subroutine dcost1i ( n, wsave, lensav, ier ) !*****************************************************************************80 ! !! DCOST1I: initialization for DCOST1B and DCOST1F. ! ! Discussion: ! ! DCOST1I initializes array WSAVE for use in its companion routines ! DCOST1F and DCOST1B. The prime factorization of N together with a ! tabulation of the trigonometric functions are computed and stored ! in array WSAVE. Separate WSAVE arrays are required for different ! values of N. ! ! ! ! Modified: ! ! 07 February 2006 ! ! Author: ! ! Original real single precision by Paul Swarztrauber, Richard Valent. ! Real double precision version by John Burkardt. ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! ! Input, integer ( kind = 4 ) N, the length of the sequence to be ! transformed. The transform is most efficient when N-1 is a product ! of small primes. ! ! Input, integer ( kind = 4 ) LENSAV, dimension of WSAVE array. ! LENSAV must be at least 2*N + INT(LOG(REAL(N))) + 4. ! ! Output, real ( kind = 8 ) WSAVE(LENSAV), containing the prime factors ! of N and also containing certain trigonometric values which will be used ! in routines DCOST1B or DCOST1F. ! ! Output, integer ( kind = 4 ) IER, error flag. ! 0, successful exit; ! 2, input parameter LENSAV not big enough; ! 20, input error returned by lower level routine. ! implicit none integer ( kind = 4 ) lensav real ( kind = 8 ) dt real ( kind = 8 ) fk integer ( kind = 4 ) ier integer ( kind = 4 ) ier1 integer ( kind = 4 ) k integer ( kind = 4 ) kc integer ( kind = 4 ) lnsv integer ( kind = 4 ) n integer ( kind = 4 ) nm1 integer ( kind = 4 ) np1 integer ( kind = 4 ) ns2 real ( kind = 8 ) pi real ( kind = 8 ) wsave(lensav) ier = 0 if ( lensav < 2 * n + int ( log ( real ( n, kind = 8 ) ) ) + 4 ) then ier = 2 call xerfft ( 'DCOST1I', 3 ) return end if if ( n <= 3 ) then return end if nm1 = n - 1 np1 = n + 1 ns2 = n / 2 pi = 4.0E+00 * atan ( 1.0D+00 ) dt = pi / real ( nm1, kind = 8 ) fk = 0.0E+00 do k = 2, ns2 kc = np1 - k fk = fk + 1.0D+00 wsave(k) = 2.0D+00 * sin ( fk * dt ) wsave(kc) = 2.0D+00 * cos ( fk * dt ) end do lnsv = nm1 + int ( log ( real ( nm1, kind = 8 ) ) ) + 4 call dfft1i ( nm1, wsave(n+1), lnsv, ier1 ) if ( ier1 /= 0 ) then ier = 20 call xerfft ( 'DCOST1I', -5 ) return end if return end