subroutine zmf3kf ( lot, ido, l1, na, cc, im1, in1, ch, im2, in2, wa ) !*****************************************************************************80 ! !! ZMF3KF is an FFTPACK5 auxiliary routine. ! ! ! ! Modified: ! ! 26 Ausust 2009 ! ! Author: ! ! Original complex single precision by Paul Swarztrauber, Richard Valent. ! Complex double precision version by John Burkardt. ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! implicit none integer ( kind = 4 ) ido integer ( kind = 4 ) in1 integer ( kind = 4 ) in2 integer ( kind = 4 ) l1 real ( kind = 8 ) cc(2,in1,l1,ido,3) real ( kind = 8 ) ch(2,in2,l1,3,ido) real ( kind = 8 ) ci2 real ( kind = 8 ) ci3 real ( kind = 8 ) cr2 real ( kind = 8 ) cr3 real ( kind = 8 ) di2 real ( kind = 8 ) di3 real ( kind = 8 ) dr2 real ( kind = 8 ) dr3 integer ( kind = 4 ) i integer ( kind = 4 ) im1 integer ( kind = 4 ) im2 integer ( kind = 4 ) k integer ( kind = 4 ) lot integer ( kind = 4 ) m1 integer ( kind = 4 ) m1d integer ( kind = 4 ) m2 integer ( kind = 4 ) m2s integer ( kind = 4 ) na real ( kind = 8 ) sn real ( kind = 8 ), parameter :: taui = -0.866025403784439D+00 real ( kind = 8 ), parameter :: taur = -0.5D+00 real ( kind = 8 ) ti2 real ( kind = 8 ) tr2 real ( kind = 8 ) wa(ido,2,2) m1d = ( lot - 1 ) * im1 + 1 m2s = 1 - im2 if ( 1 < ido ) then do k = 1, l1 m2 = m2s do m1 = 1, m1d, im1 m2 = m2 + im2 tr2 = cc(1,m1,k,1,2)+cc(1,m1,k,1,3) cr2 = cc(1,m1,k,1,1)+taur*tr2 ch(1,m2,k,1,1) = cc(1,m1,k,1,1)+tr2 ti2 = cc(2,m1,k,1,2)+cc(2,m1,k,1,3) ci2 = cc(2,m1,k,1,1)+taur*ti2 ch(2,m2,k,1,1) = cc(2,m1,k,1,1)+ti2 cr3 = taui*(cc(1,m1,k,1,2)-cc(1,m1,k,1,3)) ci3 = taui*(cc(2,m1,k,1,2)-cc(2,m1,k,1,3)) ch(1,m2,k,2,1) = cr2-ci3 ch(1,m2,k,3,1) = cr2+ci3 ch(2,m2,k,2,1) = ci2+cr3 ch(2,m2,k,3,1) = ci2-cr3 end do end do do i = 2, ido do k = 1, l1 m2 = m2s do m1 = 1, m1d, im1 m2 = m2 + im2 tr2 = cc(1,m1,k,i,2)+cc(1,m1,k,i,3) cr2 = cc(1,m1,k,i,1)+taur*tr2 ch(1,m2,k,1,i) = cc(1,m1,k,i,1)+tr2 ti2 = cc(2,m1,k,i,2)+cc(2,m1,k,i,3) ci2 = cc(2,m1,k,i,1)+taur*ti2 ch(2,m2,k,1,i) = cc(2,m1,k,i,1)+ti2 cr3 = taui*(cc(1,m1,k,i,2)-cc(1,m1,k,i,3)) ci3 = taui*(cc(2,m1,k,i,2)-cc(2,m1,k,i,3)) dr2 = cr2-ci3 dr3 = cr2+ci3 di2 = ci2+cr3 di3 = ci2-cr3 ch(2,m2,k,2,i) = wa(i,1,1)*di2-wa(i,1,2)*dr2 ch(1,m2,k,2,i) = wa(i,1,1)*dr2+wa(i,1,2)*di2 ch(2,m2,k,3,i) = wa(i,2,1)*di3-wa(i,2,2)*dr3 ch(1,m2,k,3,i) = wa(i,2,1)*dr3+wa(i,2,2)*di3 end do end do end do else if ( na == 1 ) then sn = 1.0D+00 / real ( 3 * l1, kind = 8 ) do k = 1, l1 m2 = m2s do m1 = 1, m1d, im1 m2 = m2 + im2 tr2 = cc(1,m1,k,1,2)+cc(1,m1,k,1,3) cr2 = cc(1,m1,k,1,1)+taur*tr2 ch(1,m2,k,1,1) = sn*(cc(1,m1,k,1,1)+tr2) ti2 = cc(2,m1,k,1,2)+cc(2,m1,k,1,3) ci2 = cc(2,m1,k,1,1)+taur*ti2 ch(2,m2,k,1,1) = sn*(cc(2,m1,k,1,1)+ti2) cr3 = taui*(cc(1,m1,k,1,2)-cc(1,m1,k,1,3)) ci3 = taui*(cc(2,m1,k,1,2)-cc(2,m1,k,1,3)) ch(1,m2,k,2,1) = sn*(cr2-ci3) ch(1,m2,k,3,1) = sn*(cr2+ci3) ch(2,m2,k,2,1) = sn*(ci2+cr3) ch(2,m2,k,3,1) = sn*(ci2-cr3) end do end do else sn = 1.0D+00 / real ( 3 * l1, kind = 8 ) do k = 1, l1 do m1 = 1, m1d, im1 tr2 = cc(1,m1,k,1,2)+cc(1,m1,k,1,3) cr2 = cc(1,m1,k,1,1)+taur*tr2 cc(1,m1,k,1,1) = sn*(cc(1,m1,k,1,1)+tr2) ti2 = cc(2,m1,k,1,2)+cc(2,m1,k,1,3) ci2 = cc(2,m1,k,1,1)+taur*ti2 cc(2,m1,k,1,1) = sn*(cc(2,m1,k,1,1)+ti2) cr3 = taui*(cc(1,m1,k,1,2)-cc(1,m1,k,1,3)) ci3 = taui*(cc(2,m1,k,1,2)-cc(2,m1,k,1,3)) cc(1,m1,k,1,2) = sn*(cr2-ci3) cc(1,m1,k,1,3) = sn*(cr2+ci3) cc(2,m1,k,1,2) = sn*(ci2+cr3) cc(2,m1,k,1,3) = sn*(ci2-cr3) end do end do end if return end