#ifdef _ACCEL # include "module_mp_wsm3_accel.F" #else #if ( RWORDSIZE == 4 ) # define VREC vsrec # define VSQRT vssqrt #else # define VREC vrec # define VSQRT vsqrt #endif MODULE module_mp_wsm3 ! ! REAL, PARAMETER, PRIVATE :: dtcldcr = 120. ! maximum time step for minor loops REAL, PARAMETER, PRIVATE :: n0r = 8.e6 ! intercept parameter rain REAL, PARAMETER, PRIVATE :: avtr = 841.9 ! a constant for terminal velocity of rain REAL, PARAMETER, PRIVATE :: bvtr = 0.8 ! a constant for terminal velocity of rain REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 REAL, PARAMETER, PRIVATE :: avts = 11.72 ! a constant for terminal velocity of snow REAL, PARAMETER, PRIVATE :: bvts = .41 ! a constant for terminal velocity of snow REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! maximum n0s (t=-90C unlimited) REAL, PARAMETER, PRIVATE :: lamdarmax = 8.e4 ! limited maximum value for slope parameter of rain REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 ! limited maximum value for slope parameter of snow REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 ! limited maximum value for slope parameter of graupel REAL, PARAMETER, PRIVATE :: dicon = 11.9 ! constant for the cloud-ice diamter REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 ! limited maximum value for the cloud-ice diamter REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent intercept parameter snow REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 ! minimun values for qr, qs, and qg REAL, SAVE :: & qc0, qck1, pidnc, & bvtr1,bvtr2,bvtr3,bvtr4,g1pbr, & g3pbr,g4pbr,g5pbro2,pvtr,eacrr,pacrr, & precr1,precr2,xmmax,roqimax,bvts1, & bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, & g5pbso2,pvts,pacrs,precs1,precs2,pidn0r, & pidn0s,xlv1,pi, & rslopermax,rslopesmax,rslopegmax, & rsloperbmax,rslopesbmax,rslopegbmax, & rsloper2max,rslopes2max,rslopeg2max, & rsloper3max,rslopes3max,rslopeg3max ! ! Specifies code-inlining of fpvs function in WSM32D below. JM 20040507 ! CONTAINS !=================================================================== ! SUBROUTINE wsm3(th, q, qci, qrs & , w, den, pii, p, delz & , delt,g, cpd, cpv, rd, rv, t0c & , ep1, ep2, qmin & , XLS, XLV0, XLF0, den0, denr & , cliq,cice,psat & , rain, rainncv & , snow, snowncv & , sr & , has_reqc, has_reqi, has_reqs & ! for radiation , re_cloud, re_ice, re_snow & ! for radiation , ids,ide, jds,jde, kds,kde & , ims,ime, jms,jme, kms,kme & , its,ite, jts,jte, kts,kte & ) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- ! INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & ims,ime, jms,jme, kms,kme , & its,ite, jts,jte, kts,kte REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & INTENT(INOUT) :: & th, & q, & qci, & qrs REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & INTENT(IN ) :: w, & den, & pii, & p, & delz REAL, INTENT(IN ) :: delt, & g, & rd, & rv, & t0c, & den0, & cpd, & cpv, & ep1, & ep2, & qmin, & XLS, & XLV0, & XLF0, & cliq, & cice, & psat, & denr REAL, DIMENSION( ims:ime , jms:jme ), & INTENT(INOUT) :: rain, & rainncv REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & INTENT(INOUT) :: snow, & snowncv, & sr ! for radiation connecting INTEGER, INTENT(IN):: & has_reqc, & has_reqi, & has_reqs REAL, DIMENSION(ims:ime, kms:kme, jms:jme), & INTENT(INOUT):: & re_cloud, & re_ice, & re_snow ! LOCAL VAR REAL, DIMENSION( its:ite , kts:kte ) :: t INTEGER :: i,j,k ! to calculate effective radius for radiation REAL, DIMENSION( kts:kte ) :: t1d REAL, DIMENSION( kts:kte ) :: den1d REAL, DIMENSION( kts:kte ) :: qc1d REAL, DIMENSION( kts:kte ) :: qi1d REAL, DIMENSION( kts:kte ) :: qs1d REAL, DIMENSION( kts:kte ) :: re_qc, re_qi, re_qs !------------------------------------------------------------------- DO j=jts,jte DO k=kts,kte DO i=its,ite t(i,k)=th(i,k,j)*pii(i,k,j) ENDDO ENDDO CALL wsm32D(t, q(ims,kms,j), qci(ims,kms,j) & ,qrs(ims,kms,j),w(ims,kms,j), den(ims,kms,j) & ,p(ims,kms,j), delz(ims,kms,j) & ,delt,g, cpd, cpv, rd, rv, t0c & ,ep1, ep2, qmin & ,XLS, XLV0, XLF0, den0, denr & ,cliq,cice,psat & ,j & ,rain(ims,j), rainncv(ims,j) & ,snow(ims,j),snowncv(ims,j) & ,sr(ims,j) & ,ids,ide, jds,jde, kds,kde & ,ims,ime, jms,jme, kms,kme & ,its,ite, jts,jte, kts,kte & ) DO K=kts,kte DO I=its,ite th(i,k,j)=t(i,k)/pii(i,k,j) ENDDO ENDDO if (has_reqc.ne.0 .and. has_reqi.ne.0 .and. has_reqs.ne.0) then do i=its,ite do k=kts,kte re_qc(k) = 2.51E-6 re_qi(k) = 10.01E-6 re_qs(k) = 25.E-6 t1d(k) = th(i,k,j)*pii(i,k,j) den1d(k)= den(i,k,j) if(t(i,k).ge.t0c) then qc1d(k) = qci(i,k,j) qi1d(k) = 0.0 qs1d(k) = 0.0 else qc1d(k) = 0.0 qi1d(k) = qci(i,k,j) qs1d(k) = qrs(i,k,j) endif enddo call effectRad_wsm3(t1d, qc1d, qi1d, qs1d, den1d, & qmin, t0c, re_qc, re_qi, re_qs, & kts, kte, i, j) do k=kts,kte re_cloud(i,k,j) = MAX(2.51E-6, MIN(re_qc(k), 50.E-6)) re_ice(i,k,j) = MAX(10.01E-6, MIN(re_qi(k), 125.E-6)) re_snow(i,k,j) = MAX(25.E-6, MIN(re_qs(k), 999.E-6)) enddo enddo endif ! has_reqc, etc... ENDDO END SUBROUTINE wsm3 !=================================================================== ! SUBROUTINE wsm32D(t, q & ,qci, qrs,w, den, p, delz & ,delt,g, cpd, cpv, rd, rv, t0c & ,ep1, ep2, qmin & ,XLS, XLV0, XLF0, den0, denr & ,cliq,cice,psat & ,lat & ,rain, rainncv & ,snow,snowncv & ,sr & ,ids,ide, jds,jde, kds,kde & ,ims,ime, jms,jme, kms,kme & ,its,ite, jts,jte, kts,kte & ) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- ! ! This code is a 3-class simple ice microphyiscs scheme (WSM3) of the ! Single-Moment MicroPhyiscs (WSMMP). The WSMMP assumes that ice nuclei ! number concentration is a function of temperature, and seperate assumption ! is developed, in which ice crystal number concentration is a function ! of ice amount. A theoretical background of the ice-microphysics and related ! processes in the WSMMPs are described in Hong et al. (2004). ! Production terms in the WSM6 scheme are described in Hong and Lim (2006). ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. ! ! WSM3 cloud scheme ! ! Developed by Song-You Hong (Yonsei Univ.), Jimy Dudhia (NCAR) ! and Shu-Hua Chen (UC Davis) ! Summer 2002 ! ! Implemented by Song-You Hong (Yonsei Univ.) and Jimy Dudhia (NCAR) ! Summer 2003 ! ! further modifications : ! semi-lagrangian sedimentation (JH,2010),hong, aug 2009 ! ==> higher accuracy and efficient at lower resolutions ! effective radius of hydrometeors, bae from kiaps, jan 2015 ! ==> consistency in solar insolation of rrtmg radiation ! ! Reference) Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. ! Dudhia (D89, 1989) J. Atmos. Sci. ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. ! Juang and Hong (JH, 2010) Mon. Wea. Rev. ! INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte, & lat REAL, DIMENSION( its:ite , kts:kte ), & INTENT(INOUT) :: & t REAL, DIMENSION( ims:ime , kms:kme ), & INTENT(INOUT) :: & q, & qci, & qrs REAL, DIMENSION( ims:ime , kms:kme ), & INTENT(IN ) :: w, & den, & p, & delz REAL, INTENT(IN ) :: delt, & g, & cpd, & cpv, & t0c, & den0, & rd, & rv, & ep1, & ep2, & qmin, & XLS, & XLV0, & XLF0, & cliq, & cice, & psat, & denr REAL, DIMENSION( ims:ime ), & INTENT(INOUT) :: rain, & rainncv REAL, DIMENSION( ims:ime ), OPTIONAL, & INTENT(INOUT) :: snow, & snowncv, & sr ! LOCAL VAR REAL, DIMENSION( its:ite , kts:kte ) :: & rh, & qs, & denfac, & rslope, & rslope2, & rslope3, & qrs_tmp, & den_tmp, & delz_tmp, & rslopeb REAL, DIMENSION( its:ite , kts:kte ) :: & pgen, & pisd, & paut, & pacr, & pres, & pcon REAL, DIMENSION( its:ite , kts:kte ) :: & fall, & falk, & xl, & cpm, & work1, & work2, & xni, & qs0, & denqci, & denqrs, & n0sfac, & falkc, & work1c, & work2c, & fallc REAL, DIMENSION( its:ite ) :: delqrs,& delqi REAL, DIMENSION(its:ite) :: tstepsnow INTEGER, DIMENSION( its:ite ) :: kwork1,& kwork2 INTEGER, DIMENSION( its:ite ) :: mstep, & numdt LOGICAL, DIMENSION( its:ite ) :: flgcld REAL :: & cpmcal, xlcal, diffus, & viscos, xka, venfac, conden, diffac, & x, y, z, a, b, c, d, e, & fallsum, fallsum_qsi, vt2i,vt2s,acrfac, & qdt, pvt, qik, delq, facq, qrsci, frzmlt, & snomlt, hold, holdrs, facqci, supcol, coeres, & supsat, dtcld, xmi, qciik, delqci, eacrs, satdt, & qimax, diameter, xni0, roqi0, supice,holdc, holdci INTEGER :: i, j, k, mstepmax, & iprt, latd, lond, loop, loops, ifsat, kk, n, idim, kdim ! Temporaries used for inlining fpvs function REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp ! variables for optimization REAL, DIMENSION( its:ite ) :: tvec1 ! !================================================================= ! compute internal functions ! cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv xlcal(x) = xlv0-xlv1*(x-t0c) !---------------------------------------------------------------- ! diffus: diffusion coefficient of the water vapor ! viscos: kinematic viscosity(m2s-1) ! Optimizatin : A**B => exp(log(A)*(B)) ! diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y xka(x,y) = 1.414e3*viscos(x,y)*y diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) ! idim = ite-its+1 kdim = kte-kts+1 ! !---------------------------------------------------------------- ! paddint 0 for negative values generated by dynamics ! do k = kts, kte do i = its, ite qci(i,k) = max(qci(i,k),0.0) qrs(i,k) = max(qrs(i,k),0.0) enddo enddo ! !---------------------------------------------------------------- ! latent heat for phase changes and heat capacity. neglect the ! changes during microphysical process calculation ! emanuel(1994) ! do k = kts, kte do i = its, ite cpm(i,k) = cpmcal(q(i,k)) xl(i,k) = xlcal(t(i,k)) enddo enddo do k = kts, kte do i = its, ite delz_tmp(i,k) = delz(i,k) den_tmp(i,k) = den(i,k) enddo enddo ! !---------------------------------------------------------------- ! initialize the surface rain, snow ! do i = its, ite rainncv(i) = 0. if(PRESENT (snowncv) .AND. PRESENT (snow)) snowncv(i) = 0. sr(i) = 0. ! new local array to catch step snow tstepsnow(i) = 0. enddo ! !---------------------------------------------------------------- ! compute the minor time steps. ! loops = max(nint(delt/dtcldcr),1) dtcld = delt/loops if(delt.le.dtcldcr) dtcld = delt ! do loop = 1,loops ! !---------------------------------------------------------------- ! initialize the large scale variables ! do i = its, ite flgcld(i) = .true. enddo ! do k = kts, kte CALL VREC( tvec1(its), den(its,k), ite-its+1) do i = its, ite tvec1(i) = tvec1(i)*den0 enddo CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) enddo ! ! Inline expansion for fpvs ! qs(i,k) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) ! qs0(i,k) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) cvap = cpv hvap=xlv0 hsub=xls ttp=t0c+0.01 dldt=cvap-cliq xa=-dldt/rv xb=xa+hvap/(rv*ttp) dldti=cvap-cice xai=-dldti/rv xbi=xai+hsub/(rv*ttp) do k = kts, kte do i = its, ite tr=ttp/t(i,k) if(t(i,k).lt.ttp) then qs(i,k) =psat*(exp(log(tr)*(xai)))*exp(xbi*(1.-tr)) else qs(i,k) =psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) endif qs0(i,k) =psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) qs0(i,k) = (qs0(i,k)-qs(i,k))/qs(i,k) qs(i,k) = min(qs(i,k),0.99*p(i,k)) qs(i,k) = ep2 * qs(i,k) / (p(i,k) - qs(i,k)) qs(i,k) = max(qs(i,k),qmin) rh(i,k) = max(q(i,k) / qs(i,k),qmin) enddo enddo ! !---------------------------------------------------------------- ! initialize the variables for microphysical physics ! ! do k = kts, kte do i = its, ite pres(i,k) = 0. paut(i,k) = 0. pacr(i,k) = 0. pgen(i,k) = 0. pisd(i,k) = 0. pcon(i,k) = 0. fall(i,k) = 0. falk(i,k) = 0. fallc(i,k) = 0. falkc(i,k) = 0. xni(i,k) = 1.e3 enddo enddo !------------------------------------------------------------- ! Ni: ice crystal number concentraiton [HDC 5c] !------------------------------------------------------------- do k = kts, kte do i = its, ite xni(i,k) = min(max(5.38e7 & *exp(log((den(i,k)*max(qci(i,k),qmin)))*(0.75)),1.e3),1.e6) enddo enddo ! !---------------------------------------------------------------- ! compute the fallout term: ! first, vertical terminal velosity for minor loops !--------------------------------------------------------------- do k = kts, kte do i = its, ite qrs_tmp(i,k) = qrs(i,k) enddo enddo call slope_wsm3(qrs_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2,rslope3, & work1,its,ite,kts,kte) ! ! ! forward semi-laglangian scheme (JH), PCM (piecewise constant), (linear) ! do k = kte, kts, -1 do i = its, ite denqrs(i,k) = den(i,k)*qrs(i,k) enddo enddo call nislfv_rain_plm(idim,kdim,den_tmp,denfac,t,delz_tmp,work1,denqrs, & delqrs,dtcld,1,1) do k = kts, kte do i = its, ite qrs(i,k) = max(denqrs(i,k)/den(i,k),0.) fall(i,k) = denqrs(i,k)*work1(i,k)/delz(i,k) enddo enddo do i = its, ite fall(i,1) = delqrs(i)/delz(i,1)/dtcld enddo !--------------------------------------------------------------- ! Vice [ms-1] : fallout of ice crystal [HDC 5a] !--------------------------------------------------------------- do k = kte, kts, -1 do i = its, ite if(t(i,k).lt.t0c.and.qci(i,k).gt.0.) then xmi = den(i,k)*qci(i,k)/xni(i,k) diameter = max(dicon * sqrt(xmi), 1.e-25) work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) else work1c(i,k) = 0. endif enddo enddo ! ! forward semi-laglangian scheme (JH), PCM (piecewise constant), (linear) ! do k = kte, kts, -1 do i = its, ite denqci(i,k) = den(i,k)*qci(i,k) enddo enddo call nislfv_rain_plm(idim,kdim,den_tmp,denfac,t,delz_tmp,work1c,denqci, & delqi,dtcld,1,0) do k = kts, kte do i = its, ite qci(i,k) = max(denqci(i,k)/den(i,k),0.) enddo enddo do i = its, ite fallc(i,1) = delqi(i)/delz(i,1)/dtcld enddo ! !---------------------------------------------------------------- ! compute the freezing/melting term. [D89 B16-B17] ! freezing occurs one layer above the melting level ! do i = its, ite mstep(i) = 0 enddo do k = kts, kte ! do i = its, ite if(t(i,k).ge.t0c) then mstep(i) = k endif enddo enddo ! do i = its, ite kwork2(i) = mstep(i) kwork1(i) = mstep(i) if(mstep(i).ne.0) then if (w(i,mstep(i)).gt.0.) then kwork1(i) = mstep(i) + 1 endif endif enddo ! do i = its, ite k = kwork1(i) kk = kwork2(i) if(k*kk.ge.1) then qrsci = qrs(i,k) + qci(i,k) if(qrsci.gt.0..or.fall(i,kk).gt.0.) then frzmlt = min(max(-w(i,k)*qrsci/delz(i,k),-qrsci/dtcld), & qrsci/dtcld) snomlt = min(max(fall(i,kk)/den(i,kk),-qrs(i,k)/dtcld), & qrs(i,k)/dtcld) if(k.eq.kk) then t(i,k) = t(i,k) - xlf0/cpm(i,k)*(frzmlt+snomlt)*dtcld else t(i,k) = t(i,k) - xlf0/cpm(i,k)*frzmlt*dtcld t(i,kk) = t(i,kk) - xlf0/cpm(i,kk)*snomlt*dtcld endif endif endif enddo ! !---------------------------------------------------------------- ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf ! do i = its, ite fallsum = fall(i,1) fallsum_qsi = 0. if((t0c-t(i,1)).gt.0) then fallsum = fallsum+fallc(i,1) fallsum_qsi = fall(i,1)+fallc(i,1) endif if(fallsum.gt.0.) then rainncv(i) = fallsum*delz(i,1)/denr*dtcld*1000. + rainncv(i) rain(i) = fallsum*delz(i,1)/denr*dtcld*1000. + rain(i) endif if(fallsum_qsi.gt.0.) then tstepsnow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. & +tstepsnow(i) IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snowncv(i) snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i) ENDIF endif IF ( PRESENT (snowncv) ) THEN if(fallsum.gt.0.) sr(i) = snowncv(i)/(rainncv(i)+1.e-12) ELSE if(fallsum.gt.0.) sr(i) = tstepsnow(i)/(rainncv(i)+1.e-12) ENDIF enddo ! !---------------------------------------------------------------- ! update the slope parameters for microphysics computation ! do k = kts, kte do i = its, ite qrs_tmp(i,k) = qrs(i,k) enddo enddo call slope_wsm3(qrs_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2,rslope3, & work1,its,ite,kts,kte) ! ! work1: the thermodynamic term in the denominator associated with ! heat conduction and vapor diffusion ! work2: parameter associated with the ventilation effects(y93) ! do k = kts, kte do i = its, ite if(t(i,k).ge.t0c) then work1(i,k) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k)) else work1(i,k) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k)) endif work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) enddo enddo ! do k = kts, kte do i = its, ite supsat = max(q(i,k),qmin)-qs(i,k) satdt = supsat/dtcld if(t(i,k).ge.t0c) then ! !=============================================================== ! ! warm rain processes ! ! - follows the processes in RH83 and LFO except for autoconcersion ! !=============================================================== !--------------------------------------------------------------- ! praut: auto conversion rate from cloud to rain [HDC 16] ! (C->R) !--------------------------------------------------------------- if(qci(i,k).gt.qc0) then ! paut(i,k) = qck1*qci(i,k)**(7./3.) paut(i,k) = qck1*exp(log(qci(i,k))*((7./3.))) paut(i,k) = min(paut(i,k),qci(i,k)/dtcld) endif !--------------------------------------------------------------- ! pracw: accretion of cloud water by rain [HL A40] [D89 B15] ! (C->R) !--------------------------------------------------------------- if(qrs(i,k).gt.qcrmin.and.qci(i,k).gt.qmin) then pacr(i,k) = min(pacrr*rslope3(i,k)*rslopeb(i,k) & *qci(i,k)*denfac(i,k),qci(i,k)/dtcld) endif !--------------------------------------------------------------- ! prevp: evaporation/condensation rate of rain [HDC 14] ! (V->R or R->V) !--------------------------------------------------------------- if(qrs(i,k).gt.0.) then coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) pres(i,k) = (rh(i,k)-1.)*(precr1*rslope2(i,k) & +precr2*work2(i,k)*coeres)/work1(i,k) if(pres(i,k).lt.0.) then pres(i,k) = max(pres(i,k),-qrs(i,k)/dtcld) pres(i,k) = max(pres(i,k),satdt/2) else pres(i,k) = min(pres(i,k),satdt/2) endif endif else ! !=============================================================== ! ! cold rain processes ! ! - follows the revised ice microphysics processes in HDC ! - the processes same as in RH83 and LFO behave ! following ice crystal hapits defined in HDC, inclduing ! intercept parameter for snow (n0s), ice crystal number ! concentration (ni), ice nuclei number concentration ! (n0i), ice diameter (d) ! !=============================================================== ! supcol = t0c-t(i,k) n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) ifsat = 0 !------------------------------------------------------------- ! Ni: ice crystal number concentraiton [HDC 5c] !------------------------------------------------------------- xni(i,k) = min(max(5.38e7 & *exp(log((den(i,k)*max(qci(i,k),qmin)))*(0.75)),1.e3),1.e6) eacrs = exp(0.07*(-supcol)) if(qrs(i,k).gt.qcrmin.and.qci(i,k).gt.qmin) then xmi = den(i,k)*qci(i,k)/xni(i,k) diameter = min(dicon * sqrt(xmi),dimax) vt2i = 1.49e4*diameter**1.31 vt2s = pvts*rslopeb(i,k)*denfac(i,k) !------------------------------------------------------------- ! praci: Accretion of cloud ice by rain [HL A15] [LFO 25] ! (TR) !------------------------------------------------------------- acrfac = 2.*rslope3(i,k)+2.*diameter*rslope2(i,k) & +diameter**2*rslope(i,k) pacr(i,k) = min(pi*qci(i,k)*eacrs*n0s*n0sfac(i,k) & *abs(vt2s-vt2i)*acrfac/4.,qci(i,k)/dtcld) endif !------------------------------------------------------------- ! pidep: Deposition/Sublimation rate of ice [HDC 9] ! (TI or I->V) !------------------------------------------------------------- if(qci(i,k).gt.0.) then xmi = den(i,k)*qci(i,k)/xni(i,k) diameter = dicon * sqrt(xmi) pisd(i,k) = 4.*diameter*xni(i,k)*(rh(i,k)-1.)/work1(i,k) if(pisd(i,k).lt.0.) then pisd(i,k) = max(pisd(i,k),satdt/2) pisd(i,k) = max(pisd(i,k),-qci(i,k)/dtcld) else pisd(i,k) = min(pisd(i,k),satdt/2) endif if(abs(pisd(i,k)).ge.abs(satdt)) ifsat = 1 endif !------------------------------------------------------------- ! psdep: deposition/sublimation rate of snow [HDC 14] ! (V->S or S->V) !------------------------------------------------------------- if(qrs(i,k).gt.0..and.ifsat.ne.1) then coeres = rslope2(i,k)*sqrt(rslope(i,k)*rslopeb(i,k)) pres(i,k) = (rh(i,k)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k) & +precs2*work2(i,k)*coeres)/work1(i,k) supice = satdt-pisd(i,k) if(pres(i,k).lt.0.) then pres(i,k) = max(pres(i,k),-qrs(i,k)/dtcld) pres(i,k) = max(max(pres(i,k),satdt/2),supice) else pres(i,k) = min(min(pres(i,k),satdt/2),supice) endif if(abs(pisd(i,k)+pres(i,k)).ge.abs(satdt)) ifsat = 1 endif !------------------------------------------------------------- ! pigen: generation(nucleation) of ice from vapor [HDC 7-8] ! (TI) !------------------------------------------------------------- if(supsat.gt.0.and.ifsat.ne.1) then supice = satdt-pisd(i,k)-pres(i,k) xni0 = 1.e3*exp(0.1*supcol) roqi0 = 4.92e-11*exp(log(xni0)*(1.33)) pgen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k),0.))/dtcld) pgen(i,k) = min(min(pgen(i,k),satdt),supice) endif !------------------------------------------------------------- ! psaut: conversion(aggregation) of ice to snow [HDC 12] ! (TS) !------------------------------------------------------------- if(qci(i,k).gt.0.) then qimax = roqimax/den(i,k) paut(i,k) = max(0.,(qci(i,k)-qimax)/dtcld) endif endif enddo enddo ! !---------------------------------------------------------------- ! check mass conservation of generation terms and feedback to the ! large scale ! do k = kts, kte do i = its, ite qciik = max(qmin,qci(i,k)) delqci = (paut(i,k)+pacr(i,k)-pgen(i,k)-pisd(i,k))*dtcld if(delqci.ge.qciik) then facqci = qciik/delqci paut(i,k) = paut(i,k)*facqci pacr(i,k) = pacr(i,k)*facqci pgen(i,k) = pgen(i,k)*facqci pisd(i,k) = pisd(i,k)*facqci endif qik = max(qmin,q(i,k)) delq = (pres(i,k)+pgen(i,k)+pisd(i,k))*dtcld if(delq.ge.qik) then facq = qik/delq pres(i,k) = pres(i,k)*facq pgen(i,k) = pgen(i,k)*facq pisd(i,k) = pisd(i,k)*facq endif work2(i,k) = -pres(i,k)-pgen(i,k)-pisd(i,k) q(i,k) = q(i,k)+work2(i,k)*dtcld qci(i,k) = max(qci(i,k)-(paut(i,k)+pacr(i,k)-pgen(i,k)-pisd(i,k)) & *dtcld,0.) qrs(i,k) = max(qrs(i,k)+(paut(i,k)+pacr(i,k)+pres(i,k))*dtcld,0.) if(t(i,k).lt.t0c) then t(i,k) = t(i,k)-xls*work2(i,k)/cpm(i,k)*dtcld else t(i,k) = t(i,k)-xl(i,k)*work2(i,k)/cpm(i,k)*dtcld endif enddo enddo ! cvap = cpv hvap = xlv0 hsub = xls ttp=t0c+0.01 dldt=cvap-cliq xa=-dldt/rv xb=xa+hvap/(rv*ttp) dldti=cvap-cice xai=-dldti/rv xbi=xai+hsub/(rv*ttp) do k = kts, kte do i = its, ite tr=ttp/t(i,k) qs(i,k)=psat*(exp(log(tr)*(xa)))*exp(xb*(1.-tr)) qs(i,k) = min(qs(i,k),0.99*p(i,k)) qs(i,k) = ep2 * qs(i,k) / (p(i,k) - qs(i,k)) qs(i,k) = max(qs(i,k),qmin) denfac(i,k) = sqrt(den0/den(i,k)) enddo enddo ! !---------------------------------------------------------------- ! pcond: condensational/evaporational rate of cloud water [HL A46] [RH83 A6] ! if there exists additional water vapor condensated/if ! evaporation of cloud water is not enough to remove subsaturation ! do k = kts, kte do i = its, ite work1(i,k) = conden(t(i,k),q(i,k),qs(i,k),xl(i,k),cpm(i,k)) work2(i,k) = qci(i,k)+work1(i,k) pcon(i,k) = min(max(work1(i,k),0.),max(q(i,k),0.))/dtcld if(qci(i,k).gt.0..and.work1(i,k).lt.0.and.t(i,k).gt.t0c) & pcon(i,k) = max(work1(i,k),-qci(i,k))/dtcld q(i,k) = q(i,k)-pcon(i,k)*dtcld qci(i,k) = max(qci(i,k)+pcon(i,k)*dtcld,0.) t(i,k) = t(i,k)+pcon(i,k)*xl(i,k)/cpm(i,k)*dtcld enddo enddo ! !---------------------------------------------------------------- ! padding for small values ! do k = kts, kte do i = its, ite if(qci(i,k).le.qmin) qci(i,k) = 0.0 if(qrs(i,k).le.qcrmin) qrs(i,k) = 0.0 enddo enddo ! enddo ! big loops END SUBROUTINE wsm32D ! ................................................................... REAL FUNCTION rgmma(x) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- ! rgmma function: use infinite product form REAL :: euler PARAMETER (euler=0.577215664901532) REAL :: x, y INTEGER :: i if(x.eq.1.)then rgmma=0. else rgmma=x*exp(euler*x) do i=1,10000 y=float(i) rgmma=rgmma*(1.000+x/y)*exp(-x/y) enddo rgmma=1./rgmma endif END FUNCTION rgmma ! !-------------------------------------------------------------------------- REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) !-------------------------------------------------------------------------- IMPLICIT NONE !-------------------------------------------------------------------------- REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & xai,xbi,ttp,tr INTEGER ice ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ttp=t0c+0.01 dldt=cvap-cliq xa=-dldt/rv xb=xa+hvap/(rv*ttp) dldti=cvap-cice xai=-dldti/rv xbi=xai+hsub/(rv*ttp) tr=ttp/t if(t.lt.ttp.and.ice.eq.1) then fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) else fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) endif ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - END FUNCTION fpvs !------------------------------------------------------------------- SUBROUTINE wsm3init(den0,denr,dens,cl,cpv,allowed_to_read) !------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------- !.... constants which may not be tunable REAL, INTENT(IN) :: den0,denr,dens,cl,cpv LOGICAL, INTENT(IN) :: allowed_to_read ! pi = 4.*atan(1.) xlv1 = cl-cpv ! qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 pidnc = pi*denr/6. ! syb ! bvtr1 = 1.+bvtr bvtr2 = 2.5+.5*bvtr bvtr3 = 3.+bvtr bvtr4 = 4.+bvtr g1pbr = rgmma(bvtr1) g3pbr = rgmma(bvtr3) g4pbr = rgmma(bvtr4) ! 17.837825 g5pbro2 = rgmma(bvtr2) ! 1.8273 pvtr = avtr*g4pbr/6. eacrr = 1.0 pacrr = pi*n0r*avtr*g3pbr*.25*eacrr precr1 = 2.*pi*n0r*.78 precr2 = 2.*pi*n0r*.31*avtr**.5*g5pbro2 xmmax = (dimax/dicon)**2 roqimax = 2.08e22*dimax**8 ! bvts1 = 1.+bvts bvts2 = 2.5+.5*bvts bvts3 = 3.+bvts bvts4 = 4.+bvts g1pbs = rgmma(bvts1) !.8875 g3pbs = rgmma(bvts3) g4pbs = rgmma(bvts4) ! 12.0786 g5pbso2 = rgmma(bvts2) pvts = avts*g4pbs/6. pacrs = pi*n0s*avts*g3pbs*.25 precs1 = 4.*n0s*.65 precs2 = 4.*n0s*.44*avts**.5*g5pbso2 pidn0r = pi*denr*n0r pidn0s = pi*dens*n0s ! rslopermax = 1./lamdarmax rslopesmax = 1./lamdasmax rsloperbmax = rslopermax ** bvtr rslopesbmax = rslopesmax ** bvts rsloper2max = rslopermax * rslopermax rslopes2max = rslopesmax * rslopesmax rsloper3max = rsloper2max * rslopermax rslopes3max = rslopes2max * rslopesmax ! END SUBROUTINE wsm3init ! subroutine slope_wsm3(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3,vt,its,ite,kts,kte) IMPLICIT NONE INTEGER :: its,ite, jts,jte, kts,kte REAL, DIMENSION( its:ite , kts:kte ) :: & qrs, & den, & denfac, & t, & rslope, & rslopeb, & rslope2, & rslope3, & vt REAL, PARAMETER :: t0c = 273.15 REAL, DIMENSION( its:ite , kts:kte ) :: & n0sfac REAL :: lamdar,lamdas,x, y, z, supcol, pvt integer :: i, j, k !---------------------------------------------------------------- ! size distributions: (x=mixing ratio, y=air density): ! valid for mixing ratio > 1.e-9 kg/kg. ! lamdar(x,y)= sqrt(sqrt(pidn0r/(x*y))) ! (pidn0r/(x*y))**.25 lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 ! do k = kts, kte do i = its, ite if(t(i,k).ge.t0c) then pvt = pvtr if(qrs(i,k).le.qcrmin)then rslope(i,k) = rslopermax rslopeb(i,k) = rsloperbmax rslope2(i,k) = rsloper2max rslope3(i,k) = rsloper3max else rslope(i,k) = 1./lamdar(qrs(i,k),den(i,k)) rslopeb(i,k) = exp(log(rslope(i,k))*(bvtr)) rslope2(i,k) = rslope(i,k)*rslope(i,k) rslope3(i,k) = rslope2(i,k)*rslope(i,k) endif else supcol = t0c-t(i,k) n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) pvt = pvts if(qrs(i,k).le.qcrmin)then rslope(i,k) = rslopesmax rslopeb(i,k) = rslopesbmax rslope2(i,k) = rslopes2max rslope3(i,k) = rslopes3max else rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) rslopeb(i,k) = exp(log(rslope(i,k))*(bvts)) rslope2(i,k) = rslope(i,k)*rslope(i,k) rslope3(i,k) = rslope2(i,k)*rslope(i,k) endif endif vt(i,k) = pvt*rslopeb(i,k)*denfac(i,k) if(qrs(i,k).le.0.0) vt(i,k) = 0.0 enddo enddo END subroutine slope_wsm3 !------------------------------------------------------------------- SUBROUTINE nislfv_rain_pcm(im,km,denl,denfacl,tkl,dzl,wwl,rql,precip,dt,id,iter) !------------------------------------------------------------------- ! ! for non-iteration semi-Lagrangain forward advection for cloud ! with mass conservation and positive definite advection ! 2nd order interpolation with monotonic piecewise linear method ! this routine is under assumption of decfl < 1 for semi_Lagrangian ! ! dzl depth of model layer in meter ! wwl terminal velocity at model layer m/s ! rql cloud density*mixing ration ! precip precipitation ! dt time step ! id kind of precip: 0 test case; 1 raindrop ! iter how many time to guess mean terminal velocity: 0 pure forward. ! 0 : use departure wind for advection ! 1 : use mean wind for advection ! > 1 : use mean wind after iter-1 iterations ! ! author: hann-ming henry juang ! implemented by song-you hong ! implicit none integer im,km,id real dt real dzl(im,km),wwl(im,km),rql(im,km),precip(im) real denl(im,km),denfacl(im,km),tkl(im,km) ! integer i,k,n,m,kk,kb,kt,iter real tl,tl2,qql,dql,qqd real th,th2,qqh,dqh real zsum,qsum,dim,dip,c1,con1,fa1,fa2 real zsumt,qsumt,zsumb,qsumb real allold, allnew, zz, dzamin, cflmax, decfl real dz(km), ww(km), qq(km), wd(km), wa(km), was(km) real den(km), denfac(km), tk(km) real wi(km+1), zi(km+1), za(km+1) real qn(km), qr(km),tmp(km),tmp1(km),tmp2(km),tmp3(km) real dza(km+1), qa(km+1), qmi(km+1), qpi(km+1) ! precip(:) = 0.0 ! i_loop : do i=1,im ! ----------------------------------- dz(:) = dzl(i,:) qq(:) = rql(i,:) ww(:) = wwl(i,:) den(:) = denl(i,:) denfac(:) = denfacl(i,:) tk(:) = tkl(i,:) ! skip for no precipitation for all layers allold = 0.0 do k=1,km allold = allold + qq(k) enddo if(allold.le.0.0) then cycle i_loop endif ! ! compute interface values zi(1)=0.0 do k=1,km zi(k+1) = zi(k)+dz(k) enddo ! ! save departure wind wd(:) = ww(:) n=1 100 continue ! pcm is 1st order, we should use 2nd order wi ! 2nd order interpolation to get wi wi(1) = ww(1) do k=2,km wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k)) enddo wi(km+1) = ww(km) ! ! terminate of top of raingroup do k=2,km if( ww(k).eq.0.0 ) wi(k)=ww(k-1) enddo ! ! diffusivity of wi con1 = 0.05 do k=km,1,-1 decfl = (wi(k+1)-wi(k))*dt/dz(k) if( decfl .gt. con1 ) then wi(k) = wi(k+1) - con1*dz(k)/dt endif enddo ! compute arrival point do k=1,km+1 za(k) = zi(k) - wi(k)*dt enddo ! do k=1,km dza(k) = za(k+1)-za(k) enddo dza(km+1) = zi(km+1) - za(km+1) ! ! computer deformation at arrival point do k=1,km qa(k) = qq(k)*dz(k)/dza(k) qr(k) = qa(k)/den(k) enddo qa(km+1) = 0.0 ! call maxmin(km,1,qa,' arrival points ') ! ! compute arrival terminal velocity, and estimate mean terminal velocity ! then back to use mean terminal velocity if( n.le.iter ) then call slope_wsm3(qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,1,1,1,km) if( n.eq.2 ) wa(1:km) = 0.5*(wa(1:km)+was(1:km)) do k=1,km !#ifdef DEBUG ! print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k),ww(k),wa(k) !#endif ! mean wind is average of departure and new arrival winds ww(k) = 0.5* ( wd(k)+wa(k) ) enddo was(:) = wa(:) n=n+1 go to 100 endif ! ! ! interpolation to regular point qn = 0.0 kb=1 kt=1 intp : do k=1,km kb=max(kb-1,1) kt=max(kt-1,1) ! find kb and kt if( zi(k).ge.za(km+1) ) then exit intp else find_kb : do kk=kb,km if( zi(k).le.za(kk+1) ) then kb = kk exit find_kb else cycle find_kb endif enddo find_kb find_kt : do kk=kt,km if( zi(k+1).le.za(kk) ) then kt = kk exit find_kt else cycle find_kt endif enddo find_kt ! compute q with piecewise constant method if( kt-kb.eq.1 ) then qn(k) = qa(kb) else if( kt-kb.ge.2 ) then zsumb = za(kb+1)-zi(k) qsumb = qa(kb) * zsumb zsumt = zi(k+1)-za(kt-1) qsumt = qa(kt-1) * zsumt qsum = 0.0 zsum = 0.0 if( kt-kb.ge.3 ) then do m=kb+1,kt-2 qsum = qsum + qa(m) * dza(m) zsum = zsum + dza(m) enddo endif qn(k) = (qsumb+qsum+qsumt)/(zsumb+zsum+zsumt) endif cycle intp endif ! enddo intp ! ! rain out sum_precip: do k=1,km if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then precip(i) = precip(i) + qa(k)*dza(k) cycle sum_precip else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then precip(i) = precip(i) + qa(k)*(0.0-za(k)) exit sum_precip endif exit sum_precip enddo sum_precip ! ! replace the new values rql(i,:) = qn(:) ! ! ---------------------------------- enddo i_loop ! END SUBROUTINE nislfv_rain_pcm !------------------------------------------------------------------- SUBROUTINE nislfv_rain_plm(im,km,denl,denfacl,tkl,dzl,wwl,rql,precip,dt,id,iter) !------------------------------------------------------------------- ! ! for non-iteration semi-Lagrangain forward advection for cloud ! with mass conservation and positive definite advection ! 2nd order interpolation with monotonic piecewise linear method ! this routine is under assumption of decfl < 1 for semi_Lagrangian ! ! dzl depth of model layer in meter ! wwl terminal velocity at model layer m/s ! rql cloud density*mixing ration ! precip precipitation ! dt time step ! id kind of precip: 0 test case; 1 raindrop ! iter how many time to guess mean terminal velocity: 0 pure forward. ! 0 : use departure wind for advection ! 1 : use mean wind for advection ! > 1 : use mean wind after iter-1 iterations ! ! author: hann-ming henry juang ! implemented by song-you hong ! implicit none integer im,km,id real dt real dzl(im,km),wwl(im,km),rql(im,km),precip(im) real denl(im,km),denfacl(im,km),tkl(im,km) ! integer i,k,n,m,kk,kb,kt,iter real tl,tl2,qql,dql,qqd real th,th2,qqh,dqh real zsum,qsum,dim,dip,c1,con1,fa1,fa2 real allold, allnew, zz, dzamin, cflmax, decfl real dz(km), ww(km), qq(km), wd(km), wa(km), was(km) real den(km), denfac(km), tk(km) real wi(km+1), zi(km+1), za(km+1) real qn(km), qr(km),tmp(km),tmp1(km),tmp2(km),tmp3(km) real dza(km+1), qa(km+1), qmi(km+1), qpi(km+1) ! precip(:) = 0.0 ! i_loop : do i=1,im ! ----------------------------------- dz(:) = dzl(i,:) qq(:) = rql(i,:) ww(:) = wwl(i,:) den(:) = denl(i,:) denfac(:) = denfacl(i,:) tk(:) = tkl(i,:) ! skip for no precipitation for all layers allold = 0.0 do k=1,km allold = allold + qq(k) enddo if(allold.le.0.0) then cycle i_loop endif ! ! compute interface values zi(1)=0.0 do k=1,km zi(k+1) = zi(k)+dz(k) enddo ! ! save departure wind wd(:) = ww(:) n=1 100 continue ! plm is 2nd order, we can use 2nd order wi or 3rd order wi ! 2nd order interpolation to get wi wi(1) = ww(1) wi(km+1) = ww(km) do k=2,km wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k)) enddo ! 3rd order interpolation to get wi fa1 = 9./16. fa2 = 1./16. wi(1) = ww(1) wi(2) = 0.5*(ww(2)+ww(1)) do k=3,km-1 wi(k) = fa1*(ww(k)+ww(k-1))-fa2*(ww(k+1)+ww(k-2)) enddo wi(km) = 0.5*(ww(km)+ww(km-1)) wi(km+1) = ww(km) ! ! terminate of top of raingroup do k=2,km if( ww(k).eq.0.0 ) wi(k)=ww(k-1) enddo ! ! diffusivity of wi con1 = 0.05 do k=km,1,-1 decfl = (wi(k+1)-wi(k))*dt/dz(k) if( decfl .gt. con1 ) then wi(k) = wi(k+1) - con1*dz(k)/dt endif enddo ! compute arrival point do k=1,km+1 za(k) = zi(k) - wi(k)*dt enddo ! do k=1,km dza(k) = za(k+1)-za(k) enddo dza(km+1) = zi(km+1) - za(km+1) ! ! computer deformation at arrival point do k=1,km qa(k) = qq(k)*dz(k)/dza(k) qr(k) = qa(k)/den(k) enddo qa(km+1) = 0.0 ! call maxmin(km,1,qa,' arrival points ') ! ! compute arrival terminal velocity, and estimate mean terminal velocity ! then back to use mean terminal velocity if( n.le.iter ) then call slope_wsm3(qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,1,1,1,km) if( n.ge.2 ) wa(1:km)=0.5*(wa(1:km)+was(1:km)) do k=1,km !#ifdef DEBUG ! print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k),ww(k),wa(k) !#endif ! mean wind is average of departure and new arrival winds ww(k) = 0.5* ( wd(k)+wa(k) ) enddo was(:) = wa(:) n=n+1 go to 100 endif ! ! estimate values at arrival cell interface with monotone do k=2,km dip=(qa(k+1)-qa(k))/(dza(k+1)+dza(k)) dim=(qa(k)-qa(k-1))/(dza(k-1)+dza(k)) if( dip*dim.le.0.0 ) then qmi(k)=qa(k) qpi(k)=qa(k) else qpi(k)=qa(k)+0.5*(dip+dim)*dza(k) qmi(k)=2.0*qa(k)-qpi(k) if( qpi(k).lt.0.0 .or. qmi(k).lt.0.0 ) then qpi(k) = qa(k) qmi(k) = qa(k) endif endif enddo qpi(1)=qa(1) qmi(1)=qa(1) qmi(km+1)=qa(km+1) qpi(km+1)=qa(km+1) ! ! interpolation to regular point qn = 0.0 kb=1 kt=1 intp : do k=1,km kb=max(kb-1,1) kt=max(kt-1,1) ! find kb and kt if( zi(k).ge.za(km+1) ) then exit intp else find_kb : do kk=kb,km if( zi(k).le.za(kk+1) ) then kb = kk exit find_kb else cycle find_kb endif enddo find_kb find_kt : do kk=kt,km if( zi(k+1).le.za(kk) ) then kt = kk exit find_kt else cycle find_kt endif enddo find_kt kt = kt - 1 ! compute q with piecewise constant method if( kt.eq.kb ) then tl=(zi(k)-za(kb))/dza(kb) th=(zi(k+1)-za(kb))/dza(kb) tl2=tl*tl th2=th*th qqd=0.5*(qpi(kb)-qmi(kb)) qqh=qqd*th2+qmi(kb)*th qql=qqd*tl2+qmi(kb)*tl qn(k) = (qqh-qql)/(th-tl) else if( kt.gt.kb ) then tl=(zi(k)-za(kb))/dza(kb) tl2=tl*tl qqd=0.5*(qpi(kb)-qmi(kb)) qql=qqd*tl2+qmi(kb)*tl dql = qa(kb)-qql zsum = (1.-tl)*dza(kb) qsum = dql*dza(kb) if( kt-kb.gt.1 ) then do m=kb+1,kt-1 zsum = zsum + dza(m) qsum = qsum + qa(m) * dza(m) enddo endif th=(zi(k+1)-za(kt))/dza(kt) th2=th*th qqd=0.5*(qpi(kt)-qmi(kt)) dqh=qqd*th2+qmi(kt)*th zsum = zsum + th*dza(kt) qsum = qsum + dqh*dza(kt) qn(k) = qsum/zsum endif cycle intp endif ! enddo intp ! ! rain out sum_precip: do k=1,km if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then precip(i) = precip(i) + qa(k)*dza(k) cycle sum_precip else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then precip(i) = precip(i) + qa(k)*(0.0-za(k)) exit sum_precip endif exit sum_precip enddo sum_precip ! ! replace the new values rql(i,:) = qn(:) ! ! ---------------------------------- enddo i_loop ! END SUBROUTINE nislfv_rain_plm ! !----------------------------------------------------------------------- subroutine effectRad_wsm3 (t, qc, qi, qs, rho, qmin, t0c, & re_qc, re_qi, re_qs, kts, kte, ii, jj) !----------------------------------------------------------------------- ! Compute radiation effective radii of cloud water, ice, and snow for ! single-moment microphysics. ! These are entirely consistent with microphysics assumptions, not ! constant or otherwise ad hoc as is internal to most radiation ! schemes. ! Coded and implemented by Soo ya Bae, KIAPS, January 2015. !----------------------------------------------------------------------- implicit none !..Sub arguments integer, intent(in) :: kts, kte, ii, jj real, intent(in) :: qmin real, intent(in) :: t0c real, dimension( kts:kte ), intent(in):: t real, dimension( kts:kte ), intent(in):: qc real, dimension( kts:kte ), intent(in):: qi real, dimension( kts:kte ), intent(in):: qs real, dimension( kts:kte ), intent(in):: rho real, dimension( kts:kte ), intent(inout):: re_qc real, dimension( kts:kte ), intent(inout):: re_qi real, dimension( kts:kte ), intent(inout):: re_qs !..Local variables integer:: i,k integer :: inu_c real, dimension( kts:kte ):: ni real, dimension( kts:kte ):: rqc real, dimension( kts:kte ):: rqi real, dimension( kts:kte ):: rni real, dimension( kts:kte ):: rqs real :: temp real :: lamdac real :: supcol, n0sfac, lamdas real :: diai ! diameter of ice in m logical :: has_qc, has_qi, has_qs !..Minimum microphys values real, parameter :: R1 = 1.E-12 real, parameter :: R2 = 1.E-6 !..Mass power law relations: mass = am*D**bm real, parameter :: bm_r = 3.0 real, parameter :: obmr = 1.0/bm_r real, parameter :: nc0 = 3.E8 !----------------------------------------------------------------------- has_qc = .false. has_qi = .false. has_qs = .false. do k = kts, kte ! for cloud rqc(k) = max(R1, qc(k)*rho(k)) if (rqc(k).gt.R1) has_qc = .true. ! for ice rqi(k) = max(R1, qi(k)*rho(k)) temp = (rho(k)*max(qi(k),qmin)) temp = sqrt(sqrt(temp*temp*temp)) ni(k) = min(max(5.38e7*temp,1.e3),1.e6) rni(k)= max(R2, ni(k)*rho(k)) if (rqi(k).gt.R1 .and. rni(k).gt.R2) has_qi = .true. ! for snow rqs(k) = max(R1, qs(k)*rho(k)) if (rqs(k).gt.R1) has_qs = .true. enddo if (has_qc) then do k=kts,kte if (rqc(k).le.R1) CYCLE lamdac = (pidnc*nc0/rqc(k))**obmr re_qc(k) = max(2.51E-6,min(1.5*(1.0/lamdac),50.E-6)) enddo endif if (has_qi) then do k=kts,kte if (rqi(k).le.R1 .or. rni(k).le.R2) CYCLE diai = 11.9*sqrt(rqi(k)/ni(k)) re_qi(k) = max(10.01E-6,min(0.75*0.163*diai,125.E-6)) enddo endif if (has_qs) then do k=kts,kte if (rqs(k).le.R1) CYCLE supcol = t0c-t(k) n0sfac = max(min(exp(alpha*supcol),n0smax/n0s),1.) lamdas = sqrt(sqrt(pidn0s*n0sfac/rqs(k))) re_qs(k) = max(25.E-6,min(0.5*(1./lamdas), 999.E-6)) enddo endif end subroutine effectRad_wsm3 !----------------------------------------------------------------------- END MODULE module_mp_wsm3 #endif