e-02_rb, 2.51161e-02_rb, 2.44100e-02_rb, 2.37440e-02_rb, & 2.31154e-02_rb, 2.25215e-02_rb, 2.19599e-02_rb, 2.14282e-02_rb, 2.09242e-02_rb, & 2.04459e-02_rb, 1.99915e-02_rb, 1.95594e-02_rb, 1.90254e-02_rb, 1.86598e-02_rb, & 1.82996e-02_rb, 1.79455e-02_rb, 1.75983e-02_rb, 1.72584e-02_rb, 1.69260e-02_rb, & 1.66013e-02_rb, 1.62843e-02_rb, 1.59752e-02_rb, 1.56737e-02_rb, 1.53799e-02_rb, & 1.50936e-02_rb, 1.48146e-02_rb, 1.45429e-02_rb, 1.42782e-02_rb, 1.40203e-02_rb, & 1.37691e-02_rb, 1.35243e-02_rb, 1.32858e-02_rb, 1.30534e-02_rb, 1.28270e-02_rb, & 1.26062e-02_rb, 1.23909e-02_rb, 1.21810e-02_rb, 1.19763e-02_rb, 1.17766e-02_rb, & 1.15817e-02_rb, 1.13915e-02_rb, 1.12058e-02_rb/) absliq1(:,15) = (/ & ! band 15 5.02079e-03_rb, 2.17615e-02_rb, 2.55449e-02_rb, 2.59484e-02_rb, 2.53650e-02_rb, & 2.45281e-02_rb, 2.36843e-02_rb, 2.29159e-02_rb, 2.22451e-02_rb, 2.16716e-02_rb, & 2.11451e-02_rb, 2.05817e-02_rb, 2.00454e-02_rb, 1.95372e-02_rb, 1.90567e-02_rb, & 1.86028e-02_rb, 1.81742e-02_rb, 1.77693e-02_rb, 1.73866e-02_rb, 1.70244e-02_rb, & 1.66815e-02_rb, 1.63563e-02_rb, 1.60477e-02_rb, 1.57544e-02_rb, 1.54755e-02_rb, & 1.52097e-02_rb, 1.49564e-02_rb, 1.47146e-02_rb, 1.43684e-02_rb, 1.41728e-02_rb, & 1.39762e-02_rb, 1.37797e-02_rb, 1.35838e-02_rb, 1.33891e-02_rb, 1.31961e-02_rb, & 1.30051e-02_rb, 1.28164e-02_rb, 1.26302e-02_rb, 1.24466e-02_rb, 1.22659e-02_rb, & 1.20881e-02_rb, 1.19131e-02_rb, 1.17412e-02_rb, 1.15723e-02_rb, 1.14063e-02_rb, & 1.12434e-02_rb, 1.10834e-02_rb, 1.09264e-02_rb, 1.07722e-02_rb, 1.06210e-02_rb, & 1.04725e-02_rb, 1.03269e-02_rb, 1.01839e-02_rb, 1.00436e-02_rb, 9.90593e-03_rb, & 9.77080e-03_rb, 9.63818e-03_rb, 9.50800e-03_rb/) absliq1(:,16) = (/ & ! band 16 5.64971e-02_rb, 9.04736e-02_rb, 8.11726e-02_rb, 7.05450e-02_rb, 6.20052e-02_rb, & 5.54286e-02_rb, 5.03503e-02_rb, 4.63791e-02_rb, 4.32290e-02_rb, 4.06959e-02_rb, & 3.74690e-02_rb, 3.52964e-02_rb, 3.33799e-02_rb, 3.16774e-02_rb, 3.01550e-02_rb, & 2.87856e-02_rb, 2.75474e-02_rb, 2.64223e-02_rb, 2.53953e-02_rb, 2.44542e-02_rb, & 2.35885e-02_rb, 2.27894e-02_rb, 2.20494e-02_rb, 2.13622e-02_rb, 2.07222e-02_rb, & 2.01246e-02_rb, 1.95654e-02_rb, 1.90408e-02_rb, 1.84398e-02_rb, 1.80021e-02_rb, & 1.75816e-02_rb, 1.71775e-02_rb, 1.67889e-02_rb, 1.64152e-02_rb, 1.60554e-02_rb, & 1.57089e-02_rb, 1.53751e-02_rb, 1.50531e-02_rb, 1.47426e-02_rb, 1.44428e-02_rb, & 1.41532e-02_rb, 1.38734e-02_rb, 1.36028e-02_rb, 1.33410e-02_rb, 1.30875e-02_rb, & 1.28420e-02_rb, 1.26041e-02_rb, 1.23735e-02_rb, 1.21497e-02_rb, 1.19325e-02_rb, & 1.17216e-02_rb, 1.15168e-02_rb, 1.13177e-02_rb, 1.11241e-02_rb, 1.09358e-02_rb, & 1.07525e-02_rb, 1.05741e-02_rb, 1.04003e-02_rb/) end subroutine lwcldpr end module rrtmg_lw_init ! path: $Source: /cvsroot/NWP/WRFV3/phys/module_ra_rrtmg_lw.F,v $ ! author: $Author: trn $ ! revision: $Revision: 1.3 $ ! created: $Date: 2009/04/16 19:54:22 $ ! module rrtmg_lw_rad ! -------------------------------------------------------------------------- ! | | ! | Copyright 2002-2008, Atmospheric & Environmental Research, Inc. (AER). | ! | This software may be used, copied, or redistributed as long as it is | ! | not sold and this copyright notice is reproduced on each copy made. | ! | This model is provided as is without any express or implied warranties. | ! | (http://www.rtweb.aer.com/) | ! | | ! -------------------------------------------------------------------------- ! ! **************************************************************************** ! * * ! * RRTMG_LW * ! * * ! * * ! * * ! * a rapid radiative transfer model * ! * for the longwave region * ! * for application to general circulation models * ! * * ! * * ! * Atmospheric and Environmental Research, Inc. * ! * 131 Hartwell Avenue * ! * Lexington, MA 02421 * ! * * ! * * ! * Eli J. Mlawer * ! * Jennifer S. Delamere * ! * Michael J. Iacono * ! * Shepard A. Clough * ! * * ! * * ! * * ! * * ! * * ! * * ! * email: miacono@aer.com * ! * email: emlawer@aer.com * ! * email: jdelamer@aer.com * ! * * ! * The authors wish to acknowledge the contributions of the * ! * following people: Steven J. Taubman, Karen Cady-Pereira, * ! * Patrick D. Brown, Ronald E. Farren, Luke Chen, Robert Bergstrom. * ! * * ! **************************************************************************** ! -------- Modules -------- use parkind, only : im => kind_im, rb => kind_rb use rrlw_vsn use mcica_subcol_gen_lw, only: mcica_subcol_lw use rrtmg_lw_cldprmc, only: cldprmc ! *** Move the required call to rrtmg_lw_ini below and the following ! use association to the GCM initialization area *** ! use rrtmg_lw_init, only: rrtmg_lw_ini use rrtmg_lw_rtrnmc, only: rtrnmc use rrtmg_lw_setcoef, only: setcoef use rrtmg_lw_taumol, only: taumol implicit none ! public interfaces/functions/subroutines public :: rrtmg_lw, inatm !------------------------------------------------------------------ contains !------------------------------------------------------------------ !------------------------------------------------------------------ ! Public subroutines !------------------------------------------------------------------ subroutine rrtmg_lw & (ncol ,nlay ,icld , & play ,plev ,tlay ,tlev ,tsfc , & h2ovmr ,o3vmr ,co2vmr ,ch4vmr ,n2ovmr ,o2vmr , & cfc11vmr,cfc12vmr,cfc22vmr,ccl4vmr ,emis , & inflglw ,iceflglw,liqflglw,cldfmcl , & taucmcl ,ciwpmcl ,clwpmcl , cswpmcl ,reicmcl ,relqmcl , resnmcl , & tauaer , & uflx ,dflx ,hr ,uflxc ,dflxc, hrc, & uflxcln ,dflxcln, calc_clean_atm_diag ) ! -------- Description -------- ! This program is the driver subroutine for RRTMG_LW, the AER LW radiation ! model for application to GCMs, that has been adapted from RRTM_LW for ! improved efficiency. ! ! NOTE: The call to RRTMG_LW_INI should be moved to the GCM initialization ! area, since this has to be called only once. ! ! This routine: ! a) calls INATM to read in the atmospheric profile from GCM; ! all layering in RRTMG is ordered from surface to toa. ! b) calls CLDPRMC to set cloud optical depth for McICA based ! on input cloud properties ! c) calls SETCOEF to calculate various quantities needed for ! the radiative transfer algorithm ! d) calls TAUMOL to calculate gaseous optical depths for each ! of the 16 spectral bands ! e) calls RTRNMC (for both clear and cloudy profiles) to perform the ! radiative transfer calculation using McICA, the Monte-Carlo ! Independent Column Approximation, to represent sub-grid scale ! cloud variability ! f) passes the necessary fluxes and cooling rates back to GCM ! ! Two modes of operation are possible: ! The mode is chosen by using either rrtmg_lw.nomcica.f90 (to not use ! McICA) or rrtmg_lw.f90 (to use McICA) to interface with a GCM. ! ! 1) Standard, single forward model calculation (imca = 0) ! 2) Monte Carlo Independent Column Approximation (McICA, Pincus et al., ! JC, 2003) method is applied to the forward model calculation (imca = 1) ! ! This call to RRTMG_LW must be preceeded by a call to the module ! mcica_subcol_gen_lw.f90 to run the McICA sub-column cloud generator, ! which will provide the cloud physical or cloud optical properties ! on the RRTMG quadrature point (ngpt) dimension. ! Two random number generators are available for use when imca = 1. ! This is chosen by setting flag irnd on input to mcica_subcol_gen_lw. ! 1) KISSVEC (irnd = 0) ! 2) Mersenne-Twister (irnd = 1) ! ! Two methods of cloud property input are possible: ! Cloud properties can be input in one of two ways (controlled by input ! flags inflglw, iceflglw, and liqflglw; see text file rrtmg_lw_instructions ! and subroutine rrtmg_lw_cldprop.f90 for further details): ! ! 1) Input cloud fraction and cloud optical depth directly (inflglw = 0) ! 2) Input cloud fraction and cloud physical properties (inflglw = 1 or 2); ! cloud optical properties are calculated by cldprop or cldprmc based ! on input settings of iceflglw and liqflglw. Ice particle size provided ! must be appropriately defined for the ice parameterization selected. ! ! One method of aerosol property input is possible: ! Aerosol properties can be input in only one way (controlled by input ! flag iaer; see text file rrtmg_lw_instructions for further details): ! ! 1) Input aerosol optical depth directly by layer and spectral band (iaer=10); ! band average optical depth at the mid-point of each spectral band. ! RRTMG_LW currently treats only aerosol absorption; ! scattering capability is not presently available. ! ! ! ------- Modifications ------- ! ! This version of RRTMG_LW has been modified from RRTM_LW to use a reduced ! set of g-points for application to GCMs. ! !-- Original version (derived from RRTM_LW), reduction of g-points, other ! revisions for use with GCMs. ! 1999: M. J. Iacono, AER, Inc. !-- Adapted for use with NCAR/CAM. ! May 2004: M. J. Iacono, AER, Inc. !-- Revised to add McICA capability. ! Nov 2005: M. J. Iacono, AER, Inc. !-- Conversion to F90 formatting for consistency with rrtmg_sw. ! Feb 2007: M. J. Iacono, AER, Inc. !-- Modifications to formatting to use assumed-shape arrays. ! Aug 2007: M. J. Iacono, AER, Inc. !-- Modified to add longwave aerosol absorption. ! Apr 2008: M. J. Iacono, AER, Inc. ! --------- Modules ---------- use parrrtm, only : nbndlw, ngptlw, maxxsec, mxmol use rrlw_con, only: fluxfac, heatfac, oneminus, pi use rrlw_wvn, only: ng, ngb, nspa, nspb, wavenum1, wavenum2, delwave ! ------- Declarations ------- ! ----- Input ----- integer(kind=im), intent(in) :: ncol ! Number of horizontal columns integer(kind=im), intent(in) :: nlay ! Number of model layers integer(kind=im), intent(inout) :: icld ! Cloud overlap method ! 0: Clear only ! 1: Random ! 2: Maximum/random ! 3: Maximum ! 4: Exponential ! 5: Exponential/random real(kind=rb), intent(in) :: play(:,:) ! Layer pressures (hPa, mb) ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: plev(:,:) ! Interface pressures (hPa, mb) ! Dimensions: (ncol,nlay+1) real(kind=rb), intent(in) :: tlay(:,:) ! Layer temperatures (K) ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: tlev(:,:) ! Interface temperatures (K) ! Dimensions: (ncol,nlay+1) real(kind=rb), intent(in) :: tsfc(:) ! Surface temperature (K) ! Dimensions: (ncol) real(kind=rb), intent(in) :: h2ovmr(:,:) ! H2O volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: o3vmr(:,:) ! O3 volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: co2vmr(:,:) ! CO2 volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: ch4vmr(:,:) ! Methane volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: n2ovmr(:,:) ! Nitrous oxide volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: o2vmr(:,:) ! Oxygen volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: cfc11vmr(:,:) ! CFC11 volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: cfc12vmr(:,:) ! CFC12 volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: cfc22vmr(:,:) ! CFC22 volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: ccl4vmr(:,:) ! CCL4 volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: emis(:,:) ! Surface emissivity ! Dimensions: (ncol,nbndlw) integer(kind=im), intent(in) :: inflglw ! Flag for cloud optical properties integer(kind=im), intent(in) :: iceflglw ! Flag for ice particle specification integer(kind=im), intent(in) :: liqflglw ! Flag for liquid droplet specification real(kind=rb), intent(in) :: cldfmcl(:,:,:) ! Cloud fraction ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(in) :: ciwpmcl(:,:,:) ! In-cloud ice water path (g/m2) ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(in) :: clwpmcl(:,:,:) ! In-cloud liquid water path (g/m2) ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(in) :: cswpmcl(:,:,:) ! In-cloud snow water path (g/m2) ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(in) :: reicmcl(:,:) ! Cloud ice particle effective size (microns) ! Dimensions: (ncol,nlay) ! specific definition of reicmcl depends on setting of iceflglw: ! iceflglw = 0: ice effective radius, r_ec, (Ebert and Curry, 1992), ! r_ec must be >= 10.0 microns ! iceflglw = 1: ice effective radius, r_ec, (Ebert and Curry, 1992), ! r_ec range is limited to 13.0 to 130.0 microns ! iceflglw = 2: ice effective radius, r_k, (Key, Streamer Ref. Manual, 1996) ! r_k range is limited to 5.0 to 131.0 microns ! iceflglw = 3: generalized effective size, dge, (Fu, 1996), ! dge range is limited to 5.0 to 140.0 microns ! [dge = 1.0315 * r_ec] real(kind=rb), intent(in) :: relqmcl(:,:) ! Cloud water drop effective radius (microns) ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: resnmcl(:,:) ! Snow effective radius (microns) ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: taucmcl(:,:,:) ! In-cloud optical depth ! Dimensions: (ngptlw,ncol,nlay) ! real(kind=rb), intent(in) :: ssacmcl(:,:,:) ! In-cloud single scattering albedo ! Dimensions: (ngptlw,ncol,nlay) ! for future expansion ! lw scattering not yet available ! real(kind=rb), intent(in) :: asmcmcl(:,:,:) ! In-cloud asymmetry parameter ! Dimensions: (ngptlw,ncol,nlay) ! for future expansion ! lw scattering not yet available real(kind=rb), intent(in) :: tauaer(:,:,:) ! aerosol optical depth ! at mid-point of LW spectral bands ! Dimensions: (ncol,nlay,nbndlw) ! real(kind=rb), intent(in) :: ssaaer(:,:,:) ! aerosol single scattering albedo ! Dimensions: (ncol,nlay,nbndlw) ! for future expansion ! (lw aerosols/scattering not yet available) ! real(kind=rb), intent(in) :: asmaer(:,:,:) ! aerosol asymmetry parameter ! Dimensions: (ncol,nlay,nbndlw) ! for future expansion ! (lw aerosols/scattering not yet available) integer, intent(in) :: calc_clean_atm_diag ! Control for clean air diagnositic calls for WRF-Chem ! ----- Output ----- real(kind=rb), intent(out) :: uflx(:,:) ! Total sky longwave upward flux (W/m2) ! Dimensions: (ncol,nlay+1) real(kind=rb), intent(out) :: dflx(:,:) ! Total sky longwave downward flux (W/m2) ! Dimensions: (ncol,nlay+1) real(kind=rb), intent(out) :: hr(:,:) ! Total sky longwave radiative heating rate (K/d) ! Dimensions: (ncol,nlay) real(kind=rb), intent(out) :: uflxc(:,:) ! Clear sky longwave upward flux (W/m2) ! Dimensions: (ncol,nlay+1) real(kind=rb), intent(out) :: dflxc(:,:) ! Clear sky longwave downward flux (W/m2) ! Dimensions: (ncol,nlay+1) real(kind=rb), intent(out) :: hrc(:,:) ! Clear sky longwave radiative heating rate (K/d) ! Dimensions: (ncol,nlay) real(kind=rb), intent(out) :: uflxcln(:,:) ! Clean sky longwave upward flux (W/m2) ! Dimensions: (ncol,nlay+1) real(kind=rb), intent(out) :: dflxcln(:,:) ! Clean sky longwave downward flux (W/m2) ! Dimensions: (ncol,nlay+1) ! ----- Local ----- ! Control integer(kind=im) :: nlayers ! total number of layers integer(kind=im) :: istart ! beginning band of calculation integer(kind=im) :: iend ! ending band of calculation integer(kind=im) :: iout ! output option flag (inactive) integer(kind=im) :: iaer ! aerosol option flag integer(kind=im) :: iplon ! column loop index integer(kind=im) :: imca ! flag for mcica [0=off, 1=on] integer(kind=im) :: ims ! value for changing mcica permute seed integer(kind=im) :: k ! layer loop index integer(kind=im) :: ig ! g-point loop index ! Atmosphere real(kind=rb) :: pavel(nlay+1) ! layer pressures (mb) real(kind=rb) :: tavel(nlay+1) ! layer temperatures (K) real(kind=rb) :: pz(0:nlay+1) ! level (interface) pressures (hPa, mb) real(kind=rb) :: tz(0:nlay+1) ! level (interface) temperatures (K) real(kind=rb) :: tbound ! surface temperature (K) real(kind=rb) :: coldry(nlay+1) ! dry air column density (mol/cm2) real(kind=rb) :: wbrodl(nlay+1) ! broadening gas column density (mol/cm2) real(kind=rb) :: wkl(mxmol,nlay+1) ! molecular amounts (mol/cm-2) real(kind=rb) :: wx(maxxsec,nlay+1) ! cross-section amounts (mol/cm-2) real(kind=rb) :: pwvcm ! precipitable water vapor (cm) real(kind=rb) :: semiss(nbndlw) ! lw surface emissivity real(kind=rb) :: fracs(nlay+1,ngptlw) ! real(kind=rb) :: taug(nlay+1,ngptlw) ! gaseous optical depths real(kind=rb) :: taut(nlay+1,ngptlw) ! gaseous + aerosol optical depths real(kind=rb) :: taua(nlay+1,nbndlw) ! aerosol optical depth ! real(kind=rb) :: ssaa(nlay+1,nbndlw) ! aerosol single scattering albedo ! for future expansion ! (lw aerosols/scattering not yet available) ! real(kind=rb) :: asma(nlay+1,nbndlw) ! aerosol asymmetry parameter ! for future expansion ! (lw aerosols/scattering not yet available) ! Atmosphere - setcoef integer(kind=im) :: laytrop ! tropopause layer index integer(kind=im) :: jp(nlay+1) ! lookup table index integer(kind=im) :: jt(nlay+1) ! lookup table index integer(kind=im) :: jt1(nlay+1) ! lookup table index real(kind=rb) :: planklay(nlay+1,nbndlw)! real(kind=rb) :: planklev(0:nlay+1,nbndlw)! real(kind=rb) :: plankbnd(nbndlw) ! real(kind=rb) :: colh2o(nlay+1) ! column amount (h2o) real(kind=rb) :: colco2(nlay+1) ! column amount (co2) real(kind=rb) :: colo3(nlay+1) ! column amount (o3) real(kind=rb) :: coln2o(nlay+1) ! column amount (n2o) real(kind=rb) :: colco(nlay+1) ! column amount (co) real(kind=rb) :: colch4(nlay+1) ! column amount (ch4) real(kind=rb) :: colo2(nlay+1) ! column amount (o2) real(kind=rb) :: colbrd(nlay+1) ! column amount (broadening gases) integer(kind=im) :: indself(nlay+1) integer(kind=im) :: indfor(nlay+1) real(kind=rb) :: selffac(nlay+1) real(kind=rb) :: selffrac(nlay+1) real(kind=rb) :: forfac(nlay+1) real(kind=rb) :: forfrac(nlay+1) integer(kind=im) :: indminor(nlay+1) real(kind=rb) :: minorfrac(nlay+1) real(kind=rb) :: scaleminor(nlay+1) real(kind=rb) :: scaleminorn2(nlay+1) real(kind=rb) :: & ! fac00(nlay+1), fac01(nlay+1), & fac10(nlay+1), fac11(nlay+1) real(kind=rb) :: & ! rat_h2oco2(nlay+1),rat_h2oco2_1(nlay+1), & rat_h2oo3(nlay+1),rat_h2oo3_1(nlay+1), & rat_h2on2o(nlay+1),rat_h2on2o_1(nlay+1), & rat_h2och4(nlay+1),rat_h2och4_1(nlay+1), & rat_n2oco2(nlay+1),rat_n2oco2_1(nlay+1), & rat_o3co2(nlay+1),rat_o3co2_1(nlay+1) ! Atmosphere/clouds - cldprop integer(kind=im) :: ncbands ! number of cloud spectral bands integer(kind=im) :: inflag ! flag for cloud property method integer(kind=im) :: iceflag ! flag for ice cloud properties integer(kind=im) :: liqflag ! flag for liquid cloud properties ! Atmosphere/clouds - cldprmc [mcica] real(kind=rb) :: cldfmc(ngptlw,nlay+1) ! cloud fraction [mcica] real(kind=rb) :: ciwpmc(ngptlw,nlay+1) ! in-cloud ice water path [mcica] real(kind=rb) :: clwpmc(ngptlw,nlay+1) ! in-cloud liquid water path [mcica] real(kind=rb) :: cswpmc(ngptlw,nlay+1) ! in-cloud snow path [mcica] real(kind=rb) :: relqmc(nlay+1) ! liquid particle effective radius (microns) real(kind=rb) :: reicmc(nlay+1) ! ice particle effective size (microns) real(kind=rb) :: resnmc(nlay+1) ! snow particle effective size (microns) real(kind=rb) :: taucmc(ngptlw,nlay+1) ! in-cloud optical depth [mcica] ! real(kind=rb) :: ssacmc(ngptlw,nlay+1) ! in-cloud single scattering albedo [mcica] ! for future expansion ! (lw scattering not yet available) ! real(kind=rb) :: asmcmc(ngptlw,nlay+1) ! in-cloud asymmetry parameter [mcica] ! for future expansion ! (lw scattering not yet available) ! Output real(kind=rb) :: totuflux(0:nlay+1) ! upward longwave flux (w/m2) real(kind=rb) :: totdflux(0:nlay+1) ! downward longwave flux (w/m2) real(kind=rb) :: fnet(0:nlay+1) ! net longwave flux (w/m2) real(kind=rb) :: htr(0:nlay+1) ! longwave heating rate (k/day) real(kind=rb) :: totuclfl(0:nlay+1) ! clear sky upward longwave flux (w/m2) real(kind=rb) :: totdclfl(0:nlay+1) ! clear sky downward longwave flux (w/m2) real(kind=rb) :: fnetc(0:nlay+1) ! clear sky net longwave flux (w/m2) real(kind=rb) :: htrc(0:nlay+1) ! clear sky longwave heating rate (k/day) real(kind=rb) :: totuclnlfl(0:nlay+1) ! clean sky upward longwave flux (w/m2) real(kind=rb) :: totdclnlfl(0:nlay+1) ! clean sky downward longwave flux (w/m2) real(kind=rb) :: fnetcln(0:nlay+1) ! clean sky net longwave flux (w/m2) real(kind=rb) :: htrcln(0:nlay+1) ! clean sky longwave heating rate (k/day) ! ! Initializations !jm not thread safe oneminus = 1._rb - 1.e-6_rb !jm not thread safe pi = 2._rb * asin(1._rb) !jm not thread safe fluxfac = pi * 2.e4_rb ! orig: fluxfac = pi * 2.d4 istart = 1 iend = 16 iout = 0 ims = 1 ! Set imca to select calculation type: ! imca = 0, use standard forward model calculation ! imca = 1, use McICA for Monte Carlo treatment of sub-grid cloud variability ! *** This version uses McICA (imca = 1) *** ! Set icld to select of clear or cloud calculation and cloud overlap method ! icld = 0, clear only ! icld = 1, with clouds using random cloud overlap ! icld = 2, with clouds using maximum/random cloud overlap ! icld = 3, with clouds using maximum cloud overlap (McICA only) ! icld = 4, with clouds using exponential cloud overlap (McICA only) ! icld = 5, with clouds using exponential/random cloud overlap (McICA only) ! Set iaer to select aerosol option ! iaer = 0, no aerosols ! icld = 10, input total aerosol optical depth (tauaer) directly iaer = 10 ! Call model and data initialization, compute lookup tables, perform ! reduction of g-points from 256 to 140 for input absorption coefficient ! data and other arrays. ! ! In a GCM this call should be placed in the model initialization ! area, since this has to be called only once. ! call rrtmg_lw_ini(cpdair) ! This is the main longitude/column loop within RRTMG. do iplon = 1, ncol ! Prepare atmospheric profile from GCM for use in RRTMG, and define ! other input parameters. call inatm (iplon, nlay, icld, iaer, & play, plev, tlay, tlev, tsfc, h2ovmr, & o3vmr, co2vmr, ch4vmr, n2ovmr, o2vmr, cfc11vmr, cfc12vmr, & cfc22vmr, ccl4vmr, emis, inflglw, iceflglw, liqflglw, & cldfmcl, taucmcl, ciwpmcl, clwpmcl, cswpmcl, reicmcl, relqmcl, resnmcl, tauaer, & nlayers, pavel, pz, tavel, tz, tbound, semiss, coldry, & wkl, wbrodl, wx, pwvcm, inflag, iceflag, liqflag, & cldfmc, taucmc, ciwpmc, clwpmc, cswpmc, reicmc, relqmc, resnmc, taua) ! For cloudy atmosphere, use cldprop to set cloud optical properties based on ! input cloud physical properties. Select method based on choices described ! in cldprop. Cloud fraction, water path, liquid droplet and ice particle ! effective radius must be passed into cldprop. Cloud fraction and cloud ! optical depth are transferred to rrtmg_lw arrays in cldprop. call cldprmc(nlayers, inflag, iceflag, liqflag, cldfmc, ciwpmc, & clwpmc, cswpmc, reicmc, relqmc, resnmc, ncbands, taucmc) ! Calculate information needed by the radiative transfer routine ! that is specific to this atmosphere, especially some of the ! coefficients and indices needed to compute the optical depths ! by interpolating data from stored reference atmospheres. call setcoef(nlayers, istart, pavel, tavel, tz, tbound, semiss, & coldry, wkl, wbrodl, & laytrop, jp, jt, jt1, planklay, planklev, plankbnd, & colh2o, colco2, colo3, coln2o, colco, colch4, colo2, & colbrd, fac00, fac01, fac10, fac11, & rat_h2oco2, rat_h2oco2_1, rat_h2oo3, rat_h2oo3_1, & rat_h2on2o, rat_h2on2o_1, rat_h2och4, rat_h2och4_1, & rat_n2oco2, rat_n2oco2_1, rat_o3co2, rat_o3co2_1, & selffac, selffrac, indself, forfac, forfrac, indfor, & minorfrac, scaleminor, scaleminorn2, indminor) ! Calculate the gaseous optical depths and Planck fractions for ! each longwave spectral band. call taumol(nlayers, pavel, wx, coldry, & laytrop, jp, jt, jt1, planklay, planklev, plankbnd, & colh2o, colco2, colo3, coln2o, colco, colch4, colo2, & colbrd, fac00, fac01, fac10, fac11, & rat_h2oco2, rat_h2oco2_1, rat_h2oo3, rat_h2oo3_1, & rat_h2on2o, rat_h2on2o_1, rat_h2och4, rat_h2och4_1, & rat_n2oco2, rat_n2oco2_1, rat_o3co2, rat_o3co2_1, & selffac, selffrac, indself, forfac, forfrac, indfor, & minorfrac, scaleminor, scaleminorn2, indminor, & fracs, taug) ! Combine gaseous and aerosol optical depths, if aerosol active if (iaer .eq. 0) then do k = 1, nlayers do ig = 1, ngptlw taut(k,ig) = taug(k,ig) enddo enddo elseif (iaer .eq. 10) then do k = 1, nlayers do ig = 1, ngptlw taut(k,ig) = taug(k,ig) + taua(k,ngb(ig)) enddo enddo endif ! Call the radiative transfer routine. ! Either routine can be called to do clear sky calculation. If clouds ! are present, then select routine based on cloud overlap assumption ! to be used. Clear sky calculation is done simultaneously. ! For McICA, RTRNMC is called for clear and cloudy calculations. #if (WRF_CHEM == 1) ! Call the radiative transfer routine for "clean" sky first, ! passing taug rather than taut so we have no aerosol influence. ! We will keep totuclnlfl, totdclnlfl, fnetcln, and htrcln, ! and then overwrite the rest with the second call to rtrnmc. if(calc_clean_atm_diag .gt. 0)then call rtrnmc(nlayers, istart, iend, iout, pz, semiss, ncbands, & cldfmc, taucmc, planklay, planklev, plankbnd, & pwvcm, fracs, taug, & totuclnlfl, totdclnlfl, fnetcln, htrcln, & totuclfl, totdclfl, fnetc, htrc ) else do k = 0, nlayers totuclnlfl(k) = 0.0 totdclnlfl(k) = 0.0 end do end if #else do k = 0, nlayers totuclnlfl(k) = 0.0 totdclnlfl(k) = 0.0 end do #endif call rtrnmc(nlayers, istart, iend, iout, pz, semiss, ncbands, & cldfmc, taucmc, planklay, planklev, plankbnd, & pwvcm, fracs, taut, & totuflux, totdflux, fnet, htr, & totuclfl, totdclfl, fnetc, htrc ) ! Transfer up and down fluxes and heating rate to output arrays. ! Vertical indexing goes from bottom to top; reverse here for GCM if necessary. do k = 0, nlayers uflx(iplon,k+1) = totuflux(k) dflx(iplon,k+1) = totdflux(k) uflxc(iplon,k+1) = totuclfl(k) dflxc(iplon,k+1) = totdclfl(k) uflxcln(iplon,k+1) = totuclnlfl(k) dflxcln(iplon,k+1) = totdclnlfl(k) enddo do k = 0, nlayers-1 hr(iplon,k+1) = htr(k) hrc(iplon,k+1) = htrc(k) enddo enddo end subroutine rrtmg_lw !*************************************************************************** subroutine inatm (iplon, nlay, icld, iaer, & play, plev, tlay, tlev, tsfc, h2ovmr, & o3vmr, co2vmr, ch4vmr, n2ovmr, o2vmr, cfc11vmr, cfc12vmr, & cfc22vmr, ccl4vmr, emis, inflglw, iceflglw, liqflglw, & cldfmcl, taucmcl, ciwpmcl, clwpmcl, cswpmcl, reicmcl, relqmcl, resnmcl, tauaer, & nlayers, pavel, pz, tavel, tz, tbound, semiss, coldry, & wkl, wbrodl, wx, pwvcm, inflag, iceflag, liqflag, & cldfmc, taucmc, ciwpmc, clwpmc, cswpmc, reicmc, relqmc, resnmc, taua) !*************************************************************************** ! ! Input atmospheric profile from GCM, and prepare it for use in RRTMG_LW. ! Set other RRTMG_LW input parameters. ! !*************************************************************************** ! --------- Modules ---------- use parrrtm, only : nbndlw, ngptlw, nmol, maxxsec, mxmol use rrlw_con, only: fluxfac, heatfac, oneminus, pi, grav, avogad use rrlw_wvn, only: ng, nspa, nspb, wavenum1, wavenum2, delwave, ixindx ! ------- Declarations ------- ! ----- Input ----- integer(kind=im), intent(in) :: iplon ! column loop index integer(kind=im), intent(in) :: nlay ! Number of model layers integer(kind=im), intent(in) :: icld ! clear/cloud and cloud overlap flag integer(kind=im), intent(in) :: iaer ! aerosol option flag real(kind=rb), intent(in) :: play(:,:) ! Layer pressures (hPa, mb) ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: plev(:,:) ! Interface pressures (hPa, mb) ! Dimensions: (ncol,nlay+1) real(kind=rb), intent(in) :: tlay(:,:) ! Layer temperatures (K) ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: tlev(:,:) ! Interface temperatures (K) ! Dimensions: (ncol,nlay+1) real(kind=rb), intent(in) :: tsfc(:) ! Surface temperature (K) ! Dimensions: (ncol) real(kind=rb), intent(in) :: h2ovmr(:,:) ! H2O volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: o3vmr(:,:) ! O3 volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: co2vmr(:,:) ! CO2 volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: ch4vmr(:,:) ! Methane volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: n2ovmr(:,:) ! Nitrous oxide volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: o2vmr(:,:) ! Oxygen volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: cfc11vmr(:,:) ! CFC11 volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: cfc12vmr(:,:) ! CFC12 volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: cfc22vmr(:,:) ! CFC22 volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: ccl4vmr(:,:) ! CCL4 volume mixing ratio ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: emis(:,:) ! Surface emissivity ! Dimensions: (ncol,nbndlw) integer(kind=im), intent(in) :: inflglw ! Flag for cloud optical properties integer(kind=im), intent(in) :: iceflglw ! Flag for ice particle specification integer(kind=im), intent(in) :: liqflglw ! Flag for liquid droplet specification real(kind=rb), intent(in) :: cldfmcl(:,:,:) ! Cloud fraction ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(in) :: ciwpmcl(:,:,:) ! In-cloud ice water path (g/m2) ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(in) :: clwpmcl(:,:,:) ! In-cloud liquid water path (g/m2) ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(in) :: cswpmcl(:,:,:) ! In-cloud snow water path (g/m2) ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(in) :: relqmcl(:,:) ! Cloud water drop effective radius (microns) ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: reicmcl(:,:) ! Cloud ice effective size (microns) ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: resnmcl(:,:) ! Snow effective size (microns) ! Dimensions: (ncol,nlay) real(kind=rb), intent(in) :: taucmcl(:,:,:) ! In-cloud optical depth ! Dimensions: (ngptlw,ncol,nlay) real(kind=rb), intent(in) :: tauaer(:,:,:) ! Aerosol optical depth ! Dimensions: (ncol,nlay,nbndlw) ! ----- Output ----- ! Atmosphere integer(kind=im), intent(out) :: nlayers ! number of layers real(kind=rb), intent(out) :: pavel(:) ! layer pressures (mb) ! Dimensions: (nlay) real(kind=rb), intent(out) :: tavel(:) ! layer temperatures (K) ! Dimensions: (nlay) real(kind=rb), intent(out) :: pz(0:) ! level (interface) pressures (hPa, mb) ! Dimensions: (0:nlay) real(kind=rb), intent(out) :: tz(0:) ! level (interface) temperatures (K) ! Dimensions: (0:nlay) real(kind=rb), intent(out) :: tbound ! surface temperature (K) real(kind=rb), intent(out) :: coldry(:) ! dry air column density (mol/cm2) ! Dimensions: (nlay) real(kind=rb), intent(out) :: wbrodl(:) ! broadening gas column density (mol/cm2) ! Dimensions: (nlay) real(kind=rb), intent(out) :: wkl(:,:) ! molecular amounts (mol/cm-2) ! Dimensions: (mxmol,nlay) real(kind=rb), intent(out) :: wx(:,:) ! cross-section amounts (mol/cm-2) ! Dimensions: (maxxsec,nlay) real(kind=rb), intent(out) :: pwvcm ! precipitable water vapor (cm) real(kind=rb), intent(out) :: semiss(:) ! lw surface emissivity ! Dimensions: (nbndlw) ! Atmosphere/clouds - cldprop integer(kind=im), intent(out) :: inflag ! flag for cloud property method integer(kind=im), intent(out) :: iceflag ! flag for ice cloud properties integer(kind=im), intent(out) :: liqflag ! flag for liquid cloud properties real(kind=rb), intent(out) :: cldfmc(:,:) ! cloud fraction [mcica] ! Dimensions: (ngptlw,nlay) real(kind=rb), intent(out) :: ciwpmc(:,:) ! in-cloud ice water path [mcica] ! Dimensions: (ngptlw,nlay) real(kind=rb), intent(out) :: clwpmc(:,:) ! in-cloud liquid water path [mcica] ! Dimensions: (ngptlw,nlay) real(kind=rb), intent(out) :: cswpmc(:,:) ! in-cloud snow path [mcica] ! Dimensions: (ngptlw,nlay) real(kind=rb), intent(out) :: relqmc(:) ! liquid particle effective radius (microns) ! Dimensions: (nlay) real(kind=rb), intent(out) :: reicmc(:) ! ice particle effective size (microns) ! Dimensions: (nlay) real(kind=rb), intent(out) :: resnmc(:) ! snow effective size (microns) ! Dimensions: (nlay) real(kind=rb), intent(out) :: taucmc(:,:) ! in-cloud optical depth [mcica] ! Dimensions: (ngptlw,nlay) real(kind=rb), intent(out) :: taua(:,:) ! aerosol optical depth ! Dimensions: (nlay,nbndlw) ! ----- Local ----- real(kind=rb), parameter :: amd = 28.9660_rb ! Effective molecular weight of dry air (g/mol) real(kind=rb), parameter :: amw = 18.0160_rb ! Molecular weight of water vapor (g/mol) ! real(kind=rb), parameter :: amc = 44.0098_rb ! Molecular weight of carbon dioxide (g/mol) ! real(kind=rb), parameter :: amo = 47.9998_rb ! Molecular weight of ozone (g/mol) ! real(kind=rb), parameter :: amo2 = 31.9999_rb ! Molecular weight of oxygen (g/mol) ! real(kind=rb), parameter :: amch4 = 16.0430_rb ! Molecular weight of methane (g/mol) ! real(kind=rb), parameter :: amn2o = 44.0128_rb ! Molecular weight of nitrous oxide (g/mol) ! real(kind=rb), parameter :: amc11 = 137.3684_rb ! Molecular weight of CFC11 (g/mol) - CCL3F ! real(kind=rb), parameter :: amc12 = 120.9138_rb ! Molecular weight of CFC12 (g/mol) - CCL2F2 ! real(kind=rb), parameter :: amc22 = 86.4688_rb ! Molecular weight of CFC22 (g/mol) - CHCLF2 ! real(kind=rb), parameter :: amcl4 = 153.823_rb ! Molecular weight of CCL4 (g/mol) - CCL4 ! Set molecular weight ratios (for converting mmr to vmr) ! e.g. h2ovmr = h2ommr * amdw) real(kind=rb), parameter :: amdw = 1.607793_rb ! Molecular weight of dry air / water vapor real(kind=rb), parameter :: amdc = 0.658114_rb ! Molecular weight of dry air / carbon dioxide real(kind=rb), parameter :: amdo = 0.603428_rb ! Molecular weight of dry air / ozone real(kind=rb), parameter :: amdm = 1.805423_rb ! Molecular weight of dry air / methane real(kind=rb), parameter :: amdn = 0.658090_rb ! Molecular weight of dry air / nitrous oxide real(kind=rb), parameter :: amdo2 = 0.905140_rb ! Molecular weight of dry air / oxygen real(kind=rb), parameter :: amdc1 = 0.210852_rb ! Molecular weight of dry air / CFC11 real(kind=rb), parameter :: amdc2 = 0.239546_rb ! Molecular weight of dry air / CFC12 integer(kind=im) :: isp, l, ix, n, imol, ib, ig ! Loop indices real(kind=rb) :: amm, amttl, wvttl, wvsh, summol ! Add one to nlayers here to include extra model layer at top of atmosphere nlayers = nlay ! Initialize all molecular amounts and cloud properties to zero here, then pass input amounts ! into RRTM arrays below. wkl(:,:) = 0.0_rb wx(:,:) = 0.0_rb cldfmc(:,:) = 0.0_rb taucmc(:,:) = 0.0_rb ciwpmc(:,:) = 0.0_rb clwpmc(:,:) = 0.0_rb cswpmc(:,:) = 0.0_rb reicmc(:) = 0.0_rb relqmc(:) = 0.0_rb resnmc(:) = 0.0_rb taua(:,:) = 0.0_rb amttl = 0.0_rb wvttl = 0.0_rb ! Set surface temperature. tbound = tsfc(iplon) ! Install input GCM arrays into RRTMG_LW arrays for pressure, temperature, ! and molecular amounts. ! Pressures are input in mb, or are converted to mb here. ! Molecular amounts are input in volume mixing ratio, or are converted from ! mass mixing ratio (or specific humidity for h2o) to volume mixing ratio ! here. These are then converted to molecular amount (molec/cm2) below. ! The dry air column COLDRY (in molec/cm2) is calculated from the level ! pressures, pz (in mb), based on the hydrostatic equation and includes a ! correction to account for h2o in the layer. The molecular weight of moist ! air (amm) is calculated for each layer. ! Note: In RRTMG, layer indexing goes from bottom to top, and coding below ! assumes GCM input fields are also bottom to top. Input layer indexing ! from GCM fields should be reversed here if necessary. pz(0) = plev(iplon,1) tz(0) = tlev(iplon,1) do l = 1, nlayers pavel(l) = play(iplon,l) tavel(l) = tlay(iplon,l) pz(l) = plev(iplon,l+1) tz(l) = tlev(iplon,l+1) ! For h2o input in vmr: wkl(1,l) = h2ovmr(iplon,l) ! For h2o input in mmr: ! wkl(1,l) = h2o(iplon,l)*amdw ! For h2o input in specific humidity; ! wkl(1,l) = (h2o(iplon,l)/(1._rb - h2o(iplon,l)))*amdw wkl(2,l) = co2vmr(iplon,l) wkl(3,l) = o3vmr(iplon,l) wkl(4,l) = n2ovmr(iplon,l) wkl(6,l) = ch4vmr(iplon,l) wkl(7,l) = o2vmr(iplon,l) amm = (1._rb - wkl(1,l)) * amd + wkl(1,l) * amw coldry(l) = (pz(l-1)-pz(l)) * 1.e3_rb * avogad / & (1.e2_rb * grav * amm * (1._rb + wkl(1,l))) enddo ! Set cross section molecule amounts from input; convert to vmr if necessary do l=1, nlayers wx(1,l) = ccl4vmr(iplon,l) wx(2,l) = cfc11vmr(iplon,l) wx(3,l) = cfc12vmr(iplon,l) wx(4,l) = cfc22vmr(iplon,l) enddo ! The following section can be used to set values for an additional layer (from ! the GCM top level to 1.e-4 mb) for improved calculation of TOA fluxes. ! Temperature and molecular amounts in the extra model layer are set to ! their values in the top GCM model layer, though these can be modified ! here if necessary. ! If this feature is utilized, increase nlayers by one above, limit the two ! loops above to (nlayers-1), and set the top most (extra) layer values here. ! pavel(nlayers) = 0.5_rb * pz(nlayers-1) ! tavel(nlayers) = tavel(nlayers-1) ! pz(nlayers) = 1.e-4_rb ! tz(nlayers-1) = 0.5_rb * (tavel(nlayers)+tavel(nlayers-1)) ! tz(nlayers) = tz(nlayers-1) ! wkl(1,nlayers) = wkl(1,nlayers-1) ! wkl(2,nlayers) = wkl(2,nlayers-1) ! wkl(3,nlayers) = wkl(3,nlayers-1) ! wkl(4,nlayers) = wkl(4,nlayers-1) ! wkl(6,nlayers) = wkl(6,nlayers-1) ! wkl(7,nlayers) = wkl(7,nlayers-1) ! amm = (1._rb - wkl(1,nlayers-1)) * amd + wkl(1,nlayers-1) * amw ! coldry(nlayers) = (pz(nlayers-1)) * 1.e3_rb * avogad / & ! (1.e2_rb * grav * amm * (1._rb + wkl(1,nlayers-1))) ! wx(1,nlayers) = wx(1,nlayers-1) ! wx(2,nlayers) = wx(2,nlayers-1) ! wx(3,nlayers) = wx(3,nlayers-1) ! wx(4,nlayers) = wx(4,nlayers-1) ! At this point all molecular amounts in wkl and wx are in volume mixing ratio; ! convert to molec/cm2 based on coldry for use in rrtm. also, compute precipitable ! water vapor for diffusivity angle adjustments in rtrn and rtrnmr. do l = 1, nlayers summol = 0.0_rb do imol = 2, nmol summol = summol + wkl(imol,l) enddo wbrodl(l) = coldry(l) * (1._rb - summol) do imol = 1, nmol wkl(imol,l) = coldry(l) * wkl(imol,l) enddo amttl = amttl + coldry(l)+wkl(1,l) wvttl = wvttl + wkl(1,l) do ix = 1,maxxsec if (ixindx(ix) .ne. 0) then wx(ixindx(ix),l) = coldry(l) * wx(ix,l) * 1.e-20_rb endif enddo enddo wvsh = (amw * wvttl) / (amd * amttl) pwvcm = wvsh * (1.e3_rb * pz(0)) / (1.e2_rb * grav) ! Set spectral surface emissivity for each longwave band. do n=1,nbndlw semiss(n) = emis(iplon,n) ! semiss(n) = 1.0_rb enddo ! Transfer aerosol optical properties to RRTM variable; ! modify to reverse layer indexing here if necessary. if (iaer .ge. 1) then do l = 1, nlayers do ib = 1, nbndlw taua(l,ib) = tauaer(iplon,l,ib) enddo enddo endif ! Transfer cloud fraction and cloud optical properties to RRTM variables, ! modify to reverse layer indexing here if necessary. if (icld .ge. 1) then inflag = inflglw iceflag = iceflglw liqflag = liqflglw ! Move incoming GCM cloud arrays to RRTMG cloud arrays. ! For GCM input, incoming reicmcl is defined based on selected ice parameterization (inflglw) do l = 1, nlayers do ig = 1, ngptlw cldfmc(ig,l) = cldfmcl(ig,iplon,l) taucmc(ig,l) = taucmcl(ig,iplon,l) ciwpmc(ig,l) = ciwpmcl(ig,iplon,l) clwpmc(ig,l) = clwpmcl(ig,iplon,l) cswpmc(ig,l) = cswpmcl(ig,iplon,l) enddo reicmc(l) = reicmcl(iplon,l) relqmc(l) = relqmcl(iplon,l) resnmc(l) = resnmcl(iplon,l) enddo ! If an extra layer is being used in RRTMG, set all cloud properties to zero in the extra layer. ! cldfmc(:,nlayers) = 0.0_rb ! taucmc(:,nlayers) = 0.0_rb ! ciwpmc(:,nlayers) = 0.0_rb ! clwpmc(:,nlayers) = 0.0_rb ! reicmc(nlayers) = 0.0_rb ! relqmc(nlayers) = 0.0_rb ! taua(nlayers,:) = 0.0_rb endif end subroutine inatm end module rrtmg_lw_rad !------------------------------------------------------------------ MODULE module_ra_rrtmg_lw use module_model_constants, only : cp use module_wrf_error #if (HWRF == 1) USE module_state_description, ONLY : FER_MP_HIRES, FER_MP_HIRES_ADVECT, ETAMP_HWRF #else USE module_state_description, ONLY : FER_MP_HIRES, FER_MP_HIRES_ADVECT #endif !use module_dm use parrrtm, only : nbndlw, ngptlw use rrtmg_lw_init, only: rrtmg_lw_ini use rrtmg_lw_rad, only: rrtmg_lw use mcica_subcol_gen_lw, only: mcica_subcol_lw real retab(95) data retab / & 5.92779, 6.26422, 6.61973, 6.99539, 7.39234, & 7.81177, 8.25496, 8.72323, 9.21800, 9.74075, 10.2930, & 10.8765, 11.4929, 12.1440, 12.8317, 13.5581, 14.2319, & 15.0351, 15.8799, 16.7674, 17.6986, 18.6744, 19.6955, & 20.7623, 21.8757, 23.0364, 24.2452, 25.5034, 26.8125, & 27.7895, 28.6450, 29.4167, 30.1088, 30.7306, 31.2943, & 31.8151, 32.3077, 32.7870, 33.2657, 33.7540, 34.2601, & 34.7892, 35.3442, 35.9255, 36.5316, 37.1602, 37.8078, & 38.4720, 39.1508, 39.8442, 40.5552, 41.2912, 42.0635, & 42.8876, 43.7863, 44.7853, 45.9170, 47.2165, 48.7221, & 50.4710, 52.4980, 54.8315, 57.4898, 60.4785, 63.7898, & 65.5604, 71.2885, 75.4113, 79.7368, 84.2351, 88.8833, & 93.6658, 98.5739, 103.603, 108.752, 114.025, 119.424, & 124.954, 130.630, 136.457, 142.446, 148.608, 154.956, & 161.503, 168.262, 175.248, 182.473, 189.952, 197.699, & 205.728, 214.055, 222.694, 231.661, 240.971, 250.639/ ! save retab ! For buffer layer adjustment. Steven Cavallo, Dec 2010. integer , save :: nlayers real, PARAMETER :: deltap = 4. ! Pressure interval for buffer layer in mb CONTAINS !------------------------------------------------------------------ SUBROUTINE RRTMG_LWRAD( & rthratenlw, & lwupt, lwuptc, lwuptcln, lwdnt, lwdntc, lwdntcln, & lwupb, lwupbc, lwupbcln, lwdnb, lwdnbc, lwdnbcln, & ! lwupflx, lwupflxc, lwdnflx, lwdnflxc, & glw, olr, lwcf, emiss, & p8w, p3d, pi3d, & dz8w, tsk, t3d, t8w, rho3d, r, g, & icloud, warm_rain, cldfra3d, & cldovrlp, & lradius,iradius, & is_cammgmp_used, & f_ice_phy, f_rain_phy, & xland, xice, snow, & qv3d, qc3d, qr3d, & qi3d, qs3d, qg3d, & o3input, o33d, & f_qv, f_qc, f_qr, f_qi, f_qs, f_qg, & re_cloud, re_ice, re_snow, & ! G. Thompson has_reqc, has_reqi, has_reqs, & ! G. Thompson tauaerlw1,tauaerlw2,tauaerlw3,tauaerlw4, & ! czhao tauaerlw5,tauaerlw6,tauaerlw7,tauaerlw8, & ! czhao tauaerlw9,tauaerlw10,tauaerlw11,tauaerlw12, & ! czhao tauaerlw13,tauaerlw14,tauaerlw15,tauaerlw16, & ! czhao aer_ra_feedback, & !czhao !jdfcz progn,prescribe, & !czhao progn,calc_clean_atm_diag, & !czhao qndrop3d,f_qndrop, & !czhao !ccc added for time varying gases. yr,julian, & !ccc mp_physics, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte, & lwupflx, lwupflxc, lwdnflx, lwdnflxc & ) !------------------------------------------------------------------ !ccc To use clWRF time varying trace gases USE MODULE_RA_CLWRF_SUPPORT, ONLY : read_CAMgases IMPLICIT NONE !------------------------------------------------------------------ LOGICAL, INTENT(IN ) :: warm_rain LOGICAL, INTENT(IN ) :: is_CAMMGMP_used ! Added for CAM5 RRTMG<->CAMMGMP ! INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte INTEGER, INTENT(IN ) :: ICLOUD INTEGER, INTENT(IN ) :: MP_PHYSICS ! REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & INTENT(IN ) :: dz8w, & t3d, & t8w, & p8w, & p3d, & pi3d, & rho3d REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & INTENT(INOUT) :: RTHRATENLW REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(INOUT) :: GLW, & OLR, & LWCF REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(IN ) :: EMISS, & TSK REAL, INTENT(IN ) :: R,G REAL, DIMENSION( ims:ime, jms:jme ) , & INTENT(IN ) :: XLAND, & XICE, & SNOW !ccc Added for time-varying trace gases. INTEGER, INTENT(IN ) :: yr REAL, INTENT(IN ) :: julian !ccc ! ! Optional ! REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & OPTIONAL , & INTENT(IN ) :: & CLDFRA3D, & LRADIUS, & IRADIUS, & QV3D, & QC3D, & QR3D, & QI3D, & QS3D, & QG3D, & QNDROP3D !..Added by G. Thompson to couple cloud physics effective radii. REAL, DIMENSION(ims:ime,kms:kme,jms:jme), INTENT(IN):: & re_cloud, & re_ice, & re_snow INTEGER, INTENT(IN):: has_reqc, has_reqi, has_reqs real pi,third,relconst,lwpmin,rhoh2o REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & OPTIONAL , & INTENT(IN ) :: & F_ICE_PHY, & F_RAIN_PHY LOGICAL, OPTIONAL, INTENT(IN) :: & F_QV,F_QC,F_QR,F_QI,F_QS,F_QG,F_QNDROP ! Optional REAL, DIMENSION( ims:ime, kms:kme, jms:jme ), OPTIONAL , & INTENT(IN ) :: tauaerlw1,tauaerlw2,tauaerlw3,tauaerlw4, & ! czhao tauaerlw5,tauaerlw6,tauaerlw7,tauaerlw8, & ! czhao tauaerlw9,tauaerlw10,tauaerlw11,tauaerlw12, & ! czhao tauaerlw13,tauaerlw14,tauaerlw15,tauaerlw16 INTEGER, INTENT(IN ), OPTIONAL :: aer_ra_feedback !jdfcz INTEGER, INTENT(IN ), OPTIONAL :: progn,prescribe INTEGER, INTENT(IN ), OPTIONAL :: progn INTEGER, INTENT(IN ) :: calc_clean_atm_diag ! Ozone REAL, DIMENSION( ims:ime, kms:kme, jms:jme ) , & OPTIONAL , & INTENT(IN ) :: O33D INTEGER, OPTIONAL, INTENT(IN ) :: o3input real, parameter :: thresh=1.e-9 real slope character(len=200) :: msg ! Top of atmosphere and surface longwave fluxes (W m-2) REAL, DIMENSION( ims:ime, jms:jme ), & OPTIONAL, INTENT(INOUT) :: & LWUPT,LWUPTC,LWUPTCLN,LWDNT,LWDNTC,LWDNTCLN,& LWUPB,LWUPBC,LWUPBCLN,LWDNB,LWDNBC,LWDNBCLN ! Layer longwave fluxes (including extra layer above model top) ! Vertical ordering is from bottom to top (W m-2) REAL, DIMENSION( ims:ime, kms:kme+2, jms:jme ), & OPTIONAL, INTENT(OUT) :: & LWUPFLX,LWUPFLXC,LWDNFLX,LWDNFLXC ! LOCAL VARS REAL, DIMENSION( kts:kte+1 ) :: Pw1D, & Tw1D REAL, DIMENSION( kts:kte ) :: TTEN1D, & CLDFRA1D, & DZ1D, & P1D, & T1D, & QV1D, & QC1D, & QR1D, & QI1D, & RHO1D, & QS1D, & QG1D, & O31D, & qndrop1d !BSF: From eq. (5) on p. 2434 in McFarquhar & Heymsfield (1996) real, parameter :: re_50C=1250.0/9.917, re_40C=1250.0/9.337, & re_30C=1250.0/9.208, re_20C=1250.0/9.387 ! Added local arrays for RRTMG integer :: ncol, & nlay, & icld, & cldovrlp, & inflglw, & iceflglw, & liqflglw ! Dimension with extra layer from model top to TOA real, dimension( 1, kts:nlayers+1 ) :: plev, & tlev real, dimension( 1, kts:nlayers ) :: play, & tlay, & h2ovmr, & o3vmr, & co2vmr, & o2vmr, & ch4vmr, & n2ovmr, & cfc11vmr, & cfc12vmr, & cfc22vmr, & ccl4vmr real, dimension( kts:nlayers ) :: o3mmr ! Add height of each layer for exponential-random cloud overlap ! This will be derived below from the dz in each layer real, dimension( 1, kts:nlayers ) :: hgt real :: dzsum ! For old cloud property specification for rrtm_lw real, dimension( kts:kte ) :: clwp, & ciwp, & cswp, & plwp, & piwp ! Surface emissivity (for 16 LW spectral bands) real, dimension( 1, nbndlw ) :: emis ! Dimension with extra layer from model top to TOA, ! though no clouds are allowed in extra layer real, dimension( 1, kts:nlayers ) :: clwpth, & ciwpth, & cswpth, & rel, & rei, & res, & cldfrac, & relqmcl, & reicmcl, & resnmcl real, dimension( nbndlw, 1, kts:nlayers ) :: taucld real, dimension( ngptlw, 1, kts:nlayers ) :: cldfmcl, & clwpmcl, & ciwpmcl, & cswpmcl, & taucmcl real, dimension( 1, kts:nlayers, nbndlw ) :: tauaer ! Output arrays contain extra layer from model top to TOA real, dimension( 1, kts:nlayers+1 ) :: uflx, & dflx, & uflxc, & dflxc, & uflxcln, & dflxcln real, dimension( 1, kts:nlayers ) :: hr, & hrc real, dimension ( 1 ) :: tsfc, & ps real :: ro, & dz real:: snow_mass_factor !..We can use message interface regardless of what options are running, !.. so let us ask for it here. CHARACTER(LEN=256) :: message LOGICAL, EXTERNAL :: wrf_dm_on_monitor !ccc To add time-varying trace gases (CO2, N2O and CH4). Read the conc. from file ! then interpolate to date of run. #ifdef CLWRFGHG ! CLWRF-UC June.09 REAL(8) :: co2, n2o, ch4, cfc11, cfc12 #else ! Set trace gas volume mixing ratios, 2005 values, IPCC (2007) ! carbon dioxide (379 ppmv) - this is being replaced by an annual function in v4.2 real :: co2 ! data co2 / 379.e-6 / ! methane (1774 ppbv) real :: ch4 data ch4 / 1774.e-9 / ! nitrous oxide (319 ppbv) real :: n2o data n2o / 319.e-9 / ! cfc-11 (251 ppt) real :: cfc11 data cfc11 / 0.251e-9 / ! cfc-12 (538 ppt) real :: cfc12 data cfc12 / 0.538e-9 / #endif ! cfc-22 (169 ppt) real :: cfc22 data cfc22 / 0.169e-9 / ! ccl4 (93 ppt) real :: ccl4 data ccl4 / 0.093e-9 / ! Set oxygen volume mixing ratio (for o2mmr=0.23143) real :: o2 data o2 / 0.209488 / integer :: iplon, irng, permuteseed integer :: nb ! For old cloud property specification for rrtm_lw ! Cloud and precipitation absorption coefficients real :: abcw,abice,abrn,absn data abcw /0.144/ data abice /0.0735/ data abrn /0.330e-3/ data absn /2.34e-3/ ! Molecular weights and ratios for converting mmr to vmr units ! real :: amd ! Effective molecular weight of dry air (g/mol) ! real :: amw ! Molecular weight of water vapor (g/mol) ! real :: amo ! Molecular weight of ozone (g/mol) ! real :: amo2 ! Molecular weight of oxygen (g/mol) ! Atomic weights for conversion from mass to volume mixing ratios ! data amd / 28.9660 / ! data amw / 18.0160 / ! data amo / 47.9998 / ! data amo2 / 31.9999 / real :: amdw ! Molecular weight of dry air / water vapor real :: amdo ! Molecular weight of dry air / ozone real :: amdo2 ! Molecular weight of dry air / oxygen data amdw / 1.607793 / data amdo / 0.603461 / data amdo2 / 0.905190 / !! real, dimension( 1, 1:kte-kts+1 ) :: pdel ! Layer pressure thickness (mb) real, dimension(1, 1:kte-kts+1) :: cicewp, & ! in-cloud cloud ice water path cliqwp, & ! in-cloud cloud liquid water path csnowp, & ! in-cloud snow water path reliq, & ! effective drop radius (microns) reice ! effective ice crystal size (microns) real, dimension(1, 1:kte-kts+1):: recloud1d, & reice1d, & resnow1d real :: gliqwp, gicewp, gsnowp, gravmks ! ! REAL :: TSFC,GLW0,OLR0,EMISS0,FP real, dimension (1) :: landfrac, landm, snowh, icefrac integer :: pcols, pver ! INTEGER :: i,j,K, idx_rei REAL :: corr LOGICAL :: predicate ! Added for top of model adjustment. Steven Cavallo NCAR/MMM December 2010 INTEGER, PARAMETER :: nproflevs = 60 ! Constant, from the table INTEGER :: L, LL, klev ! Loop indices REAL, DIMENSION( kts:nlayers+1 ) :: varint REAL :: wght,vark,vark1,tem1,tem2,tem3 REAL :: PPROF(nproflevs), TPROF(nproflevs) ! Weighted mean pressure and temperature profiles from midlatitude ! summer (MLS),midlatitude winter (MLW), sub-Arctic ! winter (SAW),sub-Arctic summer (SAS), and tropical (TROP) ! standard atmospheres. DATA PPROF /1000.00,855.47,731.82,626.05,535.57,458.16, & 391.94,335.29,286.83,245.38,209.91,179.57, & 153.62,131.41,112.42,96.17,82.27,70.38, & 60.21,51.51,44.06,37.69,32.25,27.59, & 23.60,20.19,17.27,14.77,12.64,10.81, & 9.25,7.91,6.77,5.79,4.95,4.24, & 3.63,3.10,2.65,2.27,1.94,1.66, & 1.42,1.22,1.04,0.89,0.76,0.65, & 0.56,0.48,0.41,0.35,0.30,0.26, & 0.22,0.19,0.16,0.14,0.12,0.10/ DATA TPROF /286.96,281.07,275.16,268.11,260.56,253.02, & 245.62,238.41,231.57,225.91,221.72,217.79, & 215.06,212.74,210.25,210.16,210.69,212.14, & 213.74,215.37,216.82,217.94,219.03,220.18, & 221.37,222.64,224.16,225.88,227.63,229.51, & 231.50,233.73,236.18,238.78,241.60,244.44, & 247.35,250.33,253.32,256.30,259.22,262.12, & 264.80,266.50,267.59,268.44,268.69,267.76, & 266.13,263.96,261.54,258.93,256.15,253.23, & 249.89,246.67,243.48,240.25,236.66,233.86/ !------------------------------------------------------------------ #if ( WRF_CHEM == 1 ) IF ( aer_ra_feedback == 1) then IF ( .NOT. & ( PRESENT(tauaerlw1) .AND. & PRESENT(tauaerlw2) .AND. & PRESENT(tauaerlw3) .AND. & PRESENT(tauaerlw4) .AND. & PRESENT(tauaerlw5) .AND. & PRESENT(tauaerlw6) .AND. & PRESENT(tauaerlw7) .AND. & PRESENT(tauaerlw8) .AND. & PRESENT(tauaerlw9) .AND. & PRESENT(tauaerlw10) .AND. & PRESENT(tauaerlw11) .AND. & PRESENT(tauaerlw12) .AND. & PRESENT(tauaerlw13) .AND. & PRESENT(tauaerlw14) .AND. & PRESENT(tauaerlw15) .AND. & PRESENT(tauaerlw16) ) ) THEN CALL wrf_error_fatal & ('Warning: missing fields required for aerosol radiation' ) ENDIF ENDIF #endif !-----CALCULATE LONG WAVE RADIATION ! ! All fields are ordered vertically from bottom to top ! Pressures are in mb ! ! Annual function for co2 in WRF v4.2 co2 = (280. + 90.*exp(0.02*(yr-2000)))*1.e-6 !ccc Read time-varying trace gases concentrations and interpolate them to run date. ! #ifdef CLWRFGHG CALL read_CAMgases(yr,julian,"RRTMG",co2,n2o,ch4,cfc11,cfc12) IF ( wrf_dm_on_monitor() ) THEN WRITE(message,*)'CAM-CLWRF interpolated values______ year:',yr,' julian day:',julian call wrf_debug( 100, message) WRITE(message,*)' CAM-CLWRF co2vmr: ',co2,' n2ovmr:',n2o,' ch4vmr:',ch4,' cfc11vmr:',cfc11,' cfc12vmr:',cfc12 call wrf_debug( 100, message) ENDIF #endif !ccc ! latitude loop j_loop: do j = jts,jte ! longitude loop i_loop: do i = its,ite do k=kts,kte+1 Pw1D(K) = p8w(I,K,J)/100. Tw1D(K) = t8w(I,K,J) enddo DO K=kts,kte QV1D(K)=0. QC1D(K)=0. QR1D(K)=0. QI1D(K)=0. QS1D(K)=0. CLDFRA1D(k)=0. ENDDO DO K=kts,kte QV1D(K)=QV3D(I,K,J) QV1D(K)=max(0.,QV1D(K)) ENDDO IF (PRESENT(O33D)) THEN DO K=kts,kte O31D(K)=O33D(I,K,J) ENDDO ELSE DO K=kts,kte O31D(K)=0.0 ENDDO ENDIF DO K=kts,kte TTEN1D(K)=0. T1D(K)=T3D(I,K,J) P1D(K)=P3D(I,K,J)/100. RHO1D(K)=RHO3D(I,K,J) DZ1D(K)=dz8w(I,K,J) ENDDO ! moist variables IF (ICLOUD .ne. 0) THEN IF ( PRESENT( CLDFRA3D ) ) THEN DO K=kts,kte CLDFRA1D(k)=CLDFRA3D(I,K,J) ENDDO ENDIF IF (PRESENT(F_QC) .AND. PRESENT(QC3D)) THEN IF ( F_QC) THEN DO K=kts,kte QC1D(K)=QC3D(I,K,J) QC1D(K)=max(0.,QC1D(K)) ENDDO ENDIF ENDIF IF (PRESENT(F_QR) .AND. PRESENT(QR3D)) THEN IF ( F_QR) THEN DO K=kts,kte QR1D(K)=QR3D(I,K,J) QR1D(K)=max(0.,QR1D(K)) ENDDO ENDIF ENDIF IF ( PRESENT(F_QNDROP).AND.PRESENT(QNDROP3D)) THEN IF (F_QNDROP) THEN DO K=kts,kte qndrop1d(K)=qndrop3d(I,K,J) ENDDO ENDIF ENDIF ! This logic is tortured because cannot test F_QI unless ! it is present, and order of evaluation of expressions ! is not specified in Fortran IF ( PRESENT ( F_QI ) ) THEN predicate = F_QI ELSE predicate = .FALSE. ENDIF ! For MP option 3 IF (.NOT. predicate .and. .not. warm_rain) THEN DO K=kts,kte IF (T1D(K) .lt. 273.15) THEN QI1D(K)=QC1D(K) QS1D(K)=QR1D(K) QC1D(K)=0. QR1D(K)=0. ENDIF ENDDO ENDIF IF (PRESENT(F_QI) .AND. PRESENT(QI3D)) THEN IF (F_QI) THEN DO K=kts,kte QI1D(K)=QI3D(I,K,J) QI1D(K)=max(0.,QI1D(K)) ENDDO ENDIF ENDIF IF (PRESENT(F_QS) .AND. PRESENT(QS3D)) THEN IF (F_QS) THEN DO K=kts,kte QS1D(K)=QS3D(I,K,J) QS1D(K)=max(0.,QS1D(K)) ENDDO ENDIF ENDIF IF (PRESENT(F_QG) .AND. PRESENT(QG3D)) THEN IF (F_QG) THEN DO K=kts,kte QG1D(K)=QG3D(I,K,J) QG1D(K)=max(0.,QG1D(K)) ENDDO ENDIF ENDIF ! mji - For MP option 5 IF ( PRESENT(F_QI) .and. PRESENT(F_QC) .and. PRESENT(F_QS) .and. PRESENT(F_ICE_PHY) ) THEN IF ( F_QC .and. .not. F_QI .and. F_QS ) THEN DO K=kts,kte qi1d(k) = 0.1*qs3d(i,k,j) qs1d(k) = 0.9*qs3d(i,k,j) qc1d(k) = qc3d(i,k,j) qi1d(k) = max(0.,qi1d(k)) qc1d(k) = max(0.,qc1d(k)) ENDDO ENDIF ENDIF ENDIF ! For mp option=5 or 85 (new Ferrier- Aligo or fer_hires scheme), QI3D saves all #if (HWRF == 1) IF ( mp_physics == FER_MP_HIRES .OR. & mp_physics == FER_MP_HIRES_ADVECT .OR. & mp_physics == ETAMP_HWRF ) THEN #else IF ( mp_physics == FER_MP_HIRES .OR. & mp_physics == FER_MP_HIRES_ADVECT) THEN #endif DO K=kts,kte qi1d(k) = qi3d(i,k,j) qs1d(k) = 0.0 qc1d(k) = qc3d(i,k,j) qi1d(k) = max(0.,qi1d(k)) qc1d(k) = max(0.,qc1d(k)) ENDDO ENDIF ! EMISS0=EMISS(I,J) ! GLW0=0. ! OLR0=0. ! TSFC=TSK(I,J) DO K=kts,kte QV1D(K)=AMAX1(QV1D(K),1.E-12) ENDDO ! Set up input for longwave ncol = 1 ! Add extra layer from top of model to top of atmosphere ! nlay = (kte - kts + 1) + 1 ! Edited for top of model adjustment (nlayers = kte + 1). ! Steven Cavallo, December 2010 nlay = nlayers ! Keep these indices the same ! Select cloud overlap assumption (1 = random, 2 = maximum-random, 3 = maximum, 4 = exponential, 5 = exponential-random icld=cldovrlp ! J. Henderson AER assign namelist variable cldovrlp to existing icld ! Select cloud liquid and ice optics parameterization options ! For passing in cloud optical properties directly: ! icld = 2 ! inflglw = 0 ! iceflglw = 0 ! liqflglw = 0 ! For passing in cloud physical properties; cloud optics parameterized in RRTMG: inflglw = 2 iceflglw = 3 liqflglw = 1 !Mukul change the flags here with reference to the new effective cloud/ice/snow radius IF (ICLOUD .ne. 0) THEN IF ( has_reqc .ne. 0) THEN inflglw = 3 DO K=kts,kte recloud1D(ncol,K) = MAX(2.5, re_cloud(I,K,J)*1.E6) if (recloud1D(ncol,K).LE.2.5.AND.cldfra3d(i,k,j).gt.0. & & .AND. (XLAND(I,J)-1.5).GT.0.) then !--- Ocean recloud1D(ncol,K) = 10.5 elseif(recloud1D(ncol,K).LE.2.5.AND.cldfra3d(i,k,j).gt.0. & & .AND. (XLAND(I,J)-1.5).LT.0.) then !--- Land recloud1D(ncol,K) = 7.5 endif ENDDO ELSE DO K=kts,kte recloud1D(ncol,K) = 5.0 ENDDO ENDIF IF ( has_reqi .ne. 0) THEN inflglw = 4 iceflglw = 4 DO K=kts,kte reice1D(ncol,K) = MAX(5., re_ice(I,K,J)*1.E6) if (reice1D(ncol,K).LE.5..AND.cldfra3d(i,k,j).gt.0.) then idx_rei = int(t3d(i,k,j)-179.) idx_rei = min(max(idx_rei,1),75) corr = t3d(i,k,j) - int(t3d(i,k,j)) reice1D(ncol,K) = retab(idx_rei)*(1.-corr) + & & retab(idx_rei+1)*corr reice1D(ncol,K) = MAX(reice1D(ncol,K), 5.0) endif ENDDO ELSE DO K=kts,kte #if (EM_CORE==1) reice1D(ncol,K) = 10.0 #else tem2 = 25.0 !- was 10.0 tem3=1.e3*rho1d(k)*qi1d(k) !- IWC (g m^-3) if (tem3>thresh) then !- Only when IWC>1.e-9 gm^-3 tem1=t1d(k)-273.15 if (tem1 < -50.0) then tem2 = re_50C*tem3**0.109 elseif (tem1 < -40.0) then tem2 = re_40C*tem3**0.08 elseif (tem1 < -30.0) then tem2 = re_30C*tem3**0.055 else tem2 = re_20C*tem3**0.031 endif tem2 = max(25.,tem2) endif reice1D(ncol,K) = min(tem2, 135.72) !- 1.0315*reice<= 140 microns #endif ENDDO ENDIF IF ( has_reqs .ne. 0) THEN inflglw = 5 iceflglw = 5 DO K=kts,kte resnow1D(ncol,K) = MAX(10., re_snow(I,K,J)*1.E6) ENDDO ELSE DO K=kts,kte resnow1D(ncol,K) = 10.0 ENDDO ENDIF ! special case for P3 microphysics ! put ice into snow category for optics, then set ice to zero IF (has_reqs .eq. 0 .and. has_reqi .ne. 0 .and. has_reqc .ne. 0) THEN inflglw = 5 iceflglw = 5 DO K=kts,kte resnow1D(ncol,K) = MAX(10., re_ice(I,K,J)*1.E6) QS1D(K)=QI3D(I,K,J) QI1D(K)=0. reice1D(ncol,K)=10. END DO END IF ENDIF ! Layer indexing goes bottom to top here for all fields. ! Water vapor and ozone are converted from mmr to vmr. ! Pressures are in units of mb here. plev(ncol,1) = pw1d(1) tlev(ncol,1) = tw1d(1) tsfc(ncol) = tsk(i,j) do k = kts, kte play(ncol,k) = p1d(k) plev(ncol,k+1) = pw1d(k+1) pdel(ncol,k) = plev(ncol,k) - plev(ncol,k+1) tlay(ncol,k) = t1d(k) tlev(ncol,k+1) = tw1d(k+1) h2ovmr(ncol,k) = qv1d(k) * amdw co2vmr(ncol,k) = co2 o2vmr(ncol,k) = o2 ch4vmr(ncol,k) = ch4 n2ovmr(ncol,k) = n2o cfc11vmr(ncol,k) = cfc11 cfc12vmr(ncol,k) = cfc12 cfc22vmr(ncol,k) = cfc22 ccl4vmr(ncol,k) = ccl4 enddo ! Derive height of each layer mid-point from layer thickness. ! Needed for exponential (icld=4) and exponential-random overlap (icld=5) options only. dzsum = 0.0 do k = kts, kte dz = dz1d(k) hgt(ncol,k) = dzsum + 0.5*dz dzsum = dzsum + dz enddo ! This section is replaced with a new method to deal with model top if ( 1 == 0 ) then ! Define profile values for extra layer from model top to top of atmosphere. ! The top layer temperature for all gridpoints is set to the top layer-1 ! temperature plus a constant (0 K) that represents an isothermal layer ! above ptop. Top layer interface temperatures are linearly interpolated ! from the layer temperatures. play(ncol,kte+1) = 0.5 * plev(ncol,kte+1) tlay(ncol,kte+1) = tlev(ncol,kte+1) + 0.0 plev(ncol,kte+2) = 1.0e-5 tlev(ncol,kte+2) = tlev(ncol,kte+1) + 0.0 h2ovmr(ncol,kte+1) = h2ovmr(ncol,kte) co2vmr(ncol,kte+1) = co2vmr(ncol,kte) o2vmr(ncol,kte+1) = o2vmr(ncol,kte) ch4vmr(ncol,kte+1) = ch4vmr(ncol,kte) n2ovmr(ncol,kte+1) = n2ovmr(ncol,kte) cfc11vmr(ncol,kte+1) = cfc11vmr(ncol,kte) cfc12vmr(ncol,kte+1) = cfc12vmr(ncol,kte) cfc22vmr(ncol,kte+1) = cfc22vmr(ncol,kte) ccl4vmr(ncol,kte+1) = ccl4vmr(ncol,kte) endif ! Set up values for extra layers to the top of the atmosphere. ! Temperature is calculated based on an average temperature profile given ! here in a table. The input table data is linearly interpolated to the ! column pressure. Mixing ratios are held constant except for ozone. ! Caution should be used if model top pressure is less than 5 hPa. ! Steven Cavallo, NCAR/MMM, December 2010 ! Calculate the column pressure buffer levels above the ! model top do L=kte+1,nlayers,1 plev(ncol,L+1) = plev(ncol,L) - deltap play(ncol,L) = 0.5*(plev(ncol,L) + plev(ncol,L+1)) ! Fill in height array above model top to top of atmosphere using ! dz from model top layer for completeness, though this information is not ! likely to be used by the exponential-random cloud overlap method. hgt(ncol,L) = dzsum + 0.5*dz dzsum = dzsum + dz enddo ! Add zero as top level. This gets the temperature max at the ! stratopause, reducing the downward flux errors in the top ! levels. If zero happened to be the top level already, ! this will add another level with zero, but will not affect ! the radiative transfer calculation. plev(ncol,nlayers+1) = 0.00 play(ncol,nlayers) = 0.5*(plev(ncol,nlayers) + plev(ncol,nlayers+1)) ! Interpolate the table temperatures to column pressure levels do L=1,nlayers+1,1 if ( PPROF(nproflevs) .lt. plev(ncol,L) ) then do LL=2,nproflevs,1 if ( PPROF(LL) .lt. plev(ncol,L) ) then klev = LL - 1 exit endif enddo else klev = nproflevs endif if (klev .ne. nproflevs ) then vark = TPROF(klev) vark1 = TPROF(klev+1) wght=(plev(ncol,L)-PPROF(klev) )/( PPROF(klev+1)-PPROF(klev)) else vark = TPROF(klev) vark1 = TPROF(klev) wght = 0.0 endif varint(L) = wght*(vark1-vark)+vark enddo ! Match the interpolated table temperature profile to WRF column do L=kte+1,nlayers+1,1 tlev(ncol,L) = varint(L) + (tlev(ncol,kte) - varint(kte)) !if ( L .le. nlay ) then tlay(ncol,L-1) = 0.5*(tlev(ncol,L) + tlev(ncol,L-1)) !endif enddo ! Now the chemical species (except for ozone) do L=kte+1,nlayers,1 h2ovmr(ncol,L) = h2ovmr(ncol,kte) co2vmr(ncol,L) = co2vmr(ncol,kte) o2vmr(ncol,L) = o2vmr(ncol,kte) ch4vmr(ncol,L) = ch4vmr(ncol,kte) n2ovmr(ncol,L) = n2ovmr(ncol,kte) cfc11vmr(ncol,L) = cfc11vmr(ncol,kte) cfc12vmr(ncol,L) = cfc12vmr(ncol,kte) cfc22vmr(ncol,L) = cfc22vmr(ncol,kte) ccl4vmr(ncol,L) = ccl4vmr(ncol,kte) enddo ! End top of model buffer !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Get ozone profile including amount in extra layer above model top. ! Steven Cavallo: Must pass nlay-1 into subroutine to get nlayers ! dimension for o3mmr call inirad (o3mmr,plev,kts,nlay-1) ! Steven Cavallo: Changed to nlayers from kte+1 if(present(o33d)) then do k = kts, nlayers o3vmr(ncol,k) = o3mmr(k) * amdo IF ( PRESENT( O33D ) ) THEN if(o3input .eq. 2)then if(k.le.kte)then o3vmr(ncol,k) = o31d(k) else ! apply shifted climatology profile above model top o3vmr(ncol,k) = o31d(kte) - o3mmr(kte)*amdo + o3mmr(k)*amdo if(o3vmr(ncol,k) .le. 0.)o3vmr(ncol,k) = o3mmr(k)*amdo endif endif ENDIF enddo else do k = kts, nlayers o3vmr(ncol,k) = o3mmr(k) * amdo enddo endif ! Set surface emissivity in each RRTMG longwave band do nb = 1, nbndlw emis(ncol, nb) = emiss(i,j) enddo ! Define cloud optical properties for radiation (inflglw = 0) ! This is approach used with older RRTM_LW; ! Cloud and precipitation paths in g/m2 ! qi=0 if no ice phase ! qs=0 if no ice phase if (inflglw .eq. 0) then do k = kts,kte ro = p1d(k) / (r * t1d(k))*100. dz = dz1d(k) clwp(k) = ro*qc1d(k)*dz*1000. ciwp(k) = ro*qi1d(k)*dz*1000. plwp(k) = (ro*qr1d(k))**0.75*dz*1000. piwp(k) = (ro*qs1d(k))**0.75*dz*1000. enddo ! Cloud fraction and cloud optical depth; old approach used with RRTM_LW do k = kts, kte cldfrac(ncol,k) = cldfra1d(k) do nb = 1, nbndlw taucld(nb,ncol,k) = abcw*clwp(k) + abice*ciwp(k) & +abrn*plwp(k) + absn*piwp(k) if (taucld(nb,ncol,k) .gt. 0.01) cldfrac(ncol,k) = 1. enddo enddo ! Zero out cloud physical property arrays; not used when passing optical properties ! into radiation do k = kts, kte clwpth(ncol,k) = 0.0 ciwpth(ncol,k) = 0.0 rel(ncol,k) = 10.0 rei(ncol,k) = 10.0 enddo endif ! Define cloud physical properties for radiation (inflglw = 1 or 2) ! Cloud fraction ! Set cloud arrays if passing cloud physical properties into radiation if (inflglw .gt. 0) then do k = kts, kte cldfrac(ncol,k) = cldfra1d(k) enddo ! Compute cloud water/ice paths and particle sizes for input to radiation (CAM method) pcols = ncol pver = kte - kts + 1 gravmks = g landfrac(ncol) = 2.-XLAND(I,J) landm(ncol) = landfrac(ncol) snowh(ncol) = 0.001*SNOW(I,J) icefrac(ncol) = XICE(I,J) ! From module_ra_cam: Convert liquid and ice mixing ratios to water paths; ! pdel is in mb here; convert back to Pa (*100.) ! Water paths are in units of g/m2 ! snow added as ice cloud (JD 091022) do k = kts, kte gicewp = (qi1d(k)+qs1d(k)) * pdel(ncol,k)*100.0 / gravmks * 1000.0 ! Grid box ice water path. gliqwp = qc1d(k) * pdel(ncol,k)*100.0 / gravmks * 1000.0 ! Grid box liquid water path. cicewp(ncol,k) = gicewp / max(0.01,cldfrac(ncol,k)) ! In-cloud ice water path. cliqwp(ncol,k) = gliqwp / max(0.01,cldfrac(ncol,k)) ! In-cloud liquid water path. end do ! Mukul !..The ice water path is already sum of cloud ice and snow, but when we have explicit !.. ice effective radius, overwrite the ice path with only the cloud ice variable, !.. leaving out the snow for its own effect. if(iceflglw.ge.4)then do k = kts, kte gicewp = qi1d(k) * pdel(ncol,k)*100.0 / gravmks * 1000.0 ! Grid box ice water path. cicewp(ncol,k) = gicewp / max(0.01,cldfrac(ncol,k)) ! In-cloud ice water path. end do end if !..Here the snow path is adjusted if (radiation) effective radius of snow is !.. larger than what we currently have in the lookup tables. Since mass goes !.. rather close to diameter squared, adjust the mixing ratio of snow used !.. to compute its water path in combination with the max diameter. Not a !.. perfect fix, but certainly better than using all snow mass when diameter is !.. far larger than table currently contains and crystal sizes much larger than !.. about 140 microns have lesser impact than those much smaller sizes. if(iceflglw.eq.5)then do k = kts, kte snow_mass_factor = 1.0 if (resnow1d(ncol,k) .gt. 130.)then snow_mass_factor = (130.0/resnow1d(ncol,k))*(130.0/resnow1d(ncol,k)) resnow1d(ncol,k) = 130.0 IF ( wrf_dm_on_monitor() ) THEN WRITE(message,*)'RRTMG: reducing snow mass (cloud path) to ', & nint(snow_mass_factor*100.), ' percent of full value' call wrf_debug(150, message) ENDIF endif gsnowp = qs1d(k) * snow_mass_factor * pdel(ncol,k)*100.0 / gravmks * 1000.0 ! Grid box snow water path. csnowp(ncol,k) = gsnowp / max(0.01,cldfrac(ncol,k)) end do end if !link the aerosol feedback to cloud -czhao if( PRESENT( progn ) ) then if (progn == 1) then !jdfcz if(prescribe==0) then pi = 4.*atan(1.0) third=1./3. rhoh2o=1.e3 relconst=3/(4.*pi*rhoh2o) ! minimun liquid water path to calculate rel ! corresponds to optical depth of 1.e-3 for radius 4 microns. lwpmin=3.e-5 do k = kts, kte reliq(ncol,k) = 10. if( PRESENT( F_QNDROP ) ) then if( F_QNDROP ) then if ( qc1d(k)*pdel(ncol,k).gt.lwpmin.and. & qndrop1d(k).gt.1000. ) then reliq(ncol,k)=(relconst*qc1d(k)/qndrop1d(k))**third ! effective radius in m ! apply scaling from Martin et al., JAS 51, 1830. reliq(ncol,k)=1.1*reliq(ncol,k) reliq(ncol,k)=reliq(ncol,k)*1.e6 ! convert from m to microns reliq(ncol,k)=max(reliq(ncol,k),4.) reliq(ncol,k)=min(reliq(ncol,k),20.) end if end if end if end do !jdfcz else ! prescribe ! following Kiehl ! call relcalc(ncol, pcols, pver, tlay, landfrac, landm, icefrac, reliq, snowh) ! write(0,*) 'lw prescribe aerosol',maxval(qndrop3d) !jdfcz endif else ! progn call relcalc(ncol, pcols, pver, tlay, landfrac, landm, icefrac, reliq, snowh) endif else !present(progn) call relcalc(ncol, pcols, pver, tlay, landfrac, landm, icefrac, reliq, snowh) endif ! following Kristjansson and Mitchell call reicalc(ncol, pcols, pver, tlay, reice) !..If we already have effective radius of cloud and ice, then just overwrite what !.. was computed in the relcalc and reicalc subroutines above. if (inflglw .ge. 3) then do k = kts, kte reliq(ncol,k) = recloud1d(ncol,k) end do endif #if (EM_CORE==1) if (iceflglw .ge. 4) then #else if (iceflglw .ge. 3) then !BSF: was .ge. 4 #endif do k = kts, kte reice(ncol,k) = reice1d(ncol,k) end do endif ! Limit upper bound of reice for Fu ice parameterization and convert ! from effective radius to generalized effective size (*1.0315; Fu, 1996) if (iceflglw .eq. 3) then do k = kts, kte reice(ncol,k) = reice(ncol,k) * 1.0315 reice(ncol,k) = min(140.0,reice(ncol,k)) end do endif !if CAMMGMP is used, use output from CAMMGMP if(is_CAMMGMP_used) then do k = kts, kte if ( qi1d(k) .gt. 1.e-20 .or. qs1d(k) .gt. 1.e-20) then reice(ncol,k) = iradius(i,k,j) else reice(ncol,k) = 25. end if reice(ncol,k) = max(5., min(140.0,reice(ncol,k))) if ( qc1d(k) .gt. 1.e-20) then reliq(ncol,k) = lradius(i,k,j) else reliq(ncol,k) = 10. end if reliq(ncol,k) = max(2.5, min(60.0,reliq(ncol,k))) enddo endif ! Set cloud physical property arrays do k = kts, kte clwpth(ncol,k) = cliqwp(ncol,k) ciwpth(ncol,k) = cicewp(ncol,k) rel(ncol,k) = reliq(ncol,k) rei(ncol,k) = reice(ncol,k) enddo !Mukul if (inflglw .eq. 5) then do k = kts, kte cswpth(ncol,k) = csnowp(ncol,k) res(ncol,k) = resnow1d(ncol,k) end do else do k = kts, kte cswpth(ncol,k) = 0. res(ncol,k) = 10. end do endif ! Zero out cloud optical properties here; not used when passing physical properties ! to radiation and taucld is calculated in radiation do k = kts, kte do nb = 1, nbndlw taucld(nb,ncol,k) = 0.0 enddo enddo endif ! No clouds are allowed in the extra layer from model top to TOA ! Steven Cavallo: Edited out for buffer adjustment below if ( 1 == 0 ) then clwpth(ncol,kte+1) = 0. ciwpth(ncol,kte+1) = 0. cswpth(ncol,kte+1) = 0. rel(ncol,kte+1) = 10. rei(ncol,kte+1) = 10. res(ncol,kte+1) = 10. cldfrac(ncol,kte+1) = 0. do nb = 1, nbndlw taucld(nb,ncol,kte+1) = 0. enddo endif ! Buffer adjustment. Steven Cavallo December 2010 do k=kte+1,nlayers clwpth(ncol,k) = 0. ciwpth(ncol,k) = 0. cswpth(ncol,k) = 0. rel(ncol,k) = 10. rei(ncol,k) = 10. res(ncol,k) = 10. cldfrac(ncol,k) = 0. do nb = 1,nbndlw taucld(nb,ncol,k) = 0. enddo enddo iplon = 1 irng = 0 permuteseed = 150 ! Sub-column generator for McICA call mcica_subcol_lw(iplon, ncol, nlay, icld, permuteseed, irng, play, hgt, & cldfrac, ciwpth, clwpth, cswpth, rei, rel, res, taucld, cldfmcl, & ciwpmcl, clwpmcl, cswpmcl, reicmcl, relqmcl, resnmcl, taucmcl) !-------------------------------------------------------------------------- ! Aerosol optical depth, single scattering albedo and asymmetry parameter -czhao 03/2010 !-------------------------------------------------------------------------- ! Aerosol optical depth by layer for each RRTMG longwave band ! No aerosols in layer above model top (kte+1) ! Steven Cavallo: Upper bound of loop changed to nlayers from kte+1 ! do nb = 1, nbndlw ! do k = kts, kte+1 ! tauaer(ncol,k,nb) = 0. ! enddo ! enddo ! ... Aerosol effects. Added aerosol feedbacks from Chem , 03/2010 -czhao ! do nb = 1, nbndlw do k = kts,nlayers tauaer(ncol,k,nb) = 0. end do end do #if ( WRF_CHEM == 1 ) IF ( AER_RA_FEEDBACK == 1) then ! do nb = 1, nbndlw do k = kts,kte !wig if(tauaerlw1(i,k,j).gt.thresh .and. tauaerlw16(i,k,j).gt.thresh) then tauaer(ncol,k,1)=tauaerlw1(i,k,j) tauaer(ncol,k,2)=tauaerlw2(i,k,j) tauaer(ncol,k,3)=tauaerlw3(i,k,j) tauaer(ncol,k,4)=tauaerlw4(i,k,j) tauaer(ncol,k,5)=tauaerlw5(i,k,j) tauaer(ncol,k,6)=tauaerlw6(i,k,j) tauaer(ncol,k,7)=tauaerlw7(i,k,j) tauaer(ncol,k,8)=tauaerlw8(i,k,j) tauaer(ncol,k,9)=tauaerlw9(i,k,j) tauaer(ncol,k,10)=tauaerlw10(i,k,j) tauaer(ncol,k,11)=tauaerlw11(i,k,j) tauaer(ncol,k,12)=tauaerlw12(i,k,j) tauaer(ncol,k,13)=tauaerlw13(i,k,j) tauaer(ncol,k,14)=tauaerlw14(i,k,j) tauaer(ncol,k,15)=tauaerlw15(i,k,j) tauaer(ncol,k,16)=tauaerlw16(i,k,j) endif enddo ! k ! end do ! nb !wig beg do nb = 1, nbndlw slope = 0. !use slope as a sum holder do k = kts,kte slope = slope + tauaer(ncol,k,nb) end do if( slope < 0. ) then write(msg,'("ERROR: Negative total lw optical depth of ",f8.2," at point i,j,nb=",3i5)') slope,i,j,nb call wrf_error_fatal(msg) else if( slope > 5. ) then call wrf_message("-------------------------") write(msg,'("WARNING: Large total lw optical depth of ",f8.2," at point i,j,nb=",3i5)') slope,i,j,nb call wrf_message(msg) call wrf_message("Diagnostics 1: k, tauaerlw1, tauaerlw16") do k=kts,kte write(msg,'(i4,2f8.2)') k, tauaerlw1(i,k,j), tauaerlw16(i,k,j) call wrf_message(msg) end do call wrf_message("-------------------------") endif enddo ! nb endif ! aer_ra_feedback #endif ! Call RRTMG longwave radiation model call rrtmg_lw & (ncol ,nlay ,icld , & play ,plev ,tlay ,tlev ,tsfc , & h2ovmr ,o3vmr ,co2vmr ,ch4vmr ,n2ovmr ,o2vmr , & cfc11vmr,cfc12vmr,cfc22vmr,ccl4vmr ,emis , & inflglw ,iceflglw,liqflglw,cldfmcl , & taucmcl ,ciwpmcl ,clwpmcl ,cswpmcl, reicmcl ,relqmcl ,resnmcl , & tauaer , & uflx ,dflx ,hr ,uflxc ,dflxc, hrc, & uflxcln ,dflxcln, calc_clean_atm_diag ) ! Output downard surface flux, and outgoing longwave flux and cloud forcing ! at the top of atmosphere (W/m2) glw(i,j) = dflx(1,1) ! olr(i,j) = uflx(1,kte+2) ! lwcf(i,j) = uflxc(1,kte+2) - uflx(1,kte+2) ! Steven Cavallo: Changed OLR to be valid at the top of atmosphere instead ! of top of model. Dec 2010. olr(i,j) = uflx(1,nlayers+1) lwcf(i,j) = uflxc(1,nlayers+1) - uflx(1,nlayers+1) if (present(lwupt)) then ! Output up and down toa fluxes for total and clear sky ! nlayers+1 represents value at 0 mb lwupt(i,j) = uflx(1,nlayers+1) lwuptc(i,j) = uflxc(1,nlayers+1) lwdnt(i,j) = dflx(1,nlayers+1) lwdntc(i,j) = dflxc(1,nlayers+1) ! Output up and down surface fluxes for total and clear sky lwupb(i,j) = uflx(1,1) lwupbc(i,j) = uflxc(1,1) lwdnb(i,j) = dflx(1,1) lwdnbc(i,j) = dflxc(1,1) if(calc_clean_atm_diag .gt. 0)then ! Output up and down toa fluxes for clean sky lwuptcln(i,j) = uflxcln(1,nlayers+1) lwdntcln(i,j) = dflxcln(1,nlayers+1) ! Output up and down surface fluxes for clean sky lwupbcln(i,j) = uflxcln(1,1) lwdnbcln(i,j) = dflxcln(1,1) end if endif ! Output up and down layer fluxes for total and clear sky. ! Vertical ordering is from bottom to top in units of W m-2. if ( present (lwupflx) ) then do k=kts,kte+2 lwupflx(i,k,j) = uflx(1,k) lwupflxc(i,k,j) = uflxc(1,k) lwdnflx(i,k,j) = dflx(1,k) lwdnflxc(i,k,j) = dflxc(1,k) enddo endif ! Output heating rate tendency; convert heating rate from K/d to K/s ! Heating rate arrays are ordered vertically from bottom to top here. do k=kts,kte tten1d(k) = hr(ncol,k)/86400. rthratenlw(i,k,j) = tten1d(k)/pi3d(i,k,j) enddo ! end do i_loop end do j_loop !------------------------------------------------------------------- END SUBROUTINE RRTMG_LWRAD !------------------------------------------------------------------------- SUBROUTINE INIRAD (O3PROF,Plev, kts, kte) !------------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------------- INTEGER, INTENT(IN ) :: kts,kte REAL, DIMENSION( kts:kte+1 ),INTENT(INOUT) :: O3PROF REAL, DIMENSION( kts:kte+2 ),INTENT(IN ) :: Plev ! LOCAL VAR INTEGER :: k ! ! COMPUTE OZONE MIXING RATIO DISTRIBUTION ! DO K=kts,kte+1 O3PROF(K)=0. ENDDO CALL O3DATA(O3PROF, Plev, kts, kte) END SUBROUTINE INIRAD !------------------------------------------------------------------------- SUBROUTINE O3DATA (O3PROF, Plev, kts, kte) !------------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------------- ! INTEGER, INTENT(IN ) :: kts, kte ! REAL, DIMENSION( kts:kte+1 ),INTENT(INOUT) :: O3PROF REAL, DIMENSION( kts:kte+2 ),INTENT(IN ) :: Plev ! LOCAL VAR INTEGER :: K, JJ REAL :: PRLEVH(kts:kte+2),PPWRKH(32), & O3WRK(31),PPWRK(31),O3SUM(31),PPSUM(31), & O3WIN(31),PPWIN(31),O3ANN(31),PPANN(31) REAL :: PB1, PB2, PT1, PT2 DATA O3SUM /5.297E-8,5.852E-8,6.579E-8,7.505E-8, & 8.577E-8,9.895E-8,1.175E-7,1.399E-7,1.677E-7,2.003E-7, & 2.571E-7,3.325E-7,4.438E-7,6.255E-7,8.168E-7,1.036E-6, & 1.366E-6,1.855E-6,2.514E-6,3.240E-6,4.033E-6,4.854E-6, & 5.517E-6,6.089E-6,6.689E-6,1.106E-5,1.462E-5,1.321E-5, & 9.856E-6,5.960E-6,5.960E-6/ DATA PPSUM /955.890,850.532,754.599,667.742,589.841, & 519.421,455.480,398.085,347.171,301.735,261.310,225.360, & 193.419,165.490,141.032,120.125,102.689, 87.829, 75.123, & 64.306, 55.086, 47.209, 40.535, 34.795, 29.865, 19.122, & 9.277, 4.660, 2.421, 1.294, 0.647/ ! DATA O3WIN /4.629E-8,4.686E-8,5.017E-8,5.613E-8, & 6.871E-8,8.751E-8,1.138E-7,1.516E-7,2.161E-7,3.264E-7, & 4.968E-7,7.338E-7,1.017E-6,1.308E-6,1.625E-6,2.011E-6, & 2.516E-6,3.130E-6,3.840E-6,4.703E-6,5.486E-6,6.289E-6, & 6.993E-6,7.494E-6,8.197E-6,9.632E-6,1.113E-5,1.146E-5, & 9.389E-6,6.135E-6,6.135E-6/ DATA PPWIN /955.747,841.783,740.199,649.538,568.404, & 495.815,431.069,373.464,322.354,277.190,237.635,203.433, & 174.070,148.949,127.408,108.915, 93.114, 79.551, 67.940, & 58.072, 49.593, 42.318, 36.138, 30.907, 26.362, 16.423, & 7.583, 3.620, 1.807, 0.938, 0.469/ ! DO K=1,31 PPANN(K)=PPSUM(K) ENDDO ! O3ANN(1)=0.5*(O3SUM(1)+O3WIN(1)) ! DO K=2,31 O3ANN(K)=O3WIN(K-1)+(O3WIN(K)-O3WIN(K-1))/(PPWIN(K)-PPWIN(K-1))* & (PPSUM(K)-PPWIN(K-1)) ENDDO ! DO K=2,31 O3ANN(K)=0.5*(O3ANN(K)+O3SUM(K)) ENDDO ! DO K=1,31 O3WRK(K)=O3ANN(K) PPWRK(K)=PPANN(K) ENDDO ! ! CALCULATE HALF PRESSURE LEVELS FOR MODEL AND DATA LEVELS ! ! Plev is total P at model levels, from bottom to top ! Plev is in mb DO K=kts,kte+2 PRLEVH(K)=Plev(K) ENDDO ! PPWRKH(1)=1100. DO K=2,31 PPWRKH(K)=(PPWRK(K)+PPWRK(K-1))/2. ENDDO PPWRKH(32)=0. DO K=kts,kte+1 DO 25 JJ=1,31 IF((-(PRLEVH(K)-PPWRKH(JJ))).GE.0.)THEN PB1=0. ELSE PB1=PRLEVH(K)-PPWRKH(JJ) ENDIF IF((-(PRLEVH(K)-PPWRKH(JJ+1))).GE.0.)THEN PB2=0. ELSE PB2=PRLEVH(K)-PPWRKH(JJ+1) ENDIF IF((-(PRLEVH(K+1)-PPWRKH(JJ))).GE.0.)THEN PT1=0. ELSE PT1=PRLEVH(K+1)-PPWRKH(JJ) ENDIF IF((-(PRLEVH(K+1)-PPWRKH(JJ+1))).GE.0.)THEN PT2=0. ELSE PT2=PRLEVH(K+1)-PPWRKH(JJ+1) ENDIF O3PROF(K)=O3PROF(K)+(PB2-PB1-PT2+PT1)*O3WRK(JJ) 25 CONTINUE O3PROF(K)=O3PROF(K)/(PRLEVH(K)-PRLEVH(K+1)) ENDDO ! END SUBROUTINE O3DATA !------------------------------------------------------------------ !==================================================================== SUBROUTINE rrtmg_lwinit( & p_top, allowed_to_read , & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !-------------------------------------------------------------------- IMPLICIT NONE !-------------------------------------------------------------------- LOGICAL , INTENT(IN) :: allowed_to_read INTEGER , INTENT(IN) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte REAL, INTENT(IN) :: p_top ! Steven Cavallo. Added for buffer layer adjustment. December 2010. NLAYERS = kme + nint(p_top*0.01/deltap)- 1 ! Model levels plus new levels. ! nlayers will subsequently ! replace kte+1 ! Read in absorption coefficients and other data IF ( allowed_to_read ) THEN CALL rrtmg_lwlookuptable ENDIF ! Perform g-point reduction and other initializations ! Specific heat of dry air (cp) used in flux to heating rate conversion factor. call rrtmg_lw_ini(cp) END SUBROUTINE rrtmg_lwinit ! ************************************************************************** SUBROUTINE rrtmg_lwlookuptable ! ************************************************************************** IMPLICIT NONE ! Local INTEGER :: i LOGICAL :: opened LOGICAL , EXTERNAL :: wrf_dm_on_monitor CHARACTER*80 errmess INTEGER rrtmg_unit IF ( wrf_dm_on_monitor() ) THEN DO i = 10,99 INQUIRE ( i , OPENED = opened ) IF ( .NOT. opened ) THEN rrtmg_unit = i GOTO 2010 ENDIF ENDDO rrtmg_unit = -1 2010 CONTINUE ENDIF CALL wrf_dm_bcast_bytes ( rrtmg_unit , IWORDSIZE ) IF ( rrtmg_unit < 0 ) THEN CALL wrf_error_fatal ( 'module_ra_rrtmg_lw: rrtm_lwlookuptable: Can not '// & 'find unused fortran unit to read in lookup table.' ) ENDIF IF ( wrf_dm_on_monitor() ) THEN OPEN(rrtmg_unit,FILE='RRTMG_LW_DATA', & FORM='UNFORMATTED',STATUS='OLD',ERR=9009) ENDIF call lw_kgb01(rrtmg_unit) call lw_kgb02(rrtmg_unit) call lw_kgb03(rrtmg_unit) call lw_kgb04(rrtmg_unit) call lw_kgb05(rrtmg_unit) call lw_kgb06(rrtmg_unit) call lw_kgb07(rrtmg_unit) call lw_kgb08(rrtmg_unit) call lw_kgb09(rrtmg_unit) call lw_kgb10(rrtmg_unit) call lw_kgb11(rrtmg_unit) call lw_kgb12(rrtmg_unit) call lw_kgb13(rrtmg_unit) call lw_kgb14(rrtmg_unit) call lw_kgb15(rrtmg_unit) call lw_kgb16(rrtmg_unit) IF ( wrf_dm_on_monitor() ) CLOSE (rrtmg_unit) RETURN 9009 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error opening RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) END SUBROUTINE rrtmg_lwlookuptable ! ************************************************************************** ! RRTMG Longwave Radiative Transfer Model ! Atmospheric and Environmental Research, Inc., Cambridge, MA ! ! Original version: E. J. Mlawer, et al. ! Revision for GCMs: Michael J. Iacono; October, 2002 ! Revision for F90 formatting: Michael J. Iacono; June 2006 ! ! This file contains 16 READ statements that include the ! absorption coefficients and other data for each of the 16 longwave ! spectral bands used in RRTMG_LW. Here, the data are defined for 16 ! g-points, or sub-intervals, per band. These data are combined and ! weighted using a mapping procedure in module RRTMG_LW_INIT to reduce ! the total number of g-points from 256 to 140 for use in the GCM. ! ************************************************************************** ! ************************************************************************** subroutine lw_kgb01(rrtmg_unit) ! ************************************************************************** use rrlw_kg01, only : fracrefao, fracrefbo, kao, kbo, kao_mn2, kbo_mn2, & absa, absb, & selfrefo, forrefo implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: P = 212.7250 mbar, T = 223.06 K ! The array KAO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The arrays kao_mn2 and kbo_mn2 contain the coefficients of the ! nitrogen continuum for the upper and lower atmosphere. ! Minor gas mapping levels: ! Lower - n2: P = 142.5490 mbar, T = 215.70 K ! Upper - n2: P = 142.5490 mbar, T = 215.70 K ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, fracrefbo, kao, kbo, kao_mn2, kbo_mn2, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(fracrefbo) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kbo) DM_BCAST_MACRO(kao_mn2) DM_BCAST_MACRO(kbo_mn2) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb01 ! ************************************************************************** subroutine lw_kgb02(rrtmg_unit) ! ************************************************************************** use rrlw_kg02, only : fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 1053.630 mbar, T = 294.2 K ! Upper: P = 3.206e-2 mb, T = 197.92 K ! The array KAO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(fracrefbo) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kbo) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb02 ! ************************************************************************** subroutine lw_kgb03(rrtmg_unit) ! ************************************************************************** use rrlw_kg03, only : fracrefao, fracrefbo, kao, kbo, kao_mn2o, & kbo_mn2o, selfrefo, forrefo implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 212.7250 mbar, T = 223.06 K ! Upper: P = 95.8 mbar, T = 215.7 k ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The third index ! runs over the g-channel (1 to 16). ! The array KBO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level above 100~ mb. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amounts ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 to ! that of gas2. The second index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The third index ! runs over the g-channel (1 to 16). ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, fracrefbo, kao, kbo, kao_mn2o, kbo_mn2o, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(fracrefbo) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kbo) DM_BCAST_MACRO(kao_mn2o) DM_BCAST_MACRO(kbo_mn2o) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb03 ! ************************************************************************** subroutine lw_kgb04(rrtmg_unit) ! ************************************************************************** use rrlw_kg04, only : fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower : P = 142.5940 mbar, T = 215.70 K ! Upper : P = 95.58350 mb, T = 215.70 K ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KBO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels < ~100mb, temperatures, and ratios ! of H2O to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index, JT, which ! runs from 1 to 5, corresponds to different temperatures. More ! specifically, JT = 3 means that the data are for the corresponding ! reference temperature TREF for this pressure level, JT = 2 refers ! to the TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and ! JT = 5 is for TREF+30. The third index, JP, runs from 13 to 59 and ! refers to the corresponding pressure level in PREF (e.g. JP = 13 is ! for a pressure of 95.5835 mb). The fourth index, IG, goes from 1 to ! 16, and tells us which g-interval the absorption coefficients are for. ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(fracrefbo) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kbo) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb04 ! ************************************************************************** subroutine lw_kgb05(rrtmg_unit) ! ************************************************************************** use rrlw_kg05, only : fracrefao, fracrefbo, kao, kbo, kao_mo3, & selfrefo, forrefo, ccl4o implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 473.42 mb, T = 259.83 ! Upper: P = 0.2369280 mbar, T = 253.60 K ! The arrays kao_mo3 and ccl4o contain the coefficients for ! ozone and ccl4 in the lower atmosphere. ! Minor gas mapping level: ! Lower - o3: P = 317.34 mbar, T = 240.77 k ! Lower - ccl4: ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KBO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels < ~100mb, temperatures, and ratios ! of H2O to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index, JT, which ! runs from 1 to 5, corresponds to different temperatures. More ! specifically, JT = 3 means that the data are for the corresponding ! reference temperature TREF for this pressure level, JT = 2 refers ! to the TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and ! JT = 5 is for TREF+30. The third index, JP, runs from 13 to 59 and ! refers to the corresponding pressure level in PREF (e.g. JP = 13 is ! for a pressure of 95.5835 mb). The fourth index, IG, goes from 1 to ! 16, and tells us which g-interval the absorption coefficients are for. ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The third index ! runs over the g-channel (1 to 16). ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, fracrefbo, kao, kbo, kao_mo3, ccl4o, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(fracrefbo) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kbo) DM_BCAST_MACRO(kao_mo3) DM_BCAST_MACRO(ccl4o) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb05 ! ************************************************************************** subroutine lw_kgb06(rrtmg_unit) ! ************************************************************************** use rrlw_kg06 ! use rrlw_kg06, only : fracrefao, kao, kao_mco2, selfrefo, forrefo, & ! cfc11adjo, cfc12o implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: : P = 473.4280 mb, T = 259.83 K ! The arrays kao_mco2, cfc11adjo and cfc12o contain the coefficients for ! carbon dioxide in the lower atmosphere and cfc11 and cfc12 in the upper ! atmosphere. ! Original cfc11 is multiplied by 1.385 to account for the 1060-1107 cm-1 band. ! Minor gas mapping level: ! Lower - co2: P = 706.2720 mb, T = 294.2 k ! Upper - cfc11, cfc12 ! The array KAO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, kao, kao_mco2, cfc11adjo, cfc12o, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kao_mco2) DM_BCAST_MACRO(cfc11adjo) DM_BCAST_MACRO(cfc12o) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb06 ! ************************************************************************** subroutine lw_kgb07(rrtmg_unit) ! ************************************************************************** use rrlw_kg07, only : fracrefao, fracrefbo, kao, kbo, kao_mco2, & kbo_mco2, selfrefo, forrefo implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower : P = 706.27 mb, T = 278.94 K ! Upper : P = 95.58 mbar, T= 215.70 K ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The third index ! runs over the g-channel (1 to 16). ! The array KBO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level above 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296_rb,260_rb,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, fracrefbo, kao, kbo, kao_mco2, kbo_mco2, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(fracrefbo) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kbo) DM_BCAST_MACRO(kao_mco2) DM_BCAST_MACRO(kbo_mco2) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb07 ! ************************************************************************** subroutine lw_kgb08(rrtmg_unit) ! ************************************************************************** use rrlw_kg08, only : fracrefao, fracrefbo, kao, kao_mco2, kao_mn2o, & kao_mo3, kbo, kbo_mco2, kbo_mn2o, selfrefo, forrefo, & cfc12o, cfc22adjo implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P=473.4280 mb, T = 259.83 K ! Upper: P=95.5835 mb, T= 215.7 K ! The arrays kao_mco2, kbo_mco2, kao_mn2o, kbo_mn2o contain the coefficients for ! carbon dioxide and n2o in the lower and upper atmosphere. ! The array kao_mo3 contains the coefficients for ozone in the lower atmosphere, ! and arrays cfc12o and cfc12adjo contain the coefficients for cfc12 and cfc22. ! Original cfc22 is multiplied by 1.485 to account for the 780-850 cm-1 ! and 1290-1335 cm-1 bands. ! Minor gas mapping level: ! Lower - co2: P = 1053.63 mb, T = 294.2 k ! Lower - o3: P = 317.348 mb, T = 240.77 k ! Lower - n2o: P = 706.2720 mb, T= 278.94 k ! Lower - cfc12, cfc22 ! Upper - co2: P = 35.1632 mb, T = 223.28 k ! Upper - n2o: P = 8.716e-2 mb, T = 226.03 k ! The array KAO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! The array KBO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level above 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, fracrefbo, kao, kbo, kao_mco2, kbo_mco2, kao_mn2o, & kbo_mn2o, kao_mo3, cfc12o, cfc22adjo, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(fracrefbo) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kbo) DM_BCAST_MACRO(kao_mco2) DM_BCAST_MACRO(kbo_mco2) DM_BCAST_MACRO(kao_mn2o) DM_BCAST_MACRO(kbo_mn2o) DM_BCAST_MACRO(kao_mo3) DM_BCAST_MACRO(cfc12o) DM_BCAST_MACRO(cfc22adjo) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb08 ! ************************************************************************** subroutine lw_kgb09(rrtmg_unit) ! ************************************************************************** use rrlw_kg09, only : fracrefao, fracrefbo, kao, kbo, kao_mn2o, & kbo_mn2o, selfrefo, forrefo implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P=212.7250 mb, T = 223.06 K ! Upper: P=3.20e-2 mb, T = 197.92 k ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The third index ! runs over the g-channel (1 to 16). ! The array KBO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level above 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, fracrefbo, kao, kbo, kao_mn2o, kbo_mn2o, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(fracrefbo) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kbo) DM_BCAST_MACRO(kao_mn2o) DM_BCAST_MACRO(kbo_mn2o) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb09 ! ************************************************************************** subroutine lw_kgb10(rrtmg_unit) ! ************************************************************************** use rrlw_kg10, only : fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 212.7250 mb, T = 223.06 K ! Upper: P = 95.58350 mb, T = 215.70 K ! The array KAO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(fracrefbo) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kbo) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb10 ! ************************************************************************** subroutine lw_kgb11(rrtmg_unit) ! ************************************************************************** use rrlw_kg11, only : fracrefao, fracrefbo, kao, kbo, kao_mo2, & kbo_mo2, selfrefo, forrefo implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P=1053.63 mb, T= 294.2 K ! Upper: P=0.353 mb, T = 262.11 K ! The array KAO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels > ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the corresponding TREF for this pressure level, ! JT = 2 refers to the temperatureTREF-15, JT = 1 is for TREF-30, ! JT = 4 is for TREF+15, and JT = 5 is for TREF+30. The second ! index, JP, runs from 1 to 13 and refers to the corresponding ! pressure level in PREF (e.g. JP = 1 is for a pressure of 1053.63 mb). ! The third index, IG, goes from 1 to 16, and tells us which ! g-interval the absorption coefficients are for. ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! The array KBO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level above 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, fracrefbo, kao, kbo, kao_mo2, kbo_mo2, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(fracrefbo) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kbo) DM_BCAST_MACRO(kao_mo2) DM_BCAST_MACRO(kbo_mo2) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb11 ! ************************************************************************** subroutine lw_kgb12(rrtmg_unit) ! ************************************************************************** use rrlw_kg12, only : fracrefao, kao, selfrefo, forrefo implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 174.1640 mbar, T= 215.78 K ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, kao, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb12 ! ************************************************************************** subroutine lw_kgb13(rrtmg_unit) ! ************************************************************************** use rrlw_kg13, only : fracrefao, fracrefbo, kao, kao_mco2, kao_mco, & kbo_mo3, selfrefo, forrefo implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P=473.4280 mb, T = 259.83 K ! Upper: P=4.758820 mb, T = 250.85 K ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KAO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The third index ! runs over the g-channel (1 to 16). ! The array KBO_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level above 100~ mb. The first index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The second index ! runs over the g-channel (1 to 16). ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, fracrefbo, kao, kao_mco2, kao_mco, kbo_mo3, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(fracrefbo) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kao_mco2) DM_BCAST_MACRO(kao_mco) DM_BCAST_MACRO(kbo_mo3) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb13 ! ************************************************************************** subroutine lw_kgb14(rrtmg_unit) ! ************************************************************************** use rrlw_kg14, only : fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 142.5940 mb, T = 215.70 K ! Upper: P = 4.758820 mb, T = 250.85 K ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(fracrefbo) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kbo) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb14 ! ************************************************************************** subroutine lw_kgb15(rrtmg_unit) ! ************************************************************************** use rrlw_kg15, only : fracrefao, kao, kao_mn2, selfrefo, forrefo implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 1053. mb, T = 294.2 K ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KA_Mxx contains the absorption coefficient for ! a minor species at the 16 chosen g-values for a reference pressure ! level below 100~ mb. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. The second index refers to temperature ! in 7.2 degree increments. For instance, JT = 1 refers to a ! temperature of 188.0, JT = 2 refers to 195.2, etc. The third index ! runs over the g-channel (1 to 16). ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, kao, kao_mn2, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kao_mn2) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb15 ! ************************************************************************** subroutine lw_kgb16(rrtmg_unit) ! ************************************************************************** use rrlw_kg16, only : fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo implicit none save ! Input integer, intent(in) :: rrtmg_unit ! Local character*80 errmess logical, external :: wrf_dm_on_monitor ! Arrays fracrefao and fracrefbo are the Planck fractions for the lower ! and upper atmosphere. ! Planck fraction mapping levels: ! Lower: P = 387.6100 mbar, T = 250.17 K ! Upper: P=95.58350 mb, T = 215.70 K ! The array KAO contains absorption coefs for each of the 16 g-intervals ! for a range of pressure levels > ~100mb, temperatures, and ratios ! of water vapor to CO2. The first index in the array, JS, runs ! from 1 to 10, and corresponds to different gas column amount ratios, ! as expressed through the binary species parameter eta, defined as ! eta = gas1/(gas1 + (rat) * gas2), where rat is the ! ratio of the reference MLS column amount value of gas 1 ! to that of gas2. ! The 2nd index in the array, JT, which runs from 1 to 5, corresponds ! to different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature ! TREF-15, JT = 1 is for TREF-30, JT = 4 is for TREF+15, and JT = 5 ! is for TREF+30. The third index, JP, runs from 1 to 13 and refers ! to the reference pressure level (e.g. JP = 1 is for a ! pressure of 1053.63 mb). The fourth index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array KBO contains absorption coefs at the 16 chosen g-values ! for a range of pressure levels < ~100mb and temperatures. The first ! index in the array, JT, which runs from 1 to 5, corresponds to ! different temperatures. More specifically, JT = 3 means that the ! data are for the reference temperature TREF for this pressure ! level, JT = 2 refers to the temperature TREF-15, JT = 1 is for ! TREF-30, JT = 4 is for TREF+15, and JT = 5 is for TREF+30. ! The second index, JP, runs from 13 to 59 and refers to the JPth ! reference pressure level (see taumol.f for the value of these ! pressure levels in mb). The third index, IG, goes from 1 to 16, ! and tells us which g-interval the absorption coefficients are for. ! The array FORREFO contains the coefficient of the water vapor ! foreign-continuum (including the energy term). The first ! index refers to reference temperature (296,260,224,260) and ! pressure (970,475,219,3 mbar) levels. The second index ! runs over the g-channel (1 to 16). ! The array SELFREFO contains the coefficient of the water vapor ! self-continuum (including the energy term). The first index ! refers to temperature in 7.2 degree increments. For instance, ! JT = 1 refers to a temperature of 245.6, JT = 2 refers to 252.8, ! etc. The second index runs over the g-channel (1 to 16). #define DM_BCAST_MACRO(A) CALL wrf_dm_bcast_bytes ( A , size ( A ) * RWORDSIZE ) IF ( wrf_dm_on_monitor() ) READ (rrtmg_unit,ERR=9010) & fracrefao, fracrefbo, kao, kbo, selfrefo, forrefo DM_BCAST_MACRO(fracrefao) DM_BCAST_MACRO(fracrefbo) DM_BCAST_MACRO(kao) DM_BCAST_MACRO(kbo) DM_BCAST_MACRO(selfrefo) DM_BCAST_MACRO(forrefo) RETURN 9010 CONTINUE WRITE( errmess , '(A,I4)' ) 'module_ra_rrtmg_lw: error reading RRTMG_LW_DATA on unit ',rrtmg_unit CALL wrf_error_fatal(errmess) end subroutine lw_kgb16 !=============================================================================== subroutine relcalc(ncol, pcols, pver, t, landfrac, landm, icefrac, rel, snowh) !----------------------------------------------------------------------- ! ! Purpose: ! Compute cloud water size ! ! Method: ! analytic formula following the formulation originally developed by J. T. Kiehl ! ! Author: Phil Rasch ! !----------------------------------------------------------------------- implicit none !------------------------------Arguments-------------------------------- ! ! Input arguments ! integer, intent(in) :: ncol integer, intent(in) :: pcols, pver real, intent(in) :: landfrac(pcols) ! Land fraction real, intent(in) :: icefrac(pcols) ! Ice fraction real, intent(in) :: snowh(pcols) ! Snow depth over land, water equivalent (m) real, intent(in) :: landm(pcols) ! Land fraction ramping to zero over ocean real, intent(in) :: t(pcols,pver) ! Temperature ! ! Output arguments ! real, intent(out) :: rel(pcols,pver) ! Liquid effective drop size (microns) ! !---------------------------Local workspace----------------------------- ! integer i,k ! Lon, lev indices real tmelt ! freezing temperature of fresh water (K) real rliqland ! liquid drop size if over land real rliqocean ! liquid drop size if over ocean real rliqice ! liquid drop size if over sea ice ! !----------------------------------------------------------------------- ! tmelt = 273.16 rliqocean = 14.0 rliqice = 14.0 rliqland = 8.0 do k=1,pver do i=1,ncol ! jrm Reworked effective radius algorithm ! Start with temperature-dependent value appropriate for continental air ! Note: findmcnew has a pressure dependence here rel(i,k) = rliqland + (rliqocean-rliqland) * min(1.0,max(0.0,(tmelt-t(i,k))*0.05)) ! Modify for snow depth over land rel(i,k) = rel(i,k) + (rliqocean-rel(i,k)) * min(1.0,max(0.0,snowh(i)*10.)) ! Ramp between polluted value over land to clean value over ocean. rel(i,k) = rel(i,k) + (rliqocean-rel(i,k)) * min(1.0,max(0.0,1.0-landm(i))) ! Ramp between the resultant value and a sea ice value in the presence of ice. rel(i,k) = rel(i,k) + (rliqice-rel(i,k)) * min(1.0,max(0.0,icefrac(i))) ! end jrm end do end do end subroutine relcalc !=============================================================================== subroutine reicalc(ncol, pcols, pver, t, re) ! integer, intent(in) :: ncol, pcols, pver real, intent(out) :: re(pcols,pver) real, intent(in) :: t(pcols,pver) real corr integer i integer k integer index ! ! Tabulated values of re(T) in the temperature interval ! 180 K -- 274 K; hexagonal columns assumed: ! ! do k=1,pver do i=1,ncol index = int(t(i,k)-179.) index = min(max(index,1),94) corr = t(i,k) - int(t(i,k)) re(i,k) = retab(index)*(1.-corr) & +retab(index+1)*corr ! re(i,k) = amax1(amin1(re(i,k),30.),10.) end do end do ! return end subroutine reicalc !------------------------------------------------------------------ END MODULE module_ra_rrtmg_lw