subroutine mradb3 ( m, ido, l1, cc, im1, in1, ch, im2, in2, wa1, wa2 ) !*****************************************************************************80 ! !! MRADB3 is an FFTPACK5 auxiliary routine. ! ! ! Copyright (C) 1995-2004, Scientific Computing Division, ! University Corporation for Atmospheric Research ! ! Modified: ! ! 27 March 2009 ! ! Author: ! ! Paul Swarztrauber ! Richard Valent ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! implicit none integer ( kind = 4 ) ido integer ( kind = 4 ) in1 integer ( kind = 4 ) in2 integer ( kind = 4 ) l1 real ( kind = 4 ) arg real ( kind = 4 ) cc(in1,ido,3,l1) real ( kind = 4 ) ch(in2,ido,l1,3) integer ( kind = 4 ) i integer ( kind = 4 ) ic integer ( kind = 4 ) idp2 integer ( kind = 4 ) im1 integer ( kind = 4 ) im2 integer ( kind = 4 ) k integer ( kind = 4 ) m integer ( kind = 4 ) m1 integer ( kind = 4 ) m1d integer ( kind = 4 ) m2 integer ( kind = 4 ) m2s real ( kind = 4 ) taui real ( kind = 4 ) taur real ( kind = 4 ) wa1(ido) real ( kind = 4 ) wa2(ido) m1d = ( m - 1 ) * im1 + 1 m2s = 1 - im2 arg = 2.0E+00 * 4.0E+00 * atan ( 1.0E+00 ) / 3.0E+00 taur = cos ( arg ) taui = sin ( arg ) do k = 1, l1 m2 = m2s do m1 = 1, m1d, im1 m2 = m2 + im2 ch(m2,1,k,1) = cc(m1,1,1,k) + 2.0E+00 * cc(m1,ido,2,k) ch(m2,1,k,2) = cc(m1,1,1,k) + ( 2.0E+00 * taur ) * cc(m1,ido,2,k) & - ( 2.0E+00 * taui ) * cc(m1,1,3,k) ch(m2,1,k,3) = cc(m1,1,1,k) + ( 2.0E+00 * taur ) * cc(m1,ido,2,k) & + 2.0E+00 * taui * cc(m1,1,3,k) end do end do if ( ido == 1 ) then return end if idp2 = ido + 2 do k = 1, l1 do i = 3, ido, 2 ic = idp2 - i m2 = m2s do m1 = 1, m1d, im1 m2 = m2 + im2 ch(m2,i-1,k,1) = cc(m1,i-1,1,k)+(cc(m1,i-1,3,k)+cc(m1,ic-1,2,k)) ch(m2,i,k,1) = cc(m1,i,1,k)+(cc(m1,i,3,k)-cc(m1,ic,2,k)) ch(m2,i-1,k,2) = wa1(i-2)* & ((cc(m1,i-1,1,k)+taur*(cc(m1,i-1,3,k)+cc(m1,ic-1,2,k)))- & (taui*(cc(m1,i,3,k)+cc(m1,ic,2,k)))) - wa1(i-1)* & ((cc(m1,i,1,k)+taur*(cc(m1,i,3,k)-cc(m1,ic,2,k)))+ & (taui*(cc(m1,i-1,3,k)-cc(m1,ic-1,2,k)))) ch(m2,i,k,2) = wa1(i-2)* & ((cc(m1,i,1,k)+taur*(cc(m1,i,3,k)-cc(m1,ic,2,k)))+ & (taui*(cc(m1,i-1,3,k)-cc(m1,ic-1,2,k)))) + wa1(i-1)* & ((cc(m1,i-1,1,k)+taur*(cc(m1,i-1,3,k)+cc(m1,ic-1,2,k)))- & (taui*(cc(m1,i,3,k)+cc(m1,ic,2,k)))) ch(m2,i-1,k,3) = wa2(i-2)* & ((cc(m1,i-1,1,k)+taur*(cc(m1,i-1,3,k)+cc(m1,ic-1,2,k)))+ & (taui*(cc(m1,i,3,k)+cc(m1,ic,2,k)))) - wa2(i-1)* & ((cc(m1,i,1,k)+taur*(cc(m1,i,3,k)-cc(m1,ic,2,k)))- & (taui*(cc(m1,i-1,3,k)-cc(m1,ic-1,2,k)))) ch(m2,i,k,3) = wa2(i-2)* & ((cc(m1,i,1,k)+taur*(cc(m1,i,3,k)-cc(m1,ic,2,k)))- & (taui*(cc(m1,i-1,3,k)-cc(m1,ic-1,2,k)))) + wa2(i-1)* & ((cc(m1,i-1,1,k)+taur*(cc(m1,i-1,3,k)+cc(m1,ic-1,2,k)))+ & (taui*(cc(m1,i,3,k)+cc(m1,ic,2,k)))) end do end do end do return end