subroutine dcosqf1 ( n, inc, x, wsave, work, ier ) !*****************************************************************************80 ! !! DCOSQF1 is an FFTPACK5 auxiliary routine. ! ! ! ! Modified: ! ! 17 November 2007 ! ! Author: ! ! Original real single precision by Paul Swarztrauber, Richard Valent. ! Real double precision version by John Burkardt. ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! implicit none integer ( kind = 4 ) inc integer ( kind = 4 ) i integer ( kind = 4 ) ier integer ( kind = 4 ) ier1 integer ( kind = 4 ) k integer ( kind = 4 ) kc integer ( kind = 4 ) lenx integer ( kind = 4 ) lnsv integer ( kind = 4 ) lnwk integer ( kind = 4 ) modn integer ( kind = 4 ) n integer ( kind = 4 ) np2 integer ( kind = 4 ) ns2 real ( kind = 8 ) work(*) real ( kind = 8 ) wsave(*) real ( kind = 8 ) x(inc,*) real ( kind = 8 ) xim1 ier = 0 ns2 = ( n + 1 ) / 2 np2 = n + 2 do k = 2, ns2 kc = np2 - k work(k) = x(1,k) + x(1,kc) work(kc) = x(1,k) - x(1,kc) end do modn = mod ( n, 2 ) if ( modn == 0 ) then work(ns2+1) = x(1,ns2+1) + x(1,ns2+1) end if do k = 2, ns2 kc = np2 - k x(1,k) = wsave(k-1) * work(kc) + wsave(kc-1) * work(k) x(1,kc) = wsave(k-1) * work(k) - wsave(kc-1) * work(kc) end do if ( modn == 0 ) then x(1,ns2+1) = wsave(ns2) * work(ns2+1) end if lenx = inc * ( n - 1 ) + 1 lnsv = n + int ( log ( real ( n, kind = 8 ) ) ) + 4 lnwk = n call dfft1f ( n, inc, x, lenx, wsave(n+1), lnsv, work, lnwk, ier1 ) if ( ier1 /= 0 ) then ier = 20 call xerfft ( 'dcosqf1', -5 ) return end if do i = 3, n, 2 xim1 = 0.5D+00 * ( x(1,i-1) + x(1,i) ) x(1,i) = 0.5D+00 * ( x(1,i-1) - x(1,i) ) x(1,i-1) = xim1 end do return end