subroutine zmf2kf ( lot, ido, l1, na, cc, im1, in1, ch, im2, in2, wa ) !*****************************************************************************80 ! !! ZMF2KF is an FFTPACK5 auxiliary routine. ! ! ! ! Modified: ! ! 26 Ausust 2009 ! ! Author: ! ! Original complex single precision by Paul Swarztrauber, Richard Valent. ! Complex double precision version by John Burkardt. ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! implicit none integer ( kind = 4 ) ido integer ( kind = 4 ) in1 integer ( kind = 4 ) in2 integer ( kind = 4 ) l1 real ( kind = 8 ) cc(2,in1,l1,ido,2) real ( kind = 8 ) ch(2,in2,l1,2,ido) real ( kind = 8 ) chold1 real ( kind = 8 ) chold2 integer ( kind = 4 ) i integer ( kind = 4 ) im1 integer ( kind = 4 ) im2 integer ( kind = 4 ) k integer ( kind = 4 ) lid integer ( kind = 4 ) lot integer ( kind = 4 ) m1 integer ( kind = 4 ) m1d integer ( kind = 4 ) m2 integer ( kind = 4 ) m2s integer ( kind = 4 ) n integer ( kind = 4 ) na real ( kind = 8 ) sn real ( kind = 8 ) ti2 real ( kind = 8 ) tr2 real ( kind = 8 ) wa(ido,1,2) m1d = ( lot - 1 ) * im1 + 1 m2s = 1 - im2 if ( 1 < ido ) then do k = 1, l1 m2 = m2s do m1 = 1, m1d, im1 m2 = m2 + im2 ch(1,m2,k,1,1) = cc(1,m1,k,1,1)+cc(1,m1,k,1,2) ch(1,m2,k,2,1) = cc(1,m1,k,1,1)-cc(1,m1,k,1,2) ch(2,m2,k,1,1) = cc(2,m1,k,1,1)+cc(2,m1,k,1,2) ch(2,m2,k,2,1) = cc(2,m1,k,1,1)-cc(2,m1,k,1,2) end do end do do i = 2, ido do k = 1, l1 m2 = m2s do m1 = 1, m1d, im1 m2 = m2 + im2 ch(1,m2,k,1,i) = cc(1,m1,k,i,1)+cc(1,m1,k,i,2) tr2 = cc(1,m1,k,i,1)-cc(1,m1,k,i,2) ch(2,m2,k,1,i) = cc(2,m1,k,i,1)+cc(2,m1,k,i,2) ti2 = cc(2,m1,k,i,1)-cc(2,m1,k,i,2) ch(2,m2,k,2,i) = wa(i,1,1)*ti2-wa(i,1,2)*tr2 ch(1,m2,k,2,i) = wa(i,1,1)*tr2+wa(i,1,2)*ti2 end do end do end do else if ( na == 1 ) then sn = 1.0D+00 / real ( 2 * l1, kind = 8 ) do k = 1, l1 m2 = m2s do m1 = 1, m1d, im1 m2 = m2 + im2 ch(1,m2,k,1,1) = sn * ( cc(1,m1,k,1,1) + cc(1,m1,k,1,2) ) ch(1,m2,k,2,1) = sn * ( cc(1,m1,k,1,1) - cc(1,m1,k,1,2) ) ch(2,m2,k,1,1) = sn * ( cc(2,m1,k,1,1) + cc(2,m1,k,1,2) ) ch(2,m2,k,2,1) = sn * ( cc(2,m1,k,1,1) - cc(2,m1,k,1,2) ) end do end do else sn = 1.0D+00 / real ( 2 * l1, kind = 8 ) do k = 1, l1 do m1 = 1, m1d, im1 chold1 = sn * ( cc(1,m1,k,1,1) + cc(1,m1,k,1,2) ) cc(1,m1,k,1,2) = sn * ( cc(1,m1,k,1,1) - cc(1,m1,k,1,2) ) cc(1,m1,k,1,1) = chold1 chold2 = sn * ( cc(2,m1,k,1,1) + cc(2,m1,k,1,2) ) cc(2,m1,k,1,2) = sn * ( cc(2,m1,k,1,1) - cc(2,m1,k,1,2) ) cc(2,m1,k,1,1) = chold2 end do end do end if return end