subroutine dfftf1 ( n, in, c, ch, wa, fac ) !*****************************************************************************80 ! !! DFFTF1 is an FFTPACK5 auxiliary routine. ! ! ! ! Modified: ! ! 07 February 2006 ! ! Author: ! ! Original real single precision by Paul Swarztrauber, Richard Valent. ! Real double precision version by John Burkardt. ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! implicit none integer ( kind = 4 ) in integer ( kind = 4 ) n real ( kind = 8 ) c(in,*) real ( kind = 8 ) ch(*) real ( kind = 8 ) fac(15) integer ( kind = 4 ) idl1 integer ( kind = 4 ) ido integer ( kind = 4 ) ip integer ( kind = 4 ) iw integer ( kind = 4 ) ix2 integer ( kind = 4 ) ix3 integer ( kind = 4 ) ix4 integer ( kind = 4 ) j integer ( kind = 4 ) k1 integer ( kind = 4 ) kh integer ( kind = 4 ) l1 integer ( kind = 4 ) l2 integer ( kind = 4 ) modn integer ( kind = 4 ) na integer ( kind = 4 ) nf integer ( kind = 4 ) nl real ( kind = 8 ) sn real ( kind = 8 ) tsn real ( kind = 8 ) tsnm real ( kind = 8 ) wa(n) nf = int ( fac(2) ) na = 1 l2 = n iw = n do k1 = 1, nf kh = nf - k1 ip = int ( fac(kh+3) ) l1 = l2 / ip ido = n / l2 idl1 = ido * l1 iw = iw - ( ip - 1 ) * ido na = 1 - na if ( ip == 4 ) then ix2 = iw + ido ix3 = ix2 + ido if ( na == 0 ) then call d1f4kf ( ido, l1, c, in, ch, 1, wa(iw), wa(ix2), wa(ix3) ) else call d1f4kf ( ido, l1, ch, 1, c, in, wa(iw), wa(ix2), wa(ix3) ) end if else if ( ip == 2 ) then if ( na == 0 ) then call d1f2kf ( ido, l1, c, in, ch, 1, wa(iw) ) else call d1f2kf ( ido, l1, ch, 1, c, in, wa(iw) ) end if else if ( ip == 3 ) then ix2 = iw + ido if ( na == 0 ) then call d1f3kf ( ido, l1, c, in, ch, 1, wa(iw), wa(ix2) ) else call d1f3kf ( ido, l1, ch, 1, c, in, wa(iw), wa(ix2) ) end if else if ( ip == 5 ) then ix2 = iw + ido ix3 = ix2 + ido ix4 = ix3 + ido if ( na == 0 ) then call d1f5kf ( ido, l1, c, in, ch, 1, wa(iw), wa(ix2), wa(ix3), wa(ix4) ) else call d1f5kf ( ido, l1, ch, 1, c, in, wa(iw), wa(ix2), wa(ix3), wa(ix4) ) end if else if ( ido == 1 ) then na = 1 - na end if if ( na == 0 ) then call d1fgkf ( ido, ip, l1, idl1, c, c, c, in, ch, ch, 1, wa(iw) ) na = 1 else call d1fgkf ( ido, ip, l1, idl1, ch, ch, ch, 1, c, c, in, wa(iw) ) na = 0 end if end if l2 = l1 end do sn = 1.0D+00 / real ( n, kind = 8 ) tsn = 2.0D+00 / real ( n, kind = 8 ) tsnm = - tsn modn = mod ( n, 2 ) nl = n - 2 if ( modn /= 0 ) then nl = n - 1 end if if ( na == 0 ) then c(1,1) = sn * ch(1) do j = 2, nl, 2 c(1,j) = tsn * ch(j) c(1,j+1) = tsnm * ch(j+1) end do if ( modn == 0 ) then c(1,n) = sn * ch(n) end if else c(1,1) = sn * c(1,1) do j = 2, nl, 2 c(1,j) = tsn * c(1,j) c(1,j+1) = tsnm * c(1,j+1) end do if ( modn == 0 ) then c(1,n) = sn * c(1,n) end if end if return end