subroutine zmf5kf ( lot, ido, l1, na, cc, im1, in1, ch, im2, in2, wa ) !*****************************************************************************80 ! !! ZMF5KF is an FFTPACK5 auxiliary routine. ! ! ! ! Modified: ! ! 26 Ausust 2009 ! ! Author: ! ! Original complex single precision by Paul Swarztrauber, Richard Valent. ! Complex double precision version by John Burkardt. ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! implicit none integer ( kind = 4 ) ido integer ( kind = 4 ) in1 integer ( kind = 4 ) in2 integer ( kind = 4 ) l1 real ( kind = 8 ) cc(2,in1,l1,ido,5) real ( kind = 8 ) ch(2,in2,l1,5,ido) real ( kind = 8 ) chold1 real ( kind = 8 ) chold2 real ( kind = 8 ) ci2 real ( kind = 8 ) ci3 real ( kind = 8 ) ci4 real ( kind = 8 ) ci5 real ( kind = 8 ) cr2 real ( kind = 8 ) cr3 real ( kind = 8 ) cr4 real ( kind = 8 ) cr5 real ( kind = 8 ) di2 real ( kind = 8 ) di3 real ( kind = 8 ) di4 real ( kind = 8 ) di5 real ( kind = 8 ) dr2 real ( kind = 8 ) dr3 real ( kind = 8 ) dr4 real ( kind = 8 ) dr5 integer ( kind = 4 ) i integer ( kind = 4 ) im1 integer ( kind = 4 ) im2 integer ( kind = 4 ) k integer ( kind = 4 ) lot integer ( kind = 4 ) m1 integer ( kind = 4 ) m1d integer ( kind = 4 ) m2 integer ( kind = 4 ) m2s integer ( kind = 4 ) na real ( kind = 8 ) sn real ( kind = 8 ) ti2 real ( kind = 8 ) ti3 real ( kind = 8 ) ti4 real ( kind = 8 ) ti5 real ( kind = 8 ), parameter :: ti11 = -0.9510565162951536D+00 real ( kind = 8 ), parameter :: ti12 = -0.5877852522924731D+00 real ( kind = 8 ) tr2 real ( kind = 8 ) tr3 real ( kind = 8 ) tr4 real ( kind = 8 ) tr5 real ( kind = 8 ), parameter :: tr11 = 0.3090169943749474D+00 real ( kind = 8 ), parameter :: tr12 = -0.8090169943749474D+00 real ( kind = 8 ) wa(ido,4,2) m1d = ( lot - 1 ) * im1 + 1 m2s = 1 - im2 if ( 1 < ido ) then do k = 1, l1 m2 = m2s do m1 = 1, m1d, im1 m2 = m2 + im2 ti5 = cc(2,m1,k,1,2)-cc(2,m1,k,1,5) ti2 = cc(2,m1,k,1,2)+cc(2,m1,k,1,5) ti4 = cc(2,m1,k,1,3)-cc(2,m1,k,1,4) ti3 = cc(2,m1,k,1,3)+cc(2,m1,k,1,4) tr5 = cc(1,m1,k,1,2)-cc(1,m1,k,1,5) tr2 = cc(1,m1,k,1,2)+cc(1,m1,k,1,5) tr4 = cc(1,m1,k,1,3)-cc(1,m1,k,1,4) tr3 = cc(1,m1,k,1,3)+cc(1,m1,k,1,4) ch(1,m2,k,1,1) = cc(1,m1,k,1,1)+tr2+tr3 ch(2,m2,k,1,1) = cc(2,m1,k,1,1)+ti2+ti3 cr2 = cc(1,m1,k,1,1)+tr11*tr2+tr12*tr3 ci2 = cc(2,m1,k,1,1)+tr11*ti2+tr12*ti3 cr3 = cc(1,m1,k,1,1)+tr12*tr2+tr11*tr3 ci3 = cc(2,m1,k,1,1)+tr12*ti2+tr11*ti3 cr5 = ti11*tr5+ti12*tr4 ci5 = ti11*ti5+ti12*ti4 cr4 = ti12*tr5-ti11*tr4 ci4 = ti12*ti5-ti11*ti4 ch(1,m2,k,2,1) = cr2-ci5 ch(1,m2,k,5,1) = cr2+ci5 ch(2,m2,k,2,1) = ci2+cr5 ch(2,m2,k,3,1) = ci3+cr4 ch(1,m2,k,3,1) = cr3-ci4 ch(1,m2,k,4,1) = cr3+ci4 ch(2,m2,k,4,1) = ci3-cr4 ch(2,m2,k,5,1) = ci2-cr5 end do end do do i = 2, ido do k = 1, l1 m2 = m2s do m1 = 1, m1d, im1 m2 = m2 + im2 ti5 = cc(2,m1,k,i,2)-cc(2,m1,k,i,5) ti2 = cc(2,m1,k,i,2)+cc(2,m1,k,i,5) ti4 = cc(2,m1,k,i,3)-cc(2,m1,k,i,4) ti3 = cc(2,m1,k,i,3)+cc(2,m1,k,i,4) tr5 = cc(1,m1,k,i,2)-cc(1,m1,k,i,5) tr2 = cc(1,m1,k,i,2)+cc(1,m1,k,i,5) tr4 = cc(1,m1,k,i,3)-cc(1,m1,k,i,4) tr3 = cc(1,m1,k,i,3)+cc(1,m1,k,i,4) ch(1,m2,k,1,i) = cc(1,m1,k,i,1)+tr2+tr3 ch(2,m2,k,1,i) = cc(2,m1,k,i,1)+ti2+ti3 cr2 = cc(1,m1,k,i,1)+tr11*tr2+tr12*tr3 ci2 = cc(2,m1,k,i,1)+tr11*ti2+tr12*ti3 cr3 = cc(1,m1,k,i,1)+tr12*tr2+tr11*tr3 ci3 = cc(2,m1,k,i,1)+tr12*ti2+tr11*ti3 cr5 = ti11*tr5+ti12*tr4 ci5 = ti11*ti5+ti12*ti4 cr4 = ti12*tr5-ti11*tr4 ci4 = ti12*ti5-ti11*ti4 dr3 = cr3-ci4 dr4 = cr3+ci4 di3 = ci3+cr4 di4 = ci3-cr4 dr5 = cr2+ci5 dr2 = cr2-ci5 di5 = ci2-cr5 di2 = ci2+cr5 ch(1,m2,k,2,i) = wa(i,1,1)*dr2+wa(i,1,2)*di2 ch(2,m2,k,2,i) = wa(i,1,1)*di2-wa(i,1,2)*dr2 ch(1,m2,k,3,i) = wa(i,2,1)*dr3+wa(i,2,2)*di3 ch(2,m2,k,3,i) = wa(i,2,1)*di3-wa(i,2,2)*dr3 ch(1,m2,k,4,i) = wa(i,3,1)*dr4+wa(i,3,2)*di4 ch(2,m2,k,4,i) = wa(i,3,1)*di4-wa(i,3,2)*dr4 ch(1,m2,k,5,i) = wa(i,4,1)*dr5+wa(i,4,2)*di5 ch(2,m2,k,5,i) = wa(i,4,1)*di5-wa(i,4,2)*dr5 end do end do end do else if ( na == 1 ) then sn = 1.0D+00 / real ( 5 * l1, kind = 8 ) do k = 1, l1 m2 = m2s do m1 = 1, m1d, im1 m2 = m2 + im2 ti5 = cc(2,m1,k,1,2)-cc(2,m1,k,1,5) ti2 = cc(2,m1,k,1,2)+cc(2,m1,k,1,5) ti4 = cc(2,m1,k,1,3)-cc(2,m1,k,1,4) ti3 = cc(2,m1,k,1,3)+cc(2,m1,k,1,4) tr5 = cc(1,m1,k,1,2)-cc(1,m1,k,1,5) tr2 = cc(1,m1,k,1,2)+cc(1,m1,k,1,5) tr4 = cc(1,m1,k,1,3)-cc(1,m1,k,1,4) tr3 = cc(1,m1,k,1,3)+cc(1,m1,k,1,4) ch(1,m2,k,1,1) = sn*(cc(1,m1,k,1,1)+tr2+tr3) ch(2,m2,k,1,1) = sn*(cc(2,m1,k,1,1)+ti2+ti3) cr2 = cc(1,m1,k,1,1)+tr11*tr2+tr12*tr3 ci2 = cc(2,m1,k,1,1)+tr11*ti2+tr12*ti3 cr3 = cc(1,m1,k,1,1)+tr12*tr2+tr11*tr3 ci3 = cc(2,m1,k,1,1)+tr12*ti2+tr11*ti3 cr5 = ti11*tr5+ti12*tr4 ci5 = ti11*ti5+ti12*ti4 cr4 = ti12*tr5-ti11*tr4 ci4 = ti12*ti5-ti11*ti4 ch(1,m2,k,2,1) = sn*(cr2-ci5) ch(1,m2,k,5,1) = sn*(cr2+ci5) ch(2,m2,k,2,1) = sn*(ci2+cr5) ch(2,m2,k,3,1) = sn*(ci3+cr4) ch(1,m2,k,3,1) = sn*(cr3-ci4) ch(1,m2,k,4,1) = sn*(cr3+ci4) ch(2,m2,k,4,1) = sn*(ci3-cr4) ch(2,m2,k,5,1) = sn*(ci2-cr5) end do end do else sn = 1.0D+00 / real ( 5 * l1, kind = 8 ) do k = 1, l1 do m1 = 1, m1d, im1 ti5 = cc(2,m1,k,1,2) - cc(2,m1,k,1,5) ti2 = cc(2,m1,k,1,2) + cc(2,m1,k,1,5) ti4 = cc(2,m1,k,1,3) - cc(2,m1,k,1,4) ti3 = cc(2,m1,k,1,3) + cc(2,m1,k,1,4) tr5 = cc(1,m1,k,1,2) - cc(1,m1,k,1,5) tr2 = cc(1,m1,k,1,2) + cc(1,m1,k,1,5) tr4 = cc(1,m1,k,1,3) - cc(1,m1,k,1,4) tr3 = cc(1,m1,k,1,3) + cc(1,m1,k,1,4) chold1 = sn * ( cc(1,m1,k,1,1) + tr2 + tr3 ) chold2 = sn * ( cc(2,m1,k,1,1) + ti2 + ti3 ) cr2 = cc(1,m1,k,1,1) + tr11 * tr2 + tr12 * tr3 ci2 = cc(2,m1,k,1,1) + tr11 * ti2 + tr12 * ti3 cr3 = cc(1,m1,k,1,1) + tr12 * tr2 + tr11 * tr3 ci3 = cc(2,m1,k,1,1) + tr12 * ti2 + tr11 * ti3 cc(1,m1,k,1,1) = chold1 cc(2,m1,k,1,1) = chold2 cr5 = ti11 * tr5 + ti12 * tr4 ci5 = ti11 * ti5 + ti12 * ti4 cr4 = ti12 * tr5 - ti11 * tr4 ci4 = ti12 * ti5 - ti11 * ti4 cc(1,m1,k,1,2) = sn * ( cr2 - ci5 ) cc(1,m1,k,1,5) = sn * ( cr2 + ci5 ) cc(2,m1,k,1,2) = sn * ( ci2 + cr5 ) cc(2,m1,k,1,3) = sn * ( ci3 + cr4 ) cc(1,m1,k,1,3) = sn * ( cr3 - ci4 ) cc(1,m1,k,1,4) = sn * ( cr3 + ci4 ) cc(2,m1,k,1,4) = sn * ( ci3 - cr4 ) cc(2,m1,k,1,5) = sn * ( ci2 - cr5 ) end do end do end if return end