subroutine d1f4kb ( ido, l1, cc, in1, ch, in2, wa1, wa2, wa3 ) !*****************************************************************************80 ! !! D1F4KB is an FFTPACK5 auxiliary routine. ! ! ! ! Modified: ! ! 27 March 2009 ! ! Author: ! ! Original real single precision by Paul Swarztrauber, Richard Valent. ! Real double precision version by John Burkardt. ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! implicit none integer ( kind = 4 ) ido integer ( kind = 4 ) in1 integer ( kind = 4 ) in2 integer ( kind = 4 ) l1 real ( kind = 8 ) cc(in1,ido,4,l1) real ( kind = 8 ) ch(in2,ido,l1,4) integer ( kind = 4 ) i integer ( kind = 4 ) ic integer ( kind = 4 ) idp2 integer ( kind = 4 ) k real ( kind = 8 ) sqrt2 real ( kind = 8 ) wa1(ido) real ( kind = 8 ) wa2(ido) real ( kind = 8 ) wa3(ido) sqrt2 = sqrt ( 2.0D+00 ) do k = 1, l1 ch(1,1,k,3) = ( cc(1,1,1,k) + cc(1,ido,4,k) ) & - ( cc(1,ido,2,k) + cc(1,ido,2,k) ) ch(1,1,k,1) = ( cc(1,1,1,k) + cc(1,ido,4,k) ) & + ( cc(1,ido,2,k) + cc(1,ido,2,k) ) ch(1,1,k,4) = ( cc(1,1,1,k) - cc(1,ido,4,k) ) & + ( cc(1,1,3,k) + cc(1,1,3,k) ) ch(1,1,k,2) = ( cc(1,1,1,k) - cc(1,ido,4,k) ) & - ( cc(1,1,3,k) + cc(1,1,3,k) ) end do if ( ido < 2 ) then return end if if ( 2 < ido ) then idp2 = ido + 2 do k = 1, l1 do i = 3, ido, 2 ic = idp2 - i ch(1,i-1,k,1) = (cc(1,i-1,1,k)+cc(1,ic-1,4,k)) & +(cc(1,i-1,3,k)+cc(1,ic-1,2,k)) ch(1,i,k,1) = (cc(1,i,1,k)-cc(1,ic,4,k)) & +(cc(1,i,3,k)-cc(1,ic,2,k)) ch(1,i-1,k,2) = wa1(i-2)*((cc(1,i-1,1,k)-cc(1,ic-1,4,k)) & -(cc(1,i,3,k)+cc(1,ic,2,k)))-wa1(i-1) & *((cc(1,i,1,k)+cc(1,ic,4,k))+(cc(1,i-1,3,k)-cc(1,ic-1,2,k))) ch(1,i,k,2) = wa1(i-2)*((cc(1,i,1,k)+cc(1,ic,4,k)) & +(cc(1,i-1,3,k)-cc(1,ic-1,2,k)))+wa1(i-1) & *((cc(1,i-1,1,k)-cc(1,ic-1,4,k))-(cc(1,i,3,k)+cc(1,ic,2,k))) ch(1,i-1,k,3) = wa2(i-2)*((cc(1,i-1,1,k)+cc(1,ic-1,4,k)) & -(cc(1,i-1,3,k)+cc(1,ic-1,2,k)))-wa2(i-1) & *((cc(1,i,1,k)-cc(1,ic,4,k))-(cc(1,i,3,k)-cc(1,ic,2,k))) ch(1,i,k,3) = wa2(i-2)*((cc(1,i,1,k)-cc(1,ic,4,k)) & -(cc(1,i,3,k)-cc(1,ic,2,k)))+wa2(i-1) & *((cc(1,i-1,1,k)+cc(1,ic-1,4,k))-(cc(1,i-1,3,k) & +cc(1,ic-1,2,k))) ch(1,i-1,k,4) = wa3(i-2)*((cc(1,i-1,1,k)-cc(1,ic-1,4,k)) & +(cc(1,i,3,k)+cc(1,ic,2,k)))-wa3(i-1) & *((cc(1,i,1,k)+cc(1,ic,4,k))-(cc(1,i-1,3,k)-cc(1,ic-1,2,k))) ch(1,i,k,4) = wa3(i-2)*((cc(1,i,1,k)+cc(1,ic,4,k)) & -(cc(1,i-1,3,k)-cc(1,ic-1,2,k)))+wa3(i-1) & *((cc(1,i-1,1,k)-cc(1,ic-1,4,k))+(cc(1,i,3,k)+cc(1,ic,2,k))) end do end do if ( mod ( ido, 2 ) == 1 ) then return end if end if do k = 1, l1 ch(1,ido,k,1) = ( cc(1,ido,1,k) + cc(1,ido,3,k) ) & + ( cc(1,ido,1,k) + cc(1,ido,3,k)) ch(1,ido,k,2) = sqrt2 * ( ( cc(1,ido,1,k) - cc(1,ido,3,k) ) & - ( cc(1,1,2,k) + cc(1,1,4,k) ) ) ch(1,ido,k,3) = ( cc(1,1,4,k) - cc(1,1,2,k) ) & + ( cc(1,1,4,k) - cc(1,1,2,k) ) ch(1,ido,k,4) = -sqrt2 * ( ( cc(1,ido,1,k) - cc(1,ido,3,k) ) & + ( cc(1,1,2,k) + cc(1,1,4,k) ) ) end do return end