! ! ! ! MODULE module_cu_ksas CONTAINS !------------------------------------------------------------------------------- subroutine cu_ksas(dt,dx,p3di,p3d,pi3d,qc3d,qi3d,rho3d,itimestep,stepcu, & hbot,htop,cu_act_flag, & rthcuten,rqvcuten,rqccuten,rqicuten, & rucuten,rvcuten, & qv3d,t3d,raincv,pratec,xland,dz8w,w,u3d,v3d, & hpbl,hfx,qfx, & hpbl_hold,znu, & mp_physics,dx_factor_nsas, & p_qc,p_qi,p_first_scalar, & pgcon, & cp,cliq,cpv,g,xlv,r_d,r_v,ep_1,ep_2, & cice,xls,psat,f_qi,f_qc, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) !------------------------------------------------------------------------------- implicit none !------------------------------------------------------------------------------- !-- dt time step (s) !-- dx grid interval (m) !-- p3di 3d pressure (pa) at interface level !-- p3d 3d pressure (pa) !-- pi3d 3d exner function (dimensionless) !-- z height above sea level (m) !-- qc3d cloud water mixing ratio (kg/kg) !-- qi3d cloud ice mixing ratio (kg/kg) !-- qv3d 3d water vapor mixing ratio (kg/kg) !-- t3d temperature (k) !-- raincv cumulus scheme precipitation (mm) !-- w vertical velocity (m/s) !-- dz8w dz between full levels (m) !-- u3d 3d u-velocity interpolated to theta points (m/s) !-- v3d 3d v-velocity interpolated to theta points (m/s) !-- ids start index for i in domain !-- ide end index for i in domain !-- jds start index for j in domain !-- jde end index for j in domain !-- kds start index for k in domain !-- kde end index for k in domain !-- ims start index for i in memory !-- ime end index for i in memory !-- jms start index for j in memory !-- jme end index for j in memory !-- kms start index for k in memory !-- kme end index for k in memory !-- its start index for i in tile !-- ite end index for i in tile !-- jts start index for j in tile !-- jte end index for j in tile !-- kts start index for k in tile !-- kte end index for k in tile !------------------------------------------------------------------------------- integer, intent(in ) :: ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte, & itimestep, stepcu, & p_qc,p_qi,p_first_scalar real, intent(in ) :: cp,cliq,cpv,g,xlv,r_d,r_v,ep_1,ep_2, & cice,xls,psat real, intent(in ) :: dt,dx real, optional, intent(in ) :: pgcon real, dimension( ims:ime, kms:kme, jms:jme ),optional ,& intent(inout) :: rthcuten,& rucuten,& rvcuten,& rqccuten,& rqicuten,& rqvcuten logical, optional :: F_QC,F_QI real, dimension( ims:ime, kms:kme, jms:jme ) ,& intent(in ) :: qv3d,& qc3d,& qi3d,& rho3d,& p3d,& pi3d,& t3d real, dimension( ims:ime, kms:kme, jms:jme ) ,& intent(in ) :: p3di real, dimension( ims:ime, kms:kme, jms:jme ) ,& intent(in ) :: dz8w,& w real, dimension( ims:ime, jms:jme ) ,& intent(inout) :: raincv,& pratec real, dimension( ims:ime, jms:jme ) ,& intent(out) :: hbot,& htop ! real, dimension( ims:ime, jms:jme ) ,& intent(in ) :: xland ! real, dimension( ims:ime, kms:kme, jms:jme ) ,& intent(in ) :: u3d,& v3d logical, dimension( ims:ime, jms:jme ) ,& intent(inout) :: cu_act_flag ! real, dimension( ims:ime, jms:jme ) ,& intent(in ) :: hpbl,& hpbl_hold,& hfx,& qfx real, dimension( kms:kme ) ,& intent(in ) :: znu integer, intent(in ) :: mp_physics integer, intent(in ) :: dx_factor_nsas integer :: ncloud ! !local ! real, dimension( its:ite, jts:jte ) :: raincv1,& raincv2,& pratec1,& pratec2 real, dimension( its:ite, kts:kte ) :: del,& prsll,& dot,& u1,& v1,& t1,& q1, & qc2,& qi2 real, dimension( its:ite, kts:kte+1 ) :: prsii,& zii real, dimension( its:ite, kts:kte ) :: zll real, dimension( its:ite) :: rain real :: delt,rdelt integer, dimension (its:ite) :: kbot,& ktop,& icps real :: pgcon_use integer :: i,j,k,kp, kbmax,kbm,kmax ! ! microphysics scheme --> ncloud ! if (mp_physics .eq. 0) then ncloud = 0 elseif ( mp_physics .eq. 1 .or. mp_physics .eq. 3 ) then ncloud = 1 else ncloud = 2 endif ! if(present(pgcon)) then pgcon_use = pgcon else ! pgcon_use = 0.7 ! Gregory et al. (1997, QJRMS) pgcon_use = 0.55 ! Zhang & Wu (2003,JAS) ! 0.55 is a physically-based value used by GFS ! HWRF uses 0.2, for model tuning purposes endif ! do j = jts,jte do i = its,ite cu_act_flag(i,j)=.TRUE. enddo enddo delt=dt*stepcu rdelt=1./delt kbmax = kte kbm = kte kmax = kte do k = kts,kte if(znu(k).gt.0.45) kbmax = k + 1 if(znu(k).gt.0.70) kbm = k + 1 if(znu(k).gt.0.05) kmax = k + 1 enddo ! ! outer most J_loop ! do j = jts,jte do k = kts,kte kp = k+1 do i = its,ite dot(i,k) = -5.0e-4*g*rho3d(i,k,j)*(w(i,k,j)+w(i,kp,j)) prsll(i,k)=p3d(i,k,j)*0.001 prsii(i,k)=p3di(i,k,j)*0.001 enddo enddo ! do i = its,ite prsii(i,kte+1)=p3di(i,kte+1,j)*0.001 enddo ! do i = its,ite zii(i,1)=0.0 enddo ! do k = kts,kte do i = its,ite zii(i,k+1)=zii(i,k)+dz8w(i,k,j) enddo enddo ! do k = kts,kte do i = its,ite zll(i,k)=0.5*(zii(i,k)+zii(i,k+1)) enddo enddo ! do k = kts,kte do i = its,ite del(i,k)=prsll(i,k)*g/r_d*dz8w(i,k,j)/t3d(i,k,j) u1(i,k)=u3d(i,k,j) v1(i,k)=v3d(i,k,j) q1(i,k)=qv3d(i,k,j) ! q1(i,k)=qv3d(i,k,j)/(1.+qv3d(i,k,j)) t1(i,k)=t3d(i,k,j) qi2(i,k) = qi3d(i,k,j) qc2(i,k) = qc3d(i,k,j) enddo enddo ! ! NCEP SAS ! call nsas2d(delt=delt,delx=dx,del=del(its,kts), & prsl=prsll(its,kts),prsi=prsii(its,kts),prslk=pi3d(ims,kms,j), & zl=zll(its,kts), & ncloud=ncloud,qc2=qc2(its,kts),qi2=qi2(its,kts), & q1=q1(its,kts),t1=t1(its,kts),rain=rain(its), & kbot=kbot(its),ktop=ktop(its), & icps=icps(its), & lat=j,slimsk=xland(ims,j),dot=dot(its,kts), & u1=u1(its,kts), v1=v1(its,kts), & cp_=cp,cliq_=cliq,cvap_=cpv,g_=g,hvap_=xlv, & rd_=r_d,rv_=r_v,fv_=ep_1,ep2=ep_2, & cice=cice,xls=xls,psat=psat, & dx_factor_nsas=dx_factor_nsas, & hpbl=hpbl(ims,j),hpbl_hold=hpbl_hold(ims,j), & kbmax=kbmax,kbm=kbm,kmax=kmax, & ids=ids,ide=ide, jds=jds,jde=jde, kds=kds,kde=kde, & ims=ims,ime=ime, jms=jms,jme=jme, kms=kms,kme=kme, & its=its,ite=ite, jts=jts,jte=jte, kts=kts,kte=kte ) ! do i = its,ite pratec1(i,j)=rain(i)*1000./(stepcu*dt) raincv1(i,j)=rain(i)*1000./(stepcu) enddo do i = its,ite raincv(i,j) = raincv1(i,j) pratec(i,j) = pratec1(i,j) hbot(i,j) = kbot(i) htop(i,j) = ktop(i) enddo ! IF(PRESENT(rthcuten).AND.PRESENT(rqvcuten)) THEN do k = kts,kte do i = its,ite rthcuten(i,k,j)=(t1(i,k)-t3d(i,k,j))/pi3d(i,k,j)*rdelt rqvcuten(i,k,j)=(q1(i,k)-qv3d(i,k,j))*rdelt enddo enddo ENDIF ! IF(PRESENT(rucuten).AND.PRESENT(rvcuten)) THEN do k = kts,kte do i = its,ite rucuten(i,k,j)=(u1(i,k)-u3d(i,k,j))*rdelt rvcuten(i,k,j)=(v1(i,k)-v3d(i,k,j))*rdelt enddo enddo ENDIF ! IF(PRESENT( rqicuten )) THEN IF ( F_QI ) THEN do k = kts,kte do i = its,ite rqicuten(i,k,j)=(qi2(i,k)-qi3d(i,k,j))*rdelt enddo enddo ENDIF ENDIF ! IF(PRESENT( rqccuten )) THEN IF ( F_QC ) THEN do k = kts,kte do i = its,ite rqccuten(i,k,j)=(qc2(i,k)-qc3d(i,k,j))*rdelt enddo enddo ENDIF ENDIF ! enddo ! outer most J_loop ! return end subroutine cu_ksas ! !------------------------------------------------------------------------------- ! NCEP SAS (Deep Convection Scheme) !------------------------------------------------------------------------------- subroutine nsas2d(delt,delx,del,prsl,prsi,prslk,zl, & ncloud, & qc2,qi2, & q1,t1,rain,kbot,ktop, & icps, & lat,slimsk,dot,u1,v1,cp_,cliq_,cvap_,g_,hvap_,rd_,rv_,fv_,ep2, & cice,xls,psat, & dx_factor_nsas, & hpbl,hpbl_hold, & kbmax,kbm,kmax, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte) !------------------------------------------------------------------------------- ! ! subprogram: phys_cps_sas computes convective heating and moistening ! and momentum transport ! ! abstract: computes convective heating and moistening using a one ! cloud type arakawa-schubert convection scheme originally developed ! by georg grell. the scheme has been revised at ncep since initial ! implementation in 1993. it includes updraft and downdraft effects. ! the closure is the cloud work function. both updraft and downdraft ! are assumed to be saturated and the heating and moistening are ! accomplished by the compensating environment. convective momentum transport ! is taken into account. the name comes from "simplified arakawa-schubert ! convection parameterization". ! ! developed by hua-lu pan, wan-shu wu, songyou hong, and jongil han ! implemented into wrf by kyosun sunny lim and songyou hong ! module with cpp-based options is available in grims ! ! program history log: ! 92-03-01 hua-lu pan operational development ! 96-03-01 song-you hong revised closure, and trigger ! 99-03-01 hua-lu pan multiple clouds ! 06-03-01 young-hwa byun closure based on moisture convergence (optional) ! 09-10-01 jung-eun kim f90 format with standard physics modules ! 10-07-01 jong-il han revised cloud model,trigger, as in gfs july 2010 ! 10-12-01 kyosun sunny lim wrf compatible version ! 14-01-09 song-you hong dx dependent trigger, closure, and mass flux ! 15-02-26 song-you hong negative qv generation suppressed ! 15-06-01 jongil han gfs sas ! 15-06-07 song-you hong scale-aware cps ! 15-06-28 song-you hong diurnal cycle with cldwrk in pbl ! 15-10-01 ji-young han bug fix (dz to dz1) ! 16-01-01 ji-young han enhanced entrainment at lower RH ! 16-06-01 ji-young han moisture-based trigger threshold ! 16-09-01 ji-young han bug fix & eliminate inconsistency ! 16-09-23 ji-young han code clean-up ! 16-11-01 ji-young han revised pgcon & bug fix in vshear ! 17-02-23 ji-young han revised xlamb ! 18-03-01 ji-young han kim sas ! 19-03-01 ji-yeon jang revised triggering ftn for higher resolution<10km ! yong-hee lee ! young cheol kwon ! eun-jeong lee bug fix in c0 for overshooting layer ! seung-bu park bug fix in xmb trigger ! ! usage: call phys_cps_sas(delt,delx,del,prsl,prsi,prslk,prsik,zl, & ! q2,q1,t1,u1,v1,rcs,slimsk,dot,cldwrk,rain, & ! jcap,ncloud,lat,kbot,ktop,icps, & ! ids,ide, jds,jde, kds,kde, & ! ims,ime, jms,jme, kms,kme, & ! its,ite, jts,jte, kts,kte) ! ! delt - real model integration time step ! delx - real model grid interval ! del - real (kms:kme) sigma layer thickness ! prsl - real (ims:ime,kms:kme) pressure values ! prsi - real (ims:ime,kms:kme) pressure values at interface level ! prslk - real (ims:ime,kms:kme) pressure values to the kappa ! prsik - real (ims:ime,kms:kme) pressure values to the kappa at interface lev. ! zl - real (ims:ime,kms:kme) height above sea level ! zi - real (ims:ime,kms:kme) height above sea level at interface level ! rcs - real ! slimsk - real (ims:ime) land(1),sea(0), ice(2) flag ! dot - real (ims:ime,kms:kme) vertical velocity ! jcap - integer wave number ! ncloud - integer no_cloud(0),no_ice(1),cloud+ice(2) ! lat - integer current latitude index ! ! output argument list: ! q2 - real (ims:ime,kms:kme) detrained hydrometeors in kg/kg ! - in case of the --> qc2(cloud), qi2(ice) ! q1 - real (ims:ime,kms:kme) adjusted specific humidity in kg/kg ! t1 - real (ims:ime,kms:kme) adjusted temperature in kelvin ! u1 - real (ims:ime,kms:kme) adjusted zonal wind in m/s ! v1 - real (ims:ime,kms:kme) adjusted meridional wind in m/s ! cldwrk - real (ims:ime) cloud work function ! rain - real (ims:ime) convective rain in meters ! kbot - integer (ims:ime) cloud bottom level ! ktop - integer (ims:ime) cloud top level ! icps - integer (ims:ime) bit flag indicating deep convection ! ! subprograms called: ! fpvs - function to compute saturation vapor pressure ! ! remarks: function fpvs is inlined by fpp. ! nonstandard automatic arrays are used. ! ! references : ! pan and wu (1995, ncep office note) ! hong and pan (1998, mon wea rev) ! park and hong (2007,jmsj) ! byun and hong (2007, mon wea rev) ! han and pan (2011, wea. forecasting) ! lim et al. (2014, wea. forecasting) ! han et al. (2016, mon wea rev) ! kwon and hong (2017, mon wea rev) ! han and hong (2018, wea. forecasting) ! !------------------------------------------------------------------------------- implicit none !------------------------------------------------------------------------------- ! ! model tunable parameters ! real,parameter :: betal = 0.05, betas = 0.05 real,parameter :: c0 = 0.002, c1 = 0.002 real,parameter :: xlamdd = 1.0e-4, xlamde = 1.0e-4 real,parameter :: clam = 0.1, cxlamu = 1.0e-3 real,parameter :: aafac = 0.1 real,parameter :: dthk = 25. real,parameter :: cinpcrmx = 240.,cinpcrmn = 120. real,parameter :: cinacrmx = -120. real,parameter :: bet1 = 1.875, cd1 = 0.506 real,parameter :: f1 = 2.0, gam1 = 0.5, tfac = 1.0 real,parameter :: dx1km = 1000., dx5km = 5000., dx250m = 250. real,parameter :: edtmaxl = 0.3, edtmaxs = 0.3 real,parameter :: evfacts = 0.3, evfactl = 0.3 real,parameter :: tf=233.16,tcr=273.16,tcrf=1.0/(tcr-tf) ! ! passing variables ! real :: cp_,cliq_,cvap_,g_,hvap_,rd_,rv_,fv_,ep2 real :: pi_,qmin_,t0c_,cice,xlv0,xls,psat integer :: dx_factor_nsas integer :: lat, & ncloud, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & its,ite, jts,jte, kts,kte ! real :: delt,rcs real :: del(its:ite,kts:kte), & prsl(its:ite,kts:kte),prslk(ims:ime,kms:kme), & prsi(its:ite,kts:kte+1), & zl(its:ite,kts:kte), & q1(its:ite,kts:kte),t1(its:ite,kts:kte), & u1(its:ite,kts:kte),v1(its:ite,kts:kte), & qci(its:ite,kts:kte),qrs(its:ite,kts:kte), & dot(its:ite,kts:kte) real :: qi2(its:ite,kts:kte) real :: qc2(its:ite,kts:kte) ! real :: rain(its:ite) real :: hpbl(ims:ime),hpbl_hold(ims:ime) integer :: kbot(its:ite),ktop(its:ite),icps(its:ite) real :: slimsk(ims:ime) ! ! local variables and arrays ! integer :: i,k,kmax,kbmax,kbm,jmn,indx, kts1,kte1,kmax1,kk real :: p(its:ite,kts:kte),pdot(its:ite),acrtfct(its:ite) real :: pden(its:ite) real :: zi(its:ite,kts:kte+1) real :: uo(its:ite,kts:kte),vo(its:ite,kts:kte) real :: to(its:ite,kts:kte),qo(its:ite,kts:kte) real :: hcko(its:ite,kts:kte) real :: qcko(its:ite,kts:kte),eta(its:ite,kts:kte) real :: etad(its:ite,kts:kte) real :: qrcdo(its:ite,kts:kte) real :: pwo(its:ite,kts:kte),pwdo(its:ite,kts:kte) real :: c0t(its:ite,kts:kte) real :: c1t(its:ite,kts:kte) real :: bb1, bb2, wucb real :: cinpcr real :: cinacr ! ! for updraft velocity calculation ! real :: po1(its:ite,kts:kte),wu2(its:ite,kts:kte), & buo(its:ite,kts:kte),drag(its:ite,kts:kte) real :: wbar(its:ite),wc(its:ite),clear(its:ite) ! real :: sigma, sigma_con real :: mbdt real :: dtconv(its:ite) real :: deltv(its:ite),acrt(its:ite) real :: apbl(its:ite),dtpbl(its:ite) real :: qeso(its:ite,kts:kte) real :: tvo(its:ite,kts:kte),dbyo(its:ite,kts:kte) real :: heo(its:ite,kts:kte),heso(its:ite,kts:kte) real :: qrcd(its:ite,kts:kte) real :: dellah(its:ite,kts:kte),dellaq(its:ite,kts:kte) ! integer :: kb(its:ite),kbcon(its:ite) integer :: kbcon1(its:ite) real :: hmax(its:ite),delq(its:ite) real :: hkbo(its:ite),qkbo(its:ite) integer :: lmin(its:ite),jmin(its:ite) integer :: ktcon(its:ite) integer :: ktcon1(its:ite) integer :: kbdtr(its:ite) real :: hmin(its:ite),pwavo(its:ite) real :: aa1(its:ite),vshear(its:ite) real :: qevap(its:ite) real :: edt(its:ite) real :: edt_s(its:ite) real :: edto(its:ite),pwevo(its:ite) real :: qcond(its:ite) real :: hcdo(its:ite,kts:kte) real :: qcdo(its:ite,kts:kte) real :: xhkb(its:ite),xqkb(its:ite) real :: xpwav(its:ite),xpwev(its:ite),xhcd(its:ite,kts:kte) real :: xaa0(its:ite),f(its:ite),xk(its:ite) real :: xmb(its:ite) real :: edtx(its:ite),xqcd(its:ite,kts:kte) real :: hsbar(its:ite),xmbmax(its:ite) real :: xlamb(its:ite,kts:kte),xlamd(its:ite) real :: cina(its:ite) real :: delhbar(its:ite),delqbar(its:ite),deltbar(its:ite) real :: qcirs(its:ite,kts:kte) real :: dellal(its:ite,kts:kte) real :: rntot(its:ite),delqev(its:ite),delq2(its:ite) ! real :: fent1(its:ite,kts:kte),fent2(its:ite,kts:kte) real :: frh(its:ite,kts:kte) real :: xlamud(its:ite),sumx(its:ite) real :: frh_sum(its:ite),cinpcri(its:ite) real :: aa2(its:ite) real :: ucko(its:ite,kts:kte),vcko(its:ite,kts:kte) real :: ucdo(its:ite,kts:kte),vcdo(its:ite,kts:kte) real :: dellau(its:ite,kts:kte),dellav(its:ite,kts:kte) real :: delubar(its:ite),delvbar(its:ite) real :: qlko_ktcon(its:ite) ! real :: alpha,beta, & dt2,dtmin,dtmax, & el2orc,eps,fact1,fact2, & tem,tem1 real :: dz,dp,es,pprime,qs, & dqsdp,desdt,dqsdt,gamma, & c0fac,alpha1,beta1,ccn_f, & dt,dq,po, delx, & factor,onemf,dz1,qrch,etah,qlk,qc,rfact,shear, & e1,dh, edtmax,dhh,dg,aup,adw, & dv1,dv2,dv3,dv1q,dv2q,dv3q, & dv1u,dv2u,dv3u,dv1v,dv2v,dv3v, & dellat,xdby,xqrch, xpw,xpwd, & qrsk(its:ite,kts:kte),evef,ptem,ptem1 ! logical :: totflg, cnvflg(its:ite),flg(its:ite) real :: pgcon(its:ite,kts:kte) ! !----------------------------------------------------------------------- ! ! define miscellaneous values ! pi_ = 3.14159 qmin_ = 1.0e-30 t0c_ = 273.15 xlv0 = hvap_ rcs = 1. el2orc = hvap_*hvap_/(rv_*cp_) eps = rd_/rv_ fact1 = (cvap_-cliq_)/rv_ fact2 = hvap_/rv_-fact1*t0c_ kts1 = kts + 1 kte1 = kte - 1 dt2 = delt dtmin = max(dt2,600.) dtmax = max(dt2,10800.) mbdt = dt2 sigma_con = tan(0.4*pi_)/(dx5km-dx1km) ! 7.7 e-4 m-1 sigma = (1.-1./pi_*(atan(sigma_con*(delx-dx5km))+pi_/2.)) ! 1(1km),0.1(10km) ! if (delx.lt.dx5km) then sigma = min(sigma - 0.01684 * delx/1000. + 0.0842, 1.0) endif ! cinpcr = (cinpcrmn + 0.5*(cinpcrmx-cinpcrmn)) * (1.-sigma) ! ! initialize arrays ! do i = its,ite rain(i) = 0.0 kbot(i) = kte+1 ktop(i) = 0 icps(i) = 0 cnvflg(i) = .true. dtconv(i) = 3600. pdot(i) = 0.0 edto(i) = 0.0 edtx(i) = 0.0 xmbmax(i) = 0.3 aa2(i) = 0.0 qlko_ktcon(i) = 0.0 lmin(i) = 1 jmin(i) = 1 edt(i) = 0.0 cina(i) = 0.0 frh_sum(i) = 0.0 cinpcri(i) = 0.0 apbl(i) = 0.0 dtpbl(i) = 0.0 do k = kts,kte pgcon(i,k) = 0.5 enddo enddo ! ! Define top layer for search of the downdraft originating layer ! and the maximum thetae for updraft ! kmax = min(kmax,kte) kmax1 = kmax - 1 kbm = min(kbm,kte) ! ! convert surface pressure to mb from cb ! do k = kts,kte do i = its,ite c0t(i,k) = c0 c1t(i,k) = c1 * sigma qcirs(i,k)= 0.0 qci(i,k) = 0.0 qrs(i,k) = 0.0 qrsk(i,k) = 0.0 wu2(i,k) = 0.0 buo(i,k) = 0.0 drag(i,k) = 0.0 pwo(i,k) = 0.0 pwdo(i,k) = 0.0 dellal(i,k) = 0.0 hcko(i,k) = 0.0 qcko(i,k) = 0.0 hcdo(i,k) = 0.0 qcdo(i,k) = 0.0 enddo enddo ! do k = kts,kmax do i = its,ite p(i,k) = prsl(i,k) * 10. to(i,k) = t1(i,k) qo(i,k) = q1(i,k) dbyo(i,k) = 0.0 fent1(i,k) = 1.0 fent2(i,k) = 1.0 frh(i,k) = 0.0 ucko(i,k) = 0.0 vcko(i,k) = 0.0 ucdo(i,k) = 0.0 vcdo(i,k) = 0.0 uo(i,k) = u1(i,k) * rcs vo(i,k) = v1(i,k) * rcs enddo enddo ! ! column variables ! ! p is pressure of the layer (mb) ! t is temperature at t-dt (k)..tn ! q is mixing ratio at t-dt (kg/kg)..qn ! to is temperature at t+dt (k)... this is after advection and turbulan ! qo is mixing ratio at t+dt (kg/kg)..q1 ! do k = kts,kmax do i = its,ite qeso(i,k)=0.01*fpvs(to(i,k),1,rd_,rv_,cvap_,cliq_,cice,xlv0,xls,psat,t0c_) qeso(i,k) = eps * qeso(i,k) / (p(i,k) + (eps-1.) * qeso(i,k)) qeso(i,k) = max(qeso(i,k),qmin_) qo(i,k) = max(qo(i,k), 1.e-10 ) ! tvo(i,k) = to(i,k) + fv_ * to(i,k) * max(qo(i,k),qmin_) enddo enddo ! ! compute moist static energy ! do k = kts,kmax do i = its,ite heo(i,k) = g_ * zl(i,k) + cp_* to(i,k) + hvap_ * qo(i,k) heso(i,k) = g_ * zl(i,k) + cp_* to(i,k) + hvap_ * qeso(i,k) enddo enddo ! ! Determine level with largest moist static energy ! This is the level where updraft starts ! do i = its,ite hmax(i) = heo(i,1) kb(i) = 1 enddo ! do k = kts1,kbm do i = its,ite if(heo(i,k).gt.hmax(i)) then kb(i) = k hmax(i) = heo(i,k) endif enddo enddo ! do i = its,ite if (qo(i,kb(i)).lt.qmin_) cnvflg(i) = .false. enddo ! do k = kts,kmax1 do i = its,ite if(cnvflg(i)) then dz = .5 * (zl(i,k+1) - zl(i,k)) dp = .5 * (p(i,k+1) - p(i,k)) es = 0.01*fpvs(to(i,k+1),1,rd_,rv_,cvap_,cliq_,cice,xlv0,xls,psat,t0c_) pprime = p(i,k+1) + (eps-1.) * es qs = eps * es / pprime dqsdp = - qs / pprime desdt = es * (fact1 / to(i,k+1) + fact2 / (to(i,k+1)**2)) dqsdt = qs * p(i,k+1) * desdt / (es * pprime) gamma = el2orc * qeso(i,k+1) / (to(i,k+1)**2) dt = (g_ * dz + hvap_ * dqsdp * dp) / (cp_ * (1. + gamma)) dq = dqsdt * dt + dqsdp * dp to(i,k) = to(i,k+1) + dt qo(i,k) = qo(i,k+1) + dq po = .5 * (p(i,k) + p(i,k+1)) qeso(i,k)=0.01*fpvs(to(i,k),1,rd_,rv_,cvap_,cliq_,cice,xlv0,xls,psat,t0c_) qeso(i,k) = eps * qeso(i,k) / (po + (eps-1.) * qeso(i,k)) qeso(i,k) = max(qeso(i,k),qmin_) qo(i,k) = max(qo(i,k), 1.e-10) frh(i,k) = 1. - min(qo(i,k)/qeso(i,k), 1.) heo(i,k) = .5 * g_ * (zl(i,k) + zl(i,k+1)) + & cp_ * to(i,k) + hvap_ * qo(i,k) heso(i,k) = .5 * g_ * (zl(i,k) + zl(i,k+1)) + & cp_ * to(i,k) + hvap_ * qeso(i,k) uo(i,k) = .5 * (uo(i,k) + uo(i,k+1)) vo(i,k) = .5 * (vo(i,k) + vo(i,k+1)) endif enddo enddo ! ! look for convective cloud base as the level of free convection ! do i = its,ite if(cnvflg(i)) then indx = kb(i) hkbo(i) = heo(i,indx) qkbo(i) = qo(i,indx) endif enddo ! do i = its,ite flg(i) = cnvflg(i) kbcon(i) = kmax enddo ! do k = kts,kbmax do i = its,ite if(flg(i).and.k.gt.kb(i)) then hsbar(i) = heso(i,k) if(hkbo(i).gt.hsbar(i)) then flg(i) = .false. kbcon(i) = k endif endif enddo enddo ! do i = its,ite if(kbcon(i).eq.kmax) cnvflg(i) = .false. enddo ! totflg = .true. do i = its,ite totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return ! do k = kts,kmax1 do i = its,ite if (cnvflg(i)) then if (k.ge.kb(i).and.k.le.kbcon(i)) then frh_sum(i) = frh_sum(i) + (1-frh(i,k)) endif endif enddo enddo ! do i = its,ite if(cnvflg(i)) then tem1 = p(i,kb(i)) - p(i,kbcon(i)) cinpcri(i) = cinpcr * frh_sum(i)/(kbcon(i)-kb(i)+1) if (tem1.gt.cinpcri(i)) cnvflg(i) = .false. endif enddo ! totflg = .true. do i = its,ite totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return ! do k = kts1,kte do i = its,ite zi(i,k) = 0.5*(zl(i,k-1)+zl(i,k)) enddo enddo ! do k = kts,kte1 do i = its,ite xlamb(i,k) = clam / zi(i,k+1) enddo enddo ! ! assume that updraft entrainment rate above cloud base is ! same as that at cloud base ! do k = kts1,kmax1 do i = its,ite if(cnvflg(i).and.(k.gt.kbcon(i))) then xlamb(i,k) = xlamb(i,kbcon(i)) endif enddo enddo ! ! assume the detrainment rate for the updrafts to be same as ! the entrainment rate at cloud base ! do i = its,ite if(cnvflg(i)) then xlamud(i) = xlamb(i,kbcon(i)) endif enddo ! ! functions rapidly decreasing with height, mimicking a cloud ensemble ! (Bechtold et al., 2008) ! do k = kts1,kmax1 do i = its,ite if(cnvflg(i).and.(k.gt.kbcon(i))) then tem = qeso(i,k)/qeso(i,kbcon(i)) fent1(i,k) = tem**2 fent2(i,k) = tem**3 endif enddo enddo ! ! final entrainment rate as the sum of turbulent part and organized entrainment ! depending on the environmental relative humidity ! (Bechtold et al., 2008) ! do k = kts1,kmax1 do i = its,ite if(cnvflg(i).and.(k.ge.kbcon(i))) then tem = cxlamu * frh(i,k) * fent2(i,k) xlamb(i,k) = xlamb(i,k)*fent1(i,k) + tem endif enddo enddo ! ! determine updraft mass flux ! do k = kts,kte do i = its,ite if(cnvflg(i)) then eta(i,k) = 1. endif enddo enddo ! do k = kbmax,kts1,-1 do i = its,ite if(cnvflg(i).and.k.lt.kbcon(i).and.k.ge.kb(i)) then dz = zi(i,k+2) - zi(i,k+1) ptem = 0.5*(xlamb(i,k)+xlamb(i,k+1))-xlamud(i) eta(i,k) = eta(i,k+1) / (1. + ptem * dz) endif enddo enddo do k = kts1,kmax1 do i = its,ite if(cnvflg(i).and.k.gt.kbcon(i)) then dz = zi(i,k+1) - zi(i,k) ptem = 0.5*(xlamb(i,k)+xlamb(i,k-1))-xlamud(i) eta(i,k) = eta(i,k-1) * (1 + ptem * dz) endif enddo enddo do i = its,ite if(cnvflg(i)) then dz = zi(i,3) - zi(i,2) ptem = 0.5*(xlamb(i,1)+xlamb(i,2))-xlamud(i) eta(i,1) = eta(i,2) / (1. + ptem * dz) endif enddo ! ! work up updraft cloud properties ! do i = its,ite if(cnvflg(i)) then indx = kb(i) hcko(i,indx) = hkbo(i) qcko(i,indx) = qkbo(i) ucko(i,indx) = uo(i,indx) vcko(i,indx) = vo(i,indx) pwavo(i) = 0. endif enddo ! ! cloud property below cloud base is modified by the entrainment proces ! do k = kts1,kmax1 do i = its,ite if(cnvflg(i).and.k.gt.kb(i)) then dz = zi(i,k+1) - zi(i,k) tem = 0.5 * (xlamb(i,k)+xlamb(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 hcko(i,k) = ((1.-tem1)*hcko(i,k-1)+tem*0.5* & (heo(i,k)+heo(i,k-1)))/factor dbyo(i,k) = hcko(i,k) - heso(i,k) endif enddo enddo ! ! taking account into convection inhibition due to existence of ! dry layers below cloud base ! do i = its,ite flg(i) = cnvflg(i) kbcon1(i) = kmax enddo ! do k = kts1,kmax do i = its,ite if(flg(i).and.k.ge.kbcon(i).and.dbyo(i,k).gt.0.) then kbcon1(i) = k flg(i) = .false. endif enddo enddo ! do i = its,ite if(cnvflg(i)) then if(kbcon1(i).eq.kmax) cnvflg(i) = .false. endif enddo ! do i = its,ite if(cnvflg(i)) then tem = p(i,kbcon(i)) - p(i,kbcon1(i)) if(tem.gt.dthk) then cnvflg(i) = .false. endif endif enddo ! totflg = .true. do i = its,ite totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return ! ! calculate convective inhibition ! do k = kts1,kmax1 do i = its,ite if (cnvflg(i)) then if (k.gt.kb(i).and.k.lt.kbcon1(i)) then dz1 = (zi(i,k+1) - zi(i,k)) gamma = el2orc * qeso(i,k) / (to(i,k)**2) rfact = 1. + fv_ * cp_ * gamma * to(i,k) / hvap_ cina(i) = cina(i) + dz1 * (g_ / (cp_ * to(i,k))) & * dbyo(i,k) / (1. + gamma) * rfact cina(i) = cina(i) + dz1 * g_ * fv_ * max(0.,(qeso(i,k) - qo(i,k))) endif endif enddo enddo ! do i = its,ite if (cnvflg(i)) then cinacr = cinacrmx if (cina(i).lt.cinacr) cnvflg(i) = .false. endif enddo ! totflg = .true. do i = its,ite totflg = totflg .and. (.not. cnvflg(i)) enddo if (totflg) return ! ! determine cloud top ! do i = its,ite flg(i) = cnvflg(i) ktcon(i) = 1 enddo ! ! check inversion ! do k = kts1,kmax1 do i = its,ite if(dbyo(i,k).lt.0..and.flg(i).and.k.gt. kbcon1(i)) then ktcon(i) = k flg(i) = .false. endif enddo enddo ! ! check cloud depth ! do i = its,ite if(cnvflg(i).and.(p(i,kbcon(i)) - p(i,ktcon(i))).lt.150.) & cnvflg(i) = .false. enddo ! totflg = .true. do i = its,ite totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return ! ! search for downdraft originating level above theta-e minimum ! do i = its,ite if(cnvflg(i)) then hmin(i) = heo(i,kbcon1(i)) lmin(i) = kbmax jmin(i) = kbmax endif enddo ! do k = kts1,kbmax do i = its,ite if(cnvflg(i).and.k.gt.kbcon1(i).and.heo(i,k).lt.hmin(i)) then lmin(i) = k + 1 hmin(i) = heo(i,k) endif enddo enddo ! ! make sure that jmin is within the cloud ! do i = its,ite if(cnvflg(i)) then jmin(i) = min(lmin(i),ktcon(i)-1) jmin(i) = max(jmin(i),kbcon1(i)+1) if(jmin(i).ge.ktcon(i)) cnvflg(i) = .false. if(jmin(i).le.kbcon(i)) cnvflg(i) = .false. endif enddo ! ! specify upper limit of mass flux at cloud base ! do i = its,ite if(cnvflg(i)) then k = kbcon(i) dp = 1000. * del(i,k) xmbmax(i) = dp / (g_ * dt2) endif enddo ! ! compute cloud moisture property and precipitation ! do k = kts1,kmax do i = its,ite if (cnvflg(i).and.k.gt.kb(i)) then alpha1 = min((-0.7*log(100.)+24.)*0.0001,c0) beta1 = 0.07 ! if (to(i,k).gt.t0c_) then c0fac = alpha1 else c0fac = alpha1*exp(beta1*(to(i,k)-t0c_)) endif ! c0fac = max(0.0,c0fac) c0t(i,k) = c0fac endif ! if(cnvflg(i).and.k.gt.kb(i).and.k.lt.ktcon(i)) then dz1 = (zi(i,k+1) - zi(i,k)) gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k) & + gamma * dbyo(i,k) / (hvap_ * (1. + gamma)) tem = 0.5 * (xlamb(i,k)+xlamb(i,k-1)) * dz1 tem1 = 0.5 * xlamud(i) * dz1 factor = 1. + tem - tem1 qcko(i,k) = ((1.-tem1)*qcko(i,k-1)+tem*0.5* & (qo(i,k)+qo(i,k-1)))/factor qcirs(i,k) = eta(i,k) * qcko(i,k) - eta(i,k) * qrch ! ! check if there is excess moisture to release latent heat ! if(qcirs(i,k).gt.0. .and. k.ge.kbcon(i)) then etah = .5 * (eta(i,k) + eta(i,k-1)) if(ncloud.gt.0..and.k.gt.jmin(i)) then dp = 1000. * del(i,k) ptem = c0t(i,k) + c1t(i,k) qlk = qcirs(i,k) / (eta(i,k) + etah * ptem * dz1) dellal(i,k) = etah * c1t(i,k) * dz1 * qlk * g_ / dp else qlk = qcirs(i,k) / (eta(i,k) + etah * c0t(i,k) * dz1) endif pwo(i,k) = etah * c0t(i,k) * dz1 * qlk qc = qlk + qrch qcko(i,k) = qc pwavo(i) = pwavo(i) + pwo(i,k) buo(i,k) = buo(i,k) - g_ * qlk ! ! compute buoyancy and drag for updraft velocity ! if (k.ge.kbcon(i)) then rfact = 1. + fv_ * cp_ * gamma & * to(i,k) / hvap_ buo(i,k) = buo(i,k) + (g_ / (cp_ * to(i,k))) & * dbyo(i,k) / (1. + gamma) & * rfact buo(i,k) = buo(i,k) + g_ * fv_ * & max(0.,(qeso(i,k) - qo(i,k))) drag(i,k) = max(xlamb(i,k),xlamud(i)) endif endif endif enddo enddo ! ! calculate cloud work function at t+dt ! do i = its,ite if (cnvflg(i)) then aa1(i) = 0. endif enddo ! do k = kts1,kmax do i = its,ite if (cnvflg(i)) then if (k.ge.kbcon(i) .and. k.lt.ktcon(i)) then dz1 = zl(i,k+1) - zl(i,k) aa1(i) = aa1(i) + buo(i,k) * dz1 endif endif enddo enddo ! do i = its,ite if(cnvflg(i).and.aa1(i).le.0.) cnvflg(i) = .false. enddo ! totflg = .true. do i = its,ite totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return ! ! estimate the convective overshooting as the level ! where the [aafac * cloud work function] becomes zero, ! which is the final cloud top ! do i = its,ite if (cnvflg(i)) then aa2(i) = aafac * aa1(i) endif enddo ! do i = its,ite flg(i) = cnvflg(i) ktcon1(i) = kmax1 enddo ! do k = kts1,kmax do i = its, ite if (flg(i)) then if(k.ge.ktcon(i).and.k.lt.kmax) then dz1 = zl(i,k+1) - zl(i,k) gamma = el2orc * qeso(i,k) / (to(i,k)**2) rfact = 1. + fv_ * cp_ * gamma* to(i,k) / hvap_ aa2(i) = aa2(i) +dz1 * (g_ / (cp_ * to(i,k))) & * dbyo(i,k) / (1. + gamma)* rfact if(aa2(i).lt.0.) then ktcon1(i) = k flg(i) = .false. endif endif endif enddo enddo ! ! compute cloud moisture property, detraining cloud water ! and precipitation in overshooting layers ! do k = kts1,kmax do i = its,ite if (cnvflg(i)) then if(k.ge.ktcon(i).and.k.lt.ktcon1(i)) then dz = (zi(i,k+1) - zi(i,k)) gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k)+ gamma * dbyo(i,k) / (hvap_ * (1. + gamma)) tem = 0.5 * (xlamb(i,k)+xlamb(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 qcko(i,k) = ((1.-tem1)*qcko(i,k-1)+tem*0.5* & (qo(i,k)+qo(i,k-1)))/factor qcirs(i,k) = eta(i,k) * qcko(i,k) - eta(i,k) * qrch ! ! check if there is excess moisture to release latent heat ! if(qcirs(i,k).gt.0.) then etah = .5 * (eta(i,k) + eta(i,k-1)) if(ncloud.gt.0.) then dp = 1000. * del(i,k) qlk = qcirs(i,k) / (eta(i,k) + etah * (c0t(i,k) + c1t(i,k)) * dz) dellal(i,k) = etah * c1t(i,k) * dz * qlk * g_ / dp else qlk = qcirs(i,k) / (eta(i,k) + etah * c0t(i,k) * dz) endif pwo(i,k) = etah * c0t(i,k) * dz * qlk qc = qlk + qrch qcko(i,k) = qc pwavo(i) = pwavo(i) + pwo(i,k) endif endif endif enddo enddo ! ! compute updraft velocity square(wu2) ! bb1 = 2. * (1.+bet1*cd1) bb2 = 2. / (f1*(1.+gam1)) ! ! bb1 = 12.0 ! bb2 = 0.67 ! do i = its,ite if (cnvflg(i)) then k = kbcon1(i) po = .5 * (p(i,k) + p(i,k+1)) tem = po / (rd_ * to(i,k)) wucb = -10.*dot(i,k) / (tem * g_) if (wucb.gt.0.) then wu2(i,k) = wucb * wucb else wu2(i,k) = 0. endif endif enddo ! do k = kts1,kmax do i = its,ite if (cnvflg(i)) then if (k.gt.kbcon1(i) .and. k.lt.ktcon(i)) then dz = zi(i,k+1) - zi(i,k) tem = 0.25 * bb1 * (drag(i,k)+drag(i,k-1)) * dz tem1 = 0.5 * bb2 * (buo(i,k)+buo(i,k-1)) * dz ptem = (1. - tem) * wu2(i,k-1) ptem1 = 1. + tem wu2(i,k) = (ptem + tem1) / ptem1 wu2(i,k) = max(wu2(i,k), 0.) endif endif enddo enddo ! ! compute mean updraft velocity and mean grid-scale vertical velocity ! wc = 0. ; wbar = 0. ; sumx = 0. ! ptem = -0.5 * rd_ / g_ do k = kts1,kmax do i = its,ite po1(i,k) = .5 * (p(i,k) + p(i,k+1)) enddo enddo ! do k = kts1,kmax do i = its,ite if (cnvflg(i)) then if (k.gt.kbcon1(i) .and. k.lt.ktcon(i)) then dz = zi(i,k+1) - zi(i,k) tem = 0.5 * (sqrt(wu2(i,k)) + sqrt(wu2(i,k-1))) wc(i) = wc(i) + tem * dz tem = 10. * dot(i,k) * to(i,k) / po1(i,k) tem1 = 10. * dot(i,k-1) * to(i,k-1) / po1(i,k-1) wbar(i) = wbar(i) + ptem * (tem + tem1) * dz sumx(i) = sumx(i) + dz endif endif enddo enddo ! do i = its,ite if (cnvflg(i)) then if (sumx(i) == 0.) then cnvflg(i) = .false. else wc(i) = wc(i) / sumx(i) wbar(i) = wbar(i) / sumx(i) endif if (wc(i).lt.1.e-4) cnvflg(i) = .false. endif enddo ! ! compute mean cloud core fraction ! assume mean cloud core fraction to be the ratio of ! mean grid-scale vertical velocity (wbar) and mean updraft velocity ! do i = its,ite if (cnvflg(i)) then tem = wbar(i) / wc(i) tem = max(tem, 0.) clear(i) = 1. - tem clear(i) = max(min(clear(i), 1.0), 0.) if (wbar(i).gt.0. .and. wbar(i).gt.wc(i)) cnvflg(i) = .false. endif enddo ! ! exchange ktcon with ktcon1 ! do i = its,ite if(cnvflg(i)) then kk = ktcon(i) ktcon(i) = ktcon1(i) ktcon1(i) = kk endif enddo ! do i = its,ite if (ktcon(i).le.kb(i)) cnvflg(i) = .false. enddo ! do k = kts,kte do i = its,ite if (cnvflg(i)) then if (k.le.ktcon(i)) then pgcon(i,k) = 0.5+0.5*exp(3.*(zl(i,k)-zl(i,ktcon(i)))/zl(i,ktcon(i))) else pgcon(i,k) = 1.0 endif endif pgcon(i,k) = min(pgcon(i,k), 1.0) pgcon(i,k) = max(pgcon(i,k), 0.5) enddo enddo ! do k = kts1,kmax1 do i = its,ite if (cnvflg(i) .and. k.gt.kb(i)) then dz = zi(i,k+1) - zi(i,k) tem = 0.5 * (xlamb(i,k)+xlamb(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 ptem = 0.5 * tem + pgcon(i,k) ptem1 = 0.5 * tem - pgcon(i,k) ucko(i,k) = ((1.-tem1)*ucko(i,k-1)+ptem*uo(i,k) & +ptem1*uo(i,k-1))/factor vcko(i,k) = ((1.-tem1)*vcko(i,k-1)+ptem*vo(i,k) & +ptem1*vo(i,k-1))/factor endif enddo enddo ! ! this section is ready for cloud water ! if (ncloud.gt.0) then ! ! compute liquid and vapor separation at cloud top ! do i = its,ite if(cnvflg(i)) then k = ktcon(i)-1 gamma = el2orc * qeso(i,k) / (to(i,k)**2) qrch = qeso(i,k) & + gamma * dbyo(i,k) / (hvap_ * (1. + gamma)) dq = qcko(i,k) - qrch ! ! check if there is excess moisture to release latent heat ! if(dq.gt.0.) then qlko_ktcon(i) = dq * sigma qcko(i,k) = qrch + dq * (1.-sigma) endif endif enddo endif ! ! ..... downdraft calculations ..... ! ! determine downdraft strength in terms of wind shear ! do i = its,ite if(cnvflg(i)) then vshear(i) = 0. endif enddo ! do k = kts1,kmax do i = its,ite if(k.gt.kb(i).and.k.le.ktcon(i).and.cnvflg(i)) then shear= sqrt((uo(i,k)-uo(i,k-1)) ** 2 & + (vo(i,k)-vo(i,k-1)) ** 2) vshear(i) = vshear(i) + shear endif enddo enddo ! do i = its,ite if(cnvflg(i)) then vshear(i) = 1.e3 * vshear(i) / (zi(i,ktcon(i)+1)-zi(i,kb(i)+1)) e1 = 1.591-.639*vshear(i) & +.0953*(vshear(i)**2)-.00496*(vshear(i)**3) edt(i) = 1.-e1 ! ccn_f = 1.0 edt_s(i) = edt(i) edt_s(i) = min(edt_s(i),.9) edt_s(i) = max(edt_s(i),.0) edt(i) = min(edt(i),.9) edt(i) = max(edt(i),.0) edt(i) = edt(i) * ccn_f edto(i) = edt(i) edtx(i) = edt(i) endif enddo ! ! determine detrainment rate between 1 and kbdtr ! do i = its,ite if(cnvflg(i)) then sumx(i) = 0. endif enddo ! do k = kts,kmax1 do i = its,ite if(cnvflg(i).and.k.ge.1.and.k.lt.kbcon(i)) then dz = zi(i,k+2) - zi(i,k+1) sumx(i) = sumx(i) + dz endif enddo enddo ! do i = its,ite beta = betas if(slimsk(i).eq.1.) beta = betal if(cnvflg(i)) then kbdtr(i) = kbcon(i) kbdtr(i) = max(kbdtr(i),1) dz =(sumx(i)+zi(i,2))/float(kbcon(i)) tem = 1./float(kbcon(i)) xlamd(i) = (1.-beta**tem)/dz endif enddo ! ! determine downdraft mass flux ! do k = kts,kmax do i = its,ite if(cnvflg(i)) then etad(i,k) = 1. endif qrcdo(i,k) = 0. qrcd(i,k) = 0. enddo enddo ! do k = kmax1,kts,-1 do i = its,ite if(cnvflg(i)) then if(k.lt.jmin(i).and.k.ge.kbcon(i)) then dz = (zi(i,k+2) - zi(i,k+1)) ptem = xlamdd-xlamde etad(i,k) = etad(i,k+1) * (1.-ptem * dz) elseif(k.lt.kbcon(i)) then dz = (zi(i,k+2) - zi(i,k+1)) ptem = xlamd(i)+xlamdd-xlamde etad(i,k) = etad(i,k+1) * (1.-ptem * dz) endif endif enddo enddo ! ! downdraft moisture properties ! do i = its,ite if(cnvflg(i)) then pwevo(i) = 0. endif enddo ! do i = its,ite if(cnvflg(i)) then jmn = jmin(i) hcdo(i,jmn) = heo(i,jmn) qcdo(i,jmn) = qo(i,jmn) qrcdo(i,jmn) = qeso(i,jmn) ucdo(i,jmn) = uo(i,jmn) vcdo(i,jmn) = vo(i,jmn) endif enddo ! do k = kmax1,kts,-1 do i = its,ite if (cnvflg(i) .and. k.lt.jmin(i)) then dz = zi(i,k+2) - zi(i,k+1) if(k.ge.kbcon(i)) then tem = xlamde * dz tem1 = 0.5 * xlamdd * dz else tem = xlamde * dz tem1 = 0.5 * (xlamd(i)+xlamdd) * dz endif factor = 1. + tem - tem1 ptem = 0.5 * tem - pgcon(i,k) ptem1 = 0.5 * tem + pgcon(i,k) hcdo(i,k) = ((1.-tem1)*hcdo(i,k+1)+tem*0.5* & (heo(i,k)+heo(i,k+1)))/factor ucdo(i,k) = ((1.-tem1)*ucdo(i,k+1)+ptem*uo(i,k+1) & +ptem1*uo(i,k))/factor vcdo(i,k) = ((1.-tem1)*vcdo(i,k+1)+ptem*vo(i,k+1) & +ptem1*vo(i,k))/factor dbyo(i,k) = hcdo(i,k) - heso(i,k) endif enddo enddo ! do k = kmax1,kts,-1 do i = its,ite if(cnvflg(i).and.k.lt.jmin(i)) then dq = qeso(i,k) dt = to(i,k) gamma = el2orc * dq / dt**2 qrcdo(i,k) = dq+(1./hvap_)*(gamma/(1.+gamma))*dbyo(i,k) dz = zi(i,k+2) - zi(i,k+1) if(k.ge.kbcon(i)) then tem = xlamde * dz tem1 = 0.5 * xlamdd * dz else tem = xlamde * dz tem1 = 0.5 * (xlamd(i)+xlamdd) * dz endif factor = 1. + tem - tem1 qcdo(i,k) = ((1.-tem1)*qcdo(i,k+1)+tem*0.5* & (qo(i,k)+qo(i,k+1)))/factor pwdo(i,k) = etad(i,k+1) * qcdo(i,k) -etad(i,k+1) * qrcdo(i,k) qcdo(i,k) = qrcdo(i,k) pwevo(i) = pwevo(i) + pwdo(i,k) endif enddo enddo ! ! final downdraft strength dependent on precip ! efficiency (edt), normalized condensate (pwav), and ! evaporate (pwev) ! do i = its,ite edtmax = edtmaxl if(slimsk(i).eq.2.) edtmax = edtmaxs if(cnvflg(i)) then if(pwevo(i).lt.0.) then edto(i) = -edto(i) * pwavo(i) / pwevo(i) edto(i) = min(edto(i),edtmax) else edto(i) = 0. endif endif enddo ! ! downdraft cloudwork functions ! do k = kmax1,kts,-1 do i = its,ite if(cnvflg(i).and.k.lt.jmin(i)) then gamma = el2orc * qeso(i,k) / to(i,k)**2 dhh = hcdo(i,k) dt = to(i,k) dg = gamma dh = heso(i,k) dz = -1.*(zl(i,k+1)-zl(i,k)) aa1(i) = aa1(i)+edto(i)*dz*(g_/(cp_*dt))*((dhh-dh)/(1.+dg)) & *(1.+fv_*cp_*dg*dt/hvap_) aa1(i) = aa1(i)+edto(i)*dz*g_*fv_*max(0.,(qeso(i,k)-qo(i,k))) endif enddo enddo ! do i = its,ite if(cnvflg(i).and.aa1(i).le.0.) cnvflg(i) = .false. enddo ! totflg = .true. do i = its,ite totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return ! ! what would the change be, that a cloud with unit mass ! will do to the environment? ! do k = kts,kmax do i = its,ite if(cnvflg(i)) then dellah(i,k) = 0. dellaq(i,k) = 0. dellau(i,k) = 0. dellav(i,k) = 0. endif enddo enddo ! do i = its,ite if(cnvflg(i)) then dp = 1000. * del(i,1) dellah(i,1) = edto(i) * etad(i,1) * (hcdo(i,1) & - heo(i,1)) * g_ / dp dellaq(i,1) = edto(i) * etad(i,1) * (qcdo(i,1) & - qo(i,1)) * g_ / dp dellau(i,1) = edto(i) * etad(i,1) * (ucdo(i,1) & - uo(i,1)) * g_ / dp dellav(i,1) = edto(i) * etad(i,1) * (vcdo(i,1) & - vo(i,1)) * g_ / dp endif enddo ! ! changed due to subsidence and entrainment ! do k = kts1,kmax1 do i = its,ite if(cnvflg(i).and.k.lt.ktcon(i)) then aup = 1. if(k.le.kb(i)) aup = 0. adw = 1. if(k.gt.jmin(i)) adw = 0. dv1 = heo(i,k) dv2 = .5 * (heo(i,k) + heo(i,k-1)) dv3 = heo(i,k-1) dv1q = qo(i,k) dv2q = .5 * (qo(i,k) + qo(i,k-1)) dv3q = qo(i,k-1) dv1u = uo(i,k) dv2u = .5 * (uo(i,k) + uo(i,k-1)) dv3u = uo(i,k-1) dv1v = vo(i,k) dv2v = .5 * (vo(i,k) + vo(i,k-1)) dv3v = vo(i,k-1) dp = 1000. * del(i,k) dz = zi(i,k+1) - zi(i,k) tem = 0.5 * (xlamb(i,k)+xlamb(i,k-1)) tem1 = xlamud(i) if(k.le.kbcon(i)) then ptem = xlamde ptem1 = xlamd(i)+xlamdd else ptem = xlamde ptem1 = xlamdd endif ! dellah(i,k) = dellah(i,k) + & ((aup * eta(i,k) - adw * edto(i) * etad(i,k)) * dv1 & - (aup * eta(i,k-1) - adw * edto(i) * etad(i,k-1))* dv3 & - (aup*tem*eta(i,k-1)+adw*edto(i)*ptem*etad(i,k))*dv2*dz & + aup*tem1*eta(i,k-1)*.5*(hcko(i,k)+hcko(i,k-1))*dz & + adw*edto(i)*ptem1*etad(i,k)*.5*(hcdo(i,k)+hcdo(i,k-1))*dz) *g_/dp ! dellaq(i,k) = dellaq(i,k) + & ((aup * eta(i,k) - adw * edto(i) * etad(i,k)) * dv1q & - (aup * eta(i,k-1) - adw * edto(i) * etad(i,k-1))* dv3q & - (aup*tem*eta(i,k-1)+adw*edto(i)*ptem*etad(i,k))*dv2q*dz & + aup*tem1*eta(i,k-1)*.5*(qcko(i,k)+qcko(i,k-1))*dz & + adw*edto(i)*ptem1*etad(i,k)*.5*(qrcdo(i,k)+qrcdo(i,k-1))*dz) *g_/dp ! dellau(i,k) = dellau(i,k) + & ((aup * eta(i,k) - adw * edto(i) * etad(i,k)) * dv1u & - (aup * eta(i,k-1) - adw * edto(i) * etad(i,k-1))* dv3u & - (aup*tem*eta(i,k-1)+adw*edto(i)*ptem*etad(i,k))*dv2u*dz & + aup*tem1*eta(i,k-1)*.5*(ucko(i,k)+ucko(i,k-1))*dz & + adw*edto(i)*ptem1*etad(i,k)*.5*(ucdo(i,k)+ucdo(i,k-1))*dz & - pgcon(i,k)*(aup*eta(i,k-1)-adw*edto(i)*etad(i,k))*(dv1u-dv3u))*g_/dp ! dellav(i,k) = dellav(i,k) + & ((aup * eta(i,k) - adw * edto(i) * etad(i,k)) * dv1v & - (aup * eta(i,k-1) - adw * edto(i) * etad(i,k-1))* dv3v & - (aup*tem*eta(i,k-1)+adw*edto(i)*ptem*etad(i,k))*dv2v*dz & + aup*tem1*eta(i,k-1)*.5*(vcko(i,k)+vcko(i,k-1))*dz & + adw*edto(i)*ptem1*etad(i,k)*.5*(vcdo(i,k)+vcdo(i,k-1))*dz & - pgcon(i,k)*(aup*eta(i,k-1)-adw*edto(i)*etad(i,k))*(dv1v-dv3v))*g_/dp endif enddo enddo ! ! cloud top ! do i = its,ite if(cnvflg(i)) then indx = ktcon(i) dp = 1000. * del(i,indx) dv1 = heo(i,indx-1) dellah(i,indx) = eta(i,indx-1) * & (hcko(i,indx-1) - dv1) * g_ / dp dv1q = qo(i,indx-1) dellaq(i,indx) = eta(i,indx-1) * & (qcko(i,indx-1) - dv1q) * g_ / dp dv1u = uo(i,indx-1) dellau(i,indx) = eta(i,indx-1) * & (ucko(i,indx-1) - dv1u) * g_ / dp dv1v = vo(i,indx-1) dellav(i,indx) = eta(i,indx-1) * & (vcko(i,indx-1) - dv1v) * g_ / dp ! ! cloud water ! dellal(i,indx) = eta(i,indx-1) * qlko_ktcon(i) * g_ / dp endif enddo ! ! final changed variable per unit mass flux ! do k = kts,kmax do i = its,ite if(cnvflg(i).and.k.gt.ktcon(i)) then qo(i,k) = q1(i,k) to(i,k) = t1(i,k) endif if(cnvflg(i).and.k.le.ktcon(i)) then qo(i,k) = dellaq(i,k) * mbdt + q1(i,k) dellat = (dellah(i,k) - hvap_ * dellaq(i,k)) / cp_ to(i,k) = dellat * mbdt + t1(i,k) qo(i,k) = max(qo(i,k),1.0e-10) endif enddo enddo ! !------------------------------------------------------------------------------ ! ! the above changed environment is now used to calulate the ! effect the arbitrary cloud (with unit mass flux) ! which then is used to calculate the real mass flux, ! necessary to keep this change in balance with the large-scale ! destabilization. ! ! environmental conditions again ! !------------------------------------------------------------------------------ ! do k = kts,kmax do i = its,ite if(cnvflg(i)) then qeso(i,k)=0.01* fpvs(to(i,k),1,rd_,rv_,cvap_,cliq_,cice,xlv0,xls,psat,t0c_) qeso(i,k) = eps * qeso(i,k) / (p(i,k) + (eps-1.) * qeso(i,k)) qeso(i,k) = max(qeso(i,k),qmin_) ! tvo(i,k) = to(i,k) + fv_ * to(i,k) * max(qo(i,k),qmin_) endif enddo enddo ! ! moist static energy ! do k = kts,kmax1 do i = its,ite if(cnvflg(i)) then dz = .5 * (zl(i,k+1) - zl(i,k)) dp = .5 * (p(i,k+1) - p(i,k)) es = 0.01*fpvs(to(i,k+1),1,rd_,rv_,cvap_,cliq_,cice,xlv0,xls,psat,t0c_) pprime = p(i,k+1) + (eps-1.) * es qs = eps * es / pprime dqsdp = - qs / pprime desdt = es * (fact1 / to(i,k+1) + fact2 / (to(i,k+1)**2)) dqsdt = qs * p(i,k+1) * desdt / (es * pprime) gamma = el2orc * qeso(i,k+1) / (to(i,k+1)**2) dt = (g_ * dz + hvap_ * dqsdp * dp) / (cp_ * (1. + gamma)) dq = dqsdt * dt + dqsdp * dp to(i,k) = to(i,k+1) + dt qo(i,k) = qo(i,k+1) + dq po = .5 * (p(i,k) + p(i,k+1)) qeso(i,k) = 0.01* fpvs(to(i,k),1,rd_,rv_,cvap_,cliq_,cice,xlv0,xls,psat,t0c_) qeso(i,k) = eps * qeso(i,k) / (po + (eps-1.) * qeso(i,k)) qeso(i,k) = max(qeso(i,k),qmin_) qo(i,k) = max(qo(i,k), 1.0e-10) heo(i,k) = .5 * g_ * (zl(i,k) + zl(i,k+1)) + & cp_ * to(i,k) + hvap_ * qo(i,k) heso(i,k) = .5 * g_ * (zl(i,k) + zl(i,k+1)) + & cp_ * to(i,k) + hvap_ * qeso(i,k) endif enddo enddo ! k = kmax do i = its,ite if(cnvflg(i)) then heo(i,k) = g_ * zl(i,k) + cp_ * to(i,k) + hvap_ * qo(i,k) heso(i,k) = g_ * zl(i,k) + cp_ * to(i,k) + hvap_ * qeso(i,k) endif enddo ! do i = its,ite if(cnvflg(i)) then xaa0(i) = 0. xpwav(i) = 0. indx = kb(i) xhkb(i) = heo(i,indx) xqkb(i) = qo(i,indx) hcko(i,indx) = xhkb(i) qcko(i,indx) = xqkb(i) endif enddo ! ! ..... static control ..... ! ! moisture and cloud work functions ! do k = kts1,kmax1 do i = its,ite if(cnvflg(i).and.k.gt.kb(i).and.k.le.ktcon(i)) then dz = zi(i,k+1) - zi(i,k) tem = 0.5 * (xlamb(i,k)+xlamb(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 hcko(i,k) = ((1.-tem1)*hcko(i,k-1)+tem*0.5* & (heo(i,k)+heo(i,k-1)))/factor endif enddo enddo ! do k = kts1,kmax1 do i = its,ite if(cnvflg(i).and.k.gt.kb(i).and.k.lt.ktcon(i)) then alpha1 = min((-0.7*log(100.)+24.)*0.0001,c0) beta1 = 0.07 ! if (to(i,k).gt.t0c_) then c0fac = alpha1 else c0fac = alpha1*exp(beta1*(to(i,k)-t0c_)) endif ! c0fac = max(0.0,c0fac) c0t(i,k) = c0fac ! dz = zi(i,k+1) - zi(i,k) gamma = el2orc * qeso(i,k) / (to(i,k)**2) xdby = hcko(i,k) - heso(i,k) xqrch = qeso(i,k) & + gamma * xdby / (hvap_ * (1. + gamma)) tem = 0.5 * (xlamb(i,k)+xlamb(i,k-1)) * dz tem1 = 0.5 * xlamud(i) * dz factor = 1. + tem - tem1 qcko(i,k) = ((1.-tem1)*qcko(i,k-1)+tem*0.5*(qo(i,k)+qo(i,k-1)))/factor dq = eta(i,k) * qcko(i,k) - eta(i,k) * xqrch if(k.ge.kbcon(i).and.dq.gt.0.) then etah = .5 * (eta(i,k) + eta(i,k-1)) if(ncloud.gt.0..and.k.gt.jmin(i)) then qlk = dq / (eta(i,k) + etah * (c0t(i,k) + c1t(i,k)) * dz) else qlk = dq / (eta(i,k) + etah * c0t(i,k) * dz) endif xpw = etah * c0t(i,k) * dz * qlk if(k.lt.ktcon1(i)) then xaa0(i) = xaa0(i) - (zl(i,k+1) - zl(i,k)) * g_ * qlk endif qcko(i,k) = qlk + xqrch xpwav(i) = xpwav(i) + xpw endif endif ! if(cnvflg(i).and.k.ge.kbcon(i).and.k.lt.ktcon1(i)) then dz1 = zl(i,k+1) - zl(i,k) gamma = el2orc * qeso(i,k) / (to(i,k)**2) rfact = 1. + fv_ * cp_ * gamma & * to(i,k) / hvap_ xdby = hcko(i,k) - heso(i,k) xaa0(i) = xaa0(i) & + dz1 * (g_ / (cp_ * to(i,k))) & * xdby / (1. + gamma) & * rfact xaa0(i)=xaa0(i)+ & dz1 * g_ * fv_ * & max(0.,(qeso(i,k) - qo(i,k))) endif enddo enddo ! ! ..... downdraft calculations ..... ! ! downdraft moisture properties ! do i = its,ite xpwev(i) = 0. enddo ! do i = its,ite if(cnvflg(i)) then jmn = jmin(i) xhcd(i,jmn) = heo(i,jmn) xqcd(i,jmn) = qo(i,jmn) qrcd(i,jmn) = qeso(i,jmn) endif enddo ! do k = kmax1,kts,-1 do i = its,ite if(cnvflg(i).and.k.lt.jmin(i)) then dz = zi(i,k+2) - zi(i,k+1) if(k.ge.kbcon(i)) then tem = xlamde * dz tem1 = 0.5 * xlamdd * dz else tem = xlamde * dz tem1 = 0.5 * (xlamd(i)+xlamdd) * dz endif factor = 1. + tem - tem1 xhcd(i,k) = ((1.-tem1)*xhcd(i,k+1)+tem*0.5* & (heo(i,k)+heo(i,k+1)))/factor endif enddo enddo ! do k = kmax1,kts,-1 do i = its,ite if(cnvflg(i).and.k.lt.jmin(i)) then dq = qeso(i,k) dt = to(i,k) gamma = el2orc * dq / dt**2 dh = xhcd(i,k) - heso(i,k) qrcd(i,k) = dq+(1./hvap_)*(gamma/(1.+gamma))*dh dz = zi(i,k+2) - zi(i,k+1) if(k.ge.kbcon(i)) then tem = xlamde * dz tem1 = 0.5 * xlamdd * dz else tem = xlamde * dz tem1 = 0.5 * (xlamd(i)+xlamdd) * dz endif factor = 1. + tem - tem1 xqcd(i,k) = ((1.-tem1)*xqcd(i,k+1)+tem*0.5* & (qo(i,k)+qo(i,k+1)))/factor xpwd = etad(i,k+1) * (xqcd(i,k) - qrcd(i,k)) xqcd(i,k)= qrcd(i,k) xpwev(i) = xpwev(i) + xpwd endif enddo enddo ! do i = its,ite edtmax = edtmaxl if(slimsk(i).eq.2.) edtmax = edtmaxs if(cnvflg(i)) then if(xpwev(i).ge.0.) then edtx(i) = 0. else edtx(i) = -edtx(i) * xpwav(i) / xpwev(i) edtx(i) = min(edtx(i),edtmax) endif endif enddo ! ! downdraft cloudwork functions ! do k = kmax1,kts,-1 do i = its,ite if(cnvflg(i).and.k.lt.jmin(i)) then gamma = el2orc * qeso(i,k) / to(i,k)**2 dhh = xhcd(i,k) dt = to(i,k) dg = gamma dh = heso(i,k) dz =-1.*(zl(i,k+1)-zl(i,k)) xaa0(i) = xaa0(i)+edtx(i)*dz*(g_/(cp_*dt))*((dhh-dh)/(1.+dg)) & *(1.+fv_*cp_*dg*dt/hvap_) xaa0(i) = xaa0(i)+edtx(i)* & dz*g_*fv_*max(0.,(qeso(i,k)-qo(i,k))) endif enddo enddo ! ! calculate critical cloud work function ! do i = its,ite tem = zi(i,ktcon1(i)) - zi(i,kbcon1(i)) dtconv(i) = tfac * tem / wc(i) dtconv(i) = max(dtconv(i),dtmin) dtconv(i) = min(dtconv(i),dtmax) ! dtconv(i) = max(1800., dt2) enddo ! ! large scale forcing ! ! compute mean velocity between kb kbcon ! do i = its,ite if (cnvflg(i).and.slimsk(i).eq.2.) then wc(i) = 0. sumx(i) = 0. endif enddo ! do k = kts,kbmax do i = its,ite if (cnvflg(i).and.slimsk(i).eq.2.) then if (k.gt.kb(i) .and. k.le.kbcon(i)) then dz = zi(i,k+1) - zi(i,k) tem = sqrt(uo(i,k)**2 + vo(i,k)**2) wc(i) = wc(i) + tem * dz sumx(i) = sumx(i) + dz endif endif enddo enddo ! do i = its,ite if (cnvflg(i).and.slimsk(i).eq.2.) then wc(i) = wc(i) / sumx(i) dtpbl(i) = zl(i,kbcon(i))/wc(i) else dtpbl(i) = dtconv(i) endif enddo ! do i = its,ite if (cnvflg(i)) then apbl(i) = g_ * (hpbl(i)-hpbl_hold(i))/dt2 * dtpbl(i) apbl(i) = min(max(apbl(i),0.0),aa1(i)) endif enddo ! do i = its,ite if(cnvflg(i)) then f(i) = (aa1(i) - apbl(i)) / dtconv(i) if(f(i).le.0.) cnvflg(i) = .false. endif if(cnvflg(i)) then xk(i) = (xaa0(i) - aa1(i)) / mbdt if(xk(i).ge.0.) cnvflg(i) = .false. endif ! ! kernel, cloud base mass flux ! if(cnvflg(i)) then xmb(i) = -f(i) / xk(i) xmb(i) = xmb(i) * clear(i) * (1.-sigma) xmb(i) = min(xmb(i),xmbmax(i)) endif pden(i) = p(i,kbcon(i))/to(i,kbcon(i))/rd_ pdot(i) = 10.* dot(i,kbcon(i)) ! if (pden(i)*pdot(i).gt.xmb(i)) cnvflg(i) = .false. if (xmb(i).lt.pdot(i)/g_) cnvflg(i) = .false. enddo totflg = .true. do i = its,ite totflg = totflg .and. (.not. cnvflg(i)) enddo if(totflg) return ! ! restore t0 and qo to t1 and q1 in case convection stops ! do k = kts,kmax do i = its,ite if (cnvflg(i)) then to(i,k) = t1(i,k) qo(i,k) = q1(i,k) uo(i,k) = u1(i,k) vo(i,k) = v1(i,k) qeso(i,k) = 0.01*fpvs(t1(i,k),1,rd_,rv_,cvap_,cliq_,cice,xlv0,xls,psat,t0c_) qeso(i,k) = eps * qeso(i,k) / (p(i,k) + (eps-1.) * qeso(i,k)) qeso(i,k) = max(qeso(i,k),qmin_) endif enddo enddo ! ! feedback: simply the changes from the cloud with unit mass flux ! multiplied by the mass flux necessary to keep the ! equilibrium with the larger-scale. ! do i = its,ite delhbar(i) = 0. delqbar(i) = 0. deltbar(i) = 0. qcond(i) = 0. delubar(i) = 0. delvbar(i) = 0. enddo ! do k = kts,kmax do i = its,ite if (cnvflg(i).and.k.le.ktcon(i).and.dellaq(i,k).le.0.) then if (q1(i,k).gt.0.) then tem = dellaq(i,k) * xmb(i) * dt2 dellaq(i,k) = max(tem,-q1(i,k))/(xmb(i)*dt2) else dellaq(i,k) = 0.0 endif endif enddo enddo ! do k = kts,kmax do i = its,ite if(cnvflg(i).and.k.le.ktcon(i)) then dellat = (dellah(i,k) - hvap_ * dellaq(i,k)) / cp_ t1(i,k) = t1(i,k) + dellat * xmb(i) * dt2 q1(i,k) = q1(i,k) + dellaq(i,k) * xmb(i) * dt2 tem=1./rcs u1(i,k) = u1(i,k) + dellau(i,k) * xmb(i) * dt2 * tem v1(i,k) = v1(i,k) + dellav(i,k) * xmb(i) * dt2 * tem dp = 1000. * del(i,k) delhbar(i) = delhbar(i) + dellah(i,k)*xmb(i)*dp/g_ delqbar(i) = delqbar(i) + dellaq(i,k)*xmb(i)*dp/g_ deltbar(i) = deltbar(i) + dellat*xmb(i)*dp/g_ delubar(i) = delubar(i) + dellau(i,k)*xmb(i)*dp/g_ delvbar(i) = delvbar(i) + dellav(i,k)*xmb(i)*dp/g_ endif enddo enddo ! do k = kts,kmax do i = its,ite if (cnvflg(i) .and. k.le.ktcon(i)) then qeso(i,k)=0.01* fpvs(t1(i,k),1,rd_,rv_,cvap_,cliq_,cice,xlv0,xls,psat,t0c_) qeso(i,k) = eps * qeso(i,k)/(p(i,k) + (eps-1.)*qeso(i,k)) qeso(i,k) = max(qeso(i,k), qmin_) endif enddo enddo ! do i = its,ite rntot(i) = 0. delqev(i) = 0. delq2(i) = 0. flg(i) = cnvflg(i) enddo ! ! comptute rainfall ! do k = kmax,kts,-1 do i = its,ite if(cnvflg(i).and.k.lt.ktcon(i)) then aup = 1. if(k.le.kb(i)) aup = 0. adw = 1. if(k.ge.jmin(i)) adw = 0. rntot(i) = rntot(i) & + (aup * pwo(i,k) + adw * edto(i) * pwdo(i,k)) & * xmb(i) * .001 * dt2 endif enddo enddo ! ! conversion rainfall (m) and compute the evaporation of falling raindrops ! do k = kmax,kts,-1 do i = its,ite delq(i) = 0.0 deltv(i) = 0.0 qevap(i) = 0.0 if(cnvflg(i).and.k.lt.ktcon(i)) then aup = 1. if(k.le.kb(i)) aup = 0. adw = 1. if(k.ge.jmin(i)) adw = 0. rain(i) = rain(i) & + (aup * pwo(i,k) + adw * edto(i) * pwdo(i,k)) & * xmb(i) * .001 * dt2 qrsk(i,k) = aup * pwo(i,k) + adw * edto(i) * pwdo(i,k) endif ! if(cnvflg(i).and.flg(i).and.k.lt.ktcon(i)) then ccn_f = 1.0 evef = edt_s(i) * evfacts * ccn_f if(slimsk(i).eq.1.) evef = edt_s(i) * evfactl * ccn_f qcond(i) = evef * (q1(i,k) - qeso(i,k)) / (1. + el2orc * & qeso(i,k) / t1(i,k)**2) dp = 1000. * del(i,k) if(rain(i).gt.0..and.qcond(i).lt.0.) then qevap(i) = -qcond(i) * (1. - exp(-.32 * sqrt(dt2 * rain(i)))) qevap(i) = min(qevap(i), rain(i)*1000.*g_/dp) delq2(i) = delqev(i) + .001 * qevap(i) * dp / g_ if (delq2(i).gt.rntot(i)) then qevap(i) = 1000.* g_ * (rntot(i) - delqev(i)) / dp flg(i) = .false. endif endif if(rain(i).gt.0..and.qevap(i).gt.0.) then q1(i,k) = q1(i,k) + qevap(i) t1(i,k) = t1(i,k) - (hvap_/cp_) * qevap(i) rain(i) = rain(i) - .001 * qevap(i) * dp / g_ delqev(i) = delqev(i) + .001*dp*qevap(i)/g_ deltv(i) = - (hvap_/cp_)*qevap(i)/dt2 delq(i) = + qevap(i)/dt2 endif dellaq(i,k) = dellaq(i,k) + delq(i)/xmb(i) delqbar(i) = delqbar(i) + delq(i)*dp/g_ deltbar(i) = deltbar(i) + deltv(i)*dp/g_ endif ! if (cnvflg(i).and.k.lt.ktcon(i)) then qrs(i,k) = max(qrsk(i,k) - max(qevap(i),0.),0.) qci(i,k) = max(qcirs(i,k) - aup*pwo(i,k),0.) endif enddo enddo ! ! consider the negative rain in the event of rain evaporation and downdrafts ! do i = its,ite if(cnvflg(i)) then if(rain(i).lt.0..and..not.flg(i)) rain(i) = 0. if(rain(i).le.0.) then rain(i) = 0. else ktop(i) = ktcon(i) kbot(i) = kbcon(i) icps(i) = 1 endif endif enddo ! do k = kts,kmax do i = its,ite if(cnvflg(i).and.rain(i).le.0.) then t1(i,k) = to(i,k) q1(i,k) = qo(i,k) u1(i,k) = uo(i,k) v1(i,k) = vo(i,k) endif enddo enddo ! ! detrainment of cloud water and ice ! if (ncloud.gt.0) then do k = kts,kmax do i = its,ite if (cnvflg(i) .and. rain(i).gt.0.) then if (k.ge.kbcon(i).and.k.le.ktcon(i)) then tem = dellal(i,k) * xmb(i) * dt2 tem1 = max(0.0, min(1.0, (tcr-t1(i,k))*tcrf)) if (ncloud.ge.2) then qi2(i,k) = qi2(i,k) + tem * tem1 ! ice qc2(i,k) = qc2(i,k) + tem *(1.0-tem1) ! water else qc2(i,k) = qc2(i,k) + tem endif endif endif enddo enddo endif ! end subroutine nsas2d !------------------------------------------------------------------------------- REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) !------------------------------------------------------------------------------- IMPLICIT NONE !------------------------------------------------------------------------------- REAL :: t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & xai,xbi,ttp,tr INTEGER :: ice ! ttp=t0c+0.01 dldt=cvap-cliq xa=-dldt/rv xb=xa+hvap/(rv*ttp) dldti=cvap-cice xai=-dldti/rv xbi=xai+hsub/(rv*ttp) tr=ttp/t if(t.lt.ttp.and.ice.eq.1) then fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) else fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) endif ! if (t.lt.180.) then tr=ttp/180. if(t.lt.ttp.and.ice.eq.1) then fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) else fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) endif endif ! if (t.ge.330.) then tr=ttp/330 if(t.lt.ttp.and.ice.eq.1) then fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) else fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) endif endif ! END FUNCTION fpvs !------------------------------------------------------------------------------- ! !------------------------------------------------------------------------------- subroutine nsasinit(rthcuten,rqvcuten,rqccuten,rqicuten, & rucuten,rvcuten, & restart,p_qc,p_qi,p_first_scalar, & allowed_to_read, & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte ) !------------------------------------------------------------------------------- implicit none !------------------------------------------------------------------------------- logical , intent(in) :: allowed_to_read,restart integer , intent(in) :: ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte integer , intent(in) :: p_first_scalar, p_qi, p_qc real, dimension( ims:ime , kms:kme , jms:jme ) , intent(out) :: & rthcuten, & rqvcuten, & rucuten, & rvcuten, & rqccuten, & rqicuten integer :: i, j, k, itf, jtf, ktf ! jtf=min0(jte,jde-1) ktf=min0(kte,kde-1) itf=min0(ite,ide-1) ! if(.not.restart)then do j = jts,jtf do k = kts,ktf do i = its,itf rthcuten(i,k,j)=0. rqvcuten(i,k,j)=0. rucuten(i,k,j)=0. rvcuten(i,k,j)=0. enddo enddo enddo ! if (p_qc .ge. p_first_scalar) then do j = jts,jtf do k = kts,ktf do i = its,itf rqccuten(i,k,j)=0. enddo enddo enddo endif ! if (p_qi .ge. p_first_scalar) then do j = jts,jtf do k = kts,ktf do i = its,itf rqicuten(i,k,j)=0. enddo enddo enddo endif endif ! end subroutine nsasinit !------------------------------------------------------------------------------- ! END MODULE module_cu_ksas !