subroutine r1f3kf ( ido, l1, cc, in1, ch, in2, wa1, wa2 ) !*****************************************************************************80 ! !! R1F3KF is an FFTPACK5 auxiliary routine. ! ! ! Copyright (C) 1995-2004, Scientific Computing Division, ! University Corporation for Atmospheric Research ! ! Modified: ! ! 27 March 2009 ! ! Author: ! ! Paul Swarztrauber ! Richard Valent ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! implicit none integer ( kind = 4 ) ido integer ( kind = 4 ) in1 integer ( kind = 4 ) in2 integer ( kind = 4 ) l1 real ( kind = 4 ) arg real ( kind = 4 ) cc(in1,ido,l1,3) real ( kind = 4 ) ch(in2,ido,3,l1) integer ( kind = 4 ) i integer ( kind = 4 ) ic integer ( kind = 4 ) idp2 integer ( kind = 4 ) k real ( kind = 4 ) taui real ( kind = 4 ) taur real ( kind = 4 ) wa1(ido) real ( kind = 4 ) wa2(ido) arg = 2.0E+00 * 4.0E+00 * atan ( 1.0E+00 ) / 3.0E+00 taur = cos ( arg ) taui = sin ( arg ) do k = 1, l1 ch(1,1,1,k) = cc(1,1,k,1) + ( cc(1,1,k,2) + cc(1,1,k,3) ) ch(1,1,3,k) = taui * ( cc(1,1,k,3) - cc(1,1,k,2) ) ch(1,ido,2,k) = cc(1,1,k,1) + taur * ( cc(1,1,k,2) + cc(1,1,k,3) ) end do if ( ido == 1 ) then return end if idp2 = ido + 2 do k = 1, l1 do i = 3, ido, 2 ic = idp2 - i ch(1,i-1,1,k) = cc(1,i-1,k,1)+((wa1(i-2)*cc(1,i-1,k,2)+ & wa1(i-1)*cc(1,i,k,2))+(wa2(i-2)*cc(1,i-1,k,3)+wa2(i-1)* & cc(1,i,k,3))) ch(1,i,1,k) = cc(1,i,k,1)+((wa1(i-2)*cc(1,i,k,2)- & wa1(i-1)*cc(1,i-1,k,2))+(wa2(i-2)*cc(1,i,k,3)-wa2(i-1)* & cc(1,i-1,k,3))) ch(1,i-1,3,k) = (cc(1,i-1,k,1)+taur*((wa1(i-2)* & cc(1,i-1,k,2)+wa1(i-1)*cc(1,i,k,2))+(wa2(i-2)* & cc(1,i-1,k,3)+wa2(i-1)*cc(1,i,k,3))))+(taui*((wa1(i-2)* & cc(1,i,k,2)-wa1(i-1)*cc(1,i-1,k,2))-(wa2(i-2)* & cc(1,i,k,3)-wa2(i-1)*cc(1,i-1,k,3)))) ch(1,ic-1,2,k) = (cc(1,i-1,k,1)+taur*((wa1(i-2)* & cc(1,i-1,k,2)+wa1(i-1)*cc(1,i,k,2))+(wa2(i-2)* & cc(1,i-1,k,3)+wa2(i-1)*cc(1,i,k,3))))-(taui*((wa1(i-2)* & cc(1,i,k,2)-wa1(i-1)*cc(1,i-1,k,2))-(wa2(i-2)* & cc(1,i,k,3)-wa2(i-1)*cc(1,i-1,k,3)))) ch(1,i,3,k) = (cc(1,i,k,1)+taur*((wa1(i-2)*cc(1,i,k,2)- & wa1(i-1)*cc(1,i-1,k,2))+(wa2(i-2)*cc(1,i,k,3)-wa2(i-1)* & cc(1,i-1,k,3))))+(taui*((wa2(i-2)*cc(1,i-1,k,3)+wa2(i-1)* & cc(1,i,k,3))-(wa1(i-2)*cc(1,i-1,k,2)+wa1(i-1)* & cc(1,i,k,2)))) ch(1,ic,2,k) = (taui*((wa2(i-2)*cc(1,i-1,k,3)+wa2(i-1)* & cc(1,i,k,3))-(wa1(i-2)*cc(1,i-1,k,2)+wa1(i-1)* & cc(1,i,k,2))))-(cc(1,i,k,1)+taur*((wa1(i-2)*cc(1,i,k,2)- & wa1(i-1)*cc(1,i-1,k,2))+(wa2(i-2)*cc(1,i,k,3)-wa2(i-1)* & cc(1,i-1,k,3)))) end do end do return end