subroutine rfftmf ( lot, jump, n, inc, r, lenr, wsave, lensav, & work, lenwrk, ier ) !*****************************************************************************80 ! !! RFFTMF: real single precision forward FFT, 1D, multiple vectors. ! ! Discussion: ! ! RFFTMF computes the one-dimensional Fourier transform of multiple ! periodic sequences within a real array. This transform is referred ! to as the forward transform or Fourier analysis, transforming the ! sequences from physical to spectral space. ! ! This transform is normalized since a call to RFFTMF followed ! by a call to RFFTMB (or vice-versa) reproduces the original array ! within roundoff error. ! ! ! Copyright (C) 1995-2004, Scientific Computing Division, ! University Corporation for Atmospheric Research ! ! Modified: ! ! 27 March 2005 ! ! Author: ! ! Paul Swarztrauber ! Richard Valent ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! ! Input, integer ( kind = 4 ) LOT, the number of sequences to be transformed ! within array R. ! ! Input, integer ( kind = 4 ) JUMP, the increment between the locations, in ! array R, of the first elements of two consecutive sequences to be ! transformed. ! ! Input, integer ( kind = 4 ) N, the length of each sequence to be ! transformed. The transform is most efficient when N is a product of ! small primes. ! ! Input, integer ( kind = 4 ) INC, the increment between the locations, ! in array R, of two consecutive elements within the same sequence. ! ! Input/output, real ( kind = 4 ) R(LENR), real array containing LOT ! sequences, each having length N. R can have any number of dimensions, but ! the total number of locations must be at least LENR. On input, the ! physical data to be transformed, on output the spectral data. ! ! Input, integer ( kind = 4 ) LENR, the dimension of the R array. ! LENR must be at least (LOT-1)*JUMP + INC*(N-1) + 1. ! ! Input, real ( kind = 4 ) WSAVE(LENSAV). WSAVE's contents must be ! initialized with a call to RFFTMI before the first call to routine RFFTMF ! or RFFTMB for a given transform length N. ! ! Input, integer ( kind = 4 ) LENSAV, the dimension of the WSAVE array. ! LENSAV must be at least N + INT(LOG(REAL(N))) + 4. ! ! Workspace, real ( kind = 4 ) WORK(LENWRK). ! ! Input, integer ( kind = 4 ) LENWRK, the dimension of the WORK array. ! LENWRK must be at least LOT*N. ! ! Output, integer ( kind = 4 ) IER, error flag. ! 0, successful exit; ! 1, input parameter LENR not big enough; ! 2, input parameter LENSAV not big enough; ! 3, input parameter LENWRK not big enough; ! 4, input parameters INC, JUMP, N, LOT are not consistent. ! implicit none integer ( kind = 4 ) lenr integer ( kind = 4 ) lensav integer ( kind = 4 ) lenwrk integer ( kind = 4 ) ier integer ( kind = 4 ) inc integer ( kind = 4 ) jump integer ( kind = 4 ) lot integer ( kind = 4 ) n real ( kind = 4 ) r(lenr) real ( kind = 4 ) work(lenwrk) real ( kind = 4 ) wsave(lensav) logical xercon ier = 0 if ( lenr < ( lot - 1 ) * jump + inc * ( n - 1 ) + 1 ) then ier = 1 call xerfft ( 'rfftmf ', 6 ) return end if if ( lensav < n + int ( log ( real ( n, kind = 4 ) ) ) + 4 ) then ier = 2 call xerfft ( 'rfftmf ', 8 ) return end if if ( lenwrk < lot * n ) then ier = 3 call xerfft ( 'rfftmf ', 10 ) return end if if ( .not. xercon ( inc, jump, n, lot ) ) then ier = 4 call xerfft ( 'rfftmf ', -1 ) return end if if ( n == 1 ) then return end if call mrftf1 ( lot, jump, n, inc, r, work, wsave, wsave(n+1) ) return end