subroutine dsintf1 ( n, inc, x, wsave, xh, work, ier ) !*****************************************************************************80 ! !! DSINTF1 is an FFTPACK5 auxiliary routine. ! ! ! ! Modified: ! ! 27 March 2009 ! ! Author: ! ! Original real single precision by Paul Swarztrauber, Richard Valent. ! Real double precision version by John Burkardt. ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! implicit none integer ( kind = 4 ) inc real ( kind = 8 ) dsum integer ( kind = 4 ) i integer ( kind = 4 ) ier integer ( kind = 4 ) ier1 integer ( kind = 4 ) k integer ( kind = 4 ) kc integer ( kind = 4 ) lnsv integer ( kind = 4 ) lnwk integer ( kind = 4 ) lnxh integer ( kind = 4 ) modn integer ( kind = 4 ) n integer ( kind = 4 ) np1 integer ( kind = 4 ) ns2 real ( kind = 8 ) sfnp1 real ( kind = 8 ) ssqrt3 real ( kind = 8 ) t1 real ( kind = 8 ) t2 real ( kind = 8 ) work(*) real ( kind = 8 ) wsave(*) real ( kind = 8 ) x(inc,*) real ( kind = 8 ) xh(*) real ( kind = 8 ) xhold ier = 0 if ( n < 2 ) then return end if if ( n == 2 ) then ssqrt3 = 1.0D+00 / sqrt ( 3.0D+00 ) xhold = ssqrt3 * ( x(1,1) + x(1,2) ) x(1,2) = ssqrt3 * ( x(1,1) - x(1,2) ) x(1,1) = xhold return end if np1 = n + 1 ns2 = n / 2 do k = 1, ns2 kc = np1 - k t1 = x(1,k) - x(1,kc) t2 = wsave(k) * ( x(1,k) + x(1,kc) ) xh(k+1) = t1 + t2 xh(kc+1) = t2 - t1 end do modn = mod ( n, 2 ) if ( modn /= 0 ) then xh(ns2+2) = 4.0D+00 * x(1,ns2+1) end if xh(1) = 0.0D+00 lnxh = np1 lnsv = np1 + int ( log ( real ( np1, kind = 8 ) ) ) + 4 lnwk = np1 call dfft1f ( np1, 1, xh, lnxh, wsave(ns2+1), lnsv, work, lnwk, ier1 ) if ( ier1 /= 0 ) then ier = 20 call xerfft ( 'DSINTF1', -5 ) return end if if ( mod ( np1, 2 ) == 0 ) then xh(np1) = xh(np1) + xh(np1) end if sfnp1 = 1.0D+00 / real ( np1, kind = 8 ) x(1,1) = 0.5D+00 * xh(1) dsum = x(1,1) do i = 3, n, 2 x(1,i-1) = 0.5D+00 * xh(i) dsum = dsum + 0.5D+00 * xh(i-1) x(1,i) = dsum end do if ( modn == 0 ) then x(1,n) = 0.5D+00 * xh(n+1) end if return end