subroutine mcstb1 ( lot, jump, n, inc, x, wsave, dsum, work, ier ) !*****************************************************************************80 ! !! MCSTB1 is an FFTPACK5 auxiliary routine. ! ! ! Copyright (C) 1995-2004, Scientific Computing Division, ! University Corporation for Atmospheric Research ! ! Modified: ! ! 27 March 2009 ! ! Author: ! ! Paul Swarztrauber ! Richard Valent ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! implicit none integer ( kind = 4 ) inc real ( kind = 8 ) dsum(*) real ( kind = 4 ) fnm1s2 real ( kind = 4 ) fnm1s4 integer ( kind = 4 ) i integer ( kind = 4 ) ier integer ( kind = 4 ) ier1 integer ( kind = 4 ) jump integer ( kind = 4 ) k integer ( kind = 4 ) kc integer ( kind = 4 ) lenx integer ( kind = 4 ) lj integer ( kind = 4 ) lnsv integer ( kind = 4 ) lnwk integer ( kind = 4 ) lot integer ( kind = 4 ) m integer ( kind = 4 ) m1 integer ( kind = 4 ) modn integer ( kind = 4 ) n integer ( kind = 4 ) nm1 integer ( kind = 4 ) np1 integer ( kind = 4 ) ns2 real ( kind = 4 ) t1 real ( kind = 4 ) t2 real ( kind = 4 ) work(*) real ( kind = 4 ) wsave(*) real ( kind = 4 ) x(inc,*) real ( kind = 4 ) x1h real ( kind = 4 ) x1p3 real ( kind = 4 ) x2 real ( kind = 4 ) xi ier = 0 nm1 = n - 1 np1 = n + 1 ns2 = n / 2 lj = ( lot - 1 ) * jump + 1 if ( n < 2 ) then return end if if ( n == 2 ) then do m = 1, lj, jump x1h = x(m,1) + x(m,2) x(m,2) = x(m,1) - x(m,2) x(m,1) = x1h end do return end if if ( n == 3 ) then do m = 1, lj, jump x1p3 = x(m,1) + x(m,3) x2 = x(m,2) x(m,2) = x(m,1) - x(m,3) x(m,1) = x1p3 + x2 x(m,3) = x1p3 - x2 end do return end if do m = 1, lj, jump x(m,1) = x(m,1) + x(m,1) x(m,n) = x(m,n) + x(m,n) end do m1 = 0 do m = 1, lj, jump m1 = m1 + 1 dsum(m1) = x(m,1) - x(m,n) x(m,1) = x(m,1) + x(m,n) end do do k = 2, ns2 m1 = 0 do m = 1, lj, jump m1 = m1 + 1 kc = np1 - k t1 = x(m,k) + x(m,kc) t2 = x(m,k) - x(m,kc) dsum(m1) = dsum(m1) + wsave(kc) * t2 t2 = wsave(k) * t2 x(m,k) = t1 - t2 x(m,kc) = t1 + t2 end do end do modn = mod ( n, 2 ) if ( modn /= 0 ) then do m = 1, lj, jump x(m,ns2+1) = x(m,ns2+1) + x(m,ns2+1) end do end if lenx = ( lot - 1 ) * jump + inc * ( nm1 - 1 ) + 1 lnsv = nm1 + int ( log ( real ( nm1, kind = 4 ) ) ) + 4 lnwk = lot * nm1 call rfftmf ( lot, jump, nm1, inc, x, lenx, wsave(n+1), lnsv, work, & lnwk, ier1 ) if ( ier1 /= 0 ) then ier = 20 call xerfft ( 'mcstb1', -5 ) return end if fnm1s2 = real ( nm1, kind = 4 ) / 2.0E+00 m1 = 0 do m = 1, lj, jump m1 = m1 + 1 dsum(m1) = 0.5E+00 * dsum(m1) x(m,1) = fnm1s2 * x(m,1) end do if ( mod ( nm1, 2 ) == 0 ) then do m = 1, lj, jump x(m,nm1) = x(m,nm1) + x(m,nm1) end do end if fnm1s4 = real ( nm1, kind = 4 ) / 4.0E+00 do i = 3, n, 2 m1 = 0 do m = 1, lj, jump m1 = m1 + 1 xi = fnm1s4 * x(m,i) x(m,i) = fnm1s4 * x(m,i-1) x(m,i-1) = dsum(m1) dsum(m1) = dsum(m1) + xi end do end do if ( modn /= 0 ) then return end if m1 = 0 do m = 1, lj, jump m1 = m1 + 1 x(m,n) = dsum(m1) end do return end