subroutine rfft1i ( n, wsave, lensav, ier ) !*****************************************************************************80 ! !! RFFT1I: initialization for RFFT1B and RFFT1F. ! ! Discussion: ! ! RFFT1I initializes array WSAVE for use in its companion routines ! RFFT1B and RFFT1F. The prime factorization of N together with a ! tabulation of the trigonometric functions are computed and stored ! in array WSAVE. Separate WSAVE arrays are required for different ! values of N. ! ! ! Copyright (C) 1995-2004, Scientific Computing Division, ! University Corporation for Atmospheric Research ! ! Modified: ! ! 25 March 2005 ! ! Author: ! ! Paul Swarztrauber ! Richard Valent ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the length of the sequence to be ! transformed. The transform is most efficient when N is a product of ! small primes. ! ! Output, real ( kind = 4 ) WSAVE(LENSAV), containing the prime factors of ! N and also containing certain trigonometric values which will be used in ! routines RFFT1B or RFFT1F. ! ! Input, integer ( kind = 4 ) LENSAV, the dimension of the WSAVE array. ! LENSAV must be at least N + INT(LOG(REAL(N))) + 4. ! ! Output, integer ( kind = 4 ) IER, error flag. ! 0, successful exit; ! 2, input parameter LENSAV not big enough. ! implicit none integer ( kind = 4 ) lensav integer ( kind = 4 ) ier integer ( kind = 4 ) n real ( kind = 4 ) wsave(lensav) ier = 0 if ( lensav < n + int ( log ( real ( n, kind = 4 ) ) ) + 4 ) then ier = 2 call xerfft ( 'rfft1i ', 3 ) return end if if ( n == 1 ) then return end if call rffti1 ( n, wsave(1), wsave(n+1) ) return end