subroutine sinqmf ( lot, jump, n, inc, x, lenx, wsave, lensav, & work, lenwrk, ier ) !*****************************************************************************80 ! !! SINQMF: real single precision forward sine quarter wave, multiple vectors. ! ! Discussion: ! ! SINQMF computes the one-dimensional Fourier transform of multiple ! sequences within a real array, where each sequence is a sine series ! with odd wave numbers. This transform is referred to as the forward ! transform or Fourier synthesis, transforming the sequences from ! spectral to physical space. ! ! This transform is normalized since a call to SINQMF followed ! by a call to SINQMB (or vice-versa) reproduces the original ! array within roundoff error. ! ! ! Copyright (C) 1995-2004, Scientific Computing Division, ! University Corporation for Atmospheric Research ! ! Modified: ! ! 03 April 2005 ! ! Author: ! ! Paul Swarztrauber ! Richard Valent ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! ! Input, integer ( kind = 4 ) LOT, the number of sequences to be transformed ! within array R. ! ! Input, integer ( kind = 4 ) JUMP, the increment between the locations, ! in array R, of the first elements of two consecutive sequences to ! be transformed. ! ! Input, integer ( kind = 4 ) N, the length of each sequence to be ! transformed. The transform is most efficient when N is a product of ! small primes. ! ! Input, integer ( kind = 4 ) INC, the increment between the locations, ! in array R, of two consecutive elements within the same sequence. ! ! Input/output, real ( kind = 4 ) R(LENR), containing LOT sequences, each ! having length N. R can have any number of dimensions, but the total ! number of locations must be at least LENR. On input, R contains the data ! to be transformed, and on output the transformed data. ! ! Input, integer ( kind = 4 ) LENR, the dimension of the R array. ! LENR must be at least (LOT-1)*JUMP + INC*(N-1)+ 1. ! ! Input, real ( kind = 4 ) WSAVE(LENSAV). WSAVE's contents must be ! initialized with a call to SINQMI before the first call to routine SINQMF ! or SINQMB for a given transform length N. WSAVE's contents may be re-used ! for subsequent calls to SINQMF and SINQMB with the same N. ! ! Input, integer ( kind = 4 ) LENSAV, the dimension of the WSAVE array. ! LENSAV must be at least 2*N + INT(LOG(REAL(N))) + 4. ! ! Workspace, real ( kind = 4 ) WORK(LENWRK). ! ! Input, integer ( kind = 4 ) LENWRK, the dimension of the WORK array. ! LENWRK must be at least LOT*N. ! ! Output, integer ( kind = 4 ) IER, error flag. ! 0, successful exit; ! 1, input parameter LENR not big enough; ! 2, input parameter LENSAV not big enough; ! 3, input parameter LENWRK not big enough; ! 4, input parameters INC,JUMP,N,LOT are not consistent; ! 20, input error returned by lower level routine. ! implicit none integer ( kind = 4 ) inc integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk integer ( kind = 4 ) ier integer ( kind = 4 ) ier1 integer ( kind = 4 ) jump integer ( kind = 4 ) k integer ( kind = 4 ) kc integer ( kind = 4 ) lenx integer ( kind = 4 ) lj integer ( kind = 4 ) lot integer ( kind = 4 ) m integer ( kind = 4 ) n integer ( kind = 4 ) ns2 real ( kind = 4 ) work(lenwrk) real ( kind = 4 ) wsave(lensav) real ( kind = 4 ) x(inc,*) logical xercon real ( kind = 4 ) xhold ier = 0 if ( lenx < ( lot - 1 ) * jump + inc * ( n - 1 ) + 1 ) then ier = 1 call xerfft ( 'sinqmf', 6 ) return end if if ( lensav < 2 * n + int ( log ( real ( n, kind = 4 ) ) ) + 4 ) then ier = 2 call xerfft ( 'sinqmf', 8 ) return end if if ( lenwrk < lot * n ) then ier = 3 call xerfft ( 'sinqmf', 10 ) return end if if ( .not. xercon ( inc, jump, n, lot ) ) then ier = 4 call xerfft ( 'sinqmf', -1 ) return end if if ( n == 1 ) then return end if ns2 = n / 2 lj = ( lot - 1 ) * jump + 1 do k = 1, ns2 kc = n - k do m = 1, lj, jump xhold = x(m,k) x(m,k) = x(m,kc+1) x(m,kc+1) = xhold end do end do call cosqmf ( lot, jump, n, inc, x, lenx, wsave, lensav, work, & lenwrk, ier1 ) if ( ier1 /= 0 ) then ier = 20 call xerfft ( 'sinqmf', -5 ) return end if do k = 2, n, 2 do m = 1, lj, jump x(m,k) = -x(m,k) end do end do return end