subroutine costf1 ( n, inc, x, wsave, work, ier ) !*****************************************************************************80 ! !! COSTF1 is an FFTPACK5 auxiliary routine. ! ! ! Copyright (C) 1995-2004, Scientific Computing Division, ! University Corporation for Atmospheric Research ! ! Modified: ! ! 27 March 2009 ! ! Author: ! ! Paul Swarztrauber ! Richard Valent ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! implicit none integer ( kind = 4 ) inc real ( kind = 8 ) dsum integer ( kind = 4 ) i integer ( kind = 4 ) ier integer ( kind = 4 ) ier1 integer ( kind = 4 ) k integer ( kind = 4 ) kc integer ( kind = 4 ) lenx integer ( kind = 4 ) lnsv integer ( kind = 4 ) lnwk integer ( kind = 4 ) modn integer ( kind = 4 ) n integer ( kind = 4 ) nm1 integer ( kind = 4 ) np1 integer ( kind = 4 ) ns2 real ( kind = 4 ) snm1 real ( kind = 4 ) t1 real ( kind = 4 ) t2 real ( kind = 4 ) tx2 real ( kind = 4 ) work(*) real ( kind = 4 ) wsave(*) real ( kind = 4 ) x(inc,*) real ( kind = 4 ) x1h real ( kind = 4 ) x1p3 real ( kind = 4 ) xi ier = 0 nm1 = n - 1 np1 = n + 1 ns2 = n / 2 if ( n < 2 ) then return end if if ( n == 2 ) then x1h = x(1,1) + x(1,2) x(1,2) = 0.5E+00 * ( x(1,1) - x(1,2) ) x(1,1) = 0.5E+00 * x1h return end if if ( n == 3 ) then x1p3 = x(1,1) + x(1,3) tx2 = x(1,2) + x(1,2) x(1,2) = 0.5E+00 * ( x(1,1) - x(1,3) ) x(1,1) = 0.25E+00 * ( x1p3 + tx2 ) x(1,3) = 0.25E+00 * ( x1p3 - tx2 ) return end if dsum = x(1,1) - x(1,n) x(1,1) = x(1,1) + x(1,n) do k = 2, ns2 kc = np1 - k t1 = x(1,k) + x(1,kc) t2 = x(1,k) - x(1,kc) dsum = dsum + wsave(kc) * t2 t2 = wsave(k) * t2 x(1,k) = t1 - t2 x(1,kc) = t1 + t2 end do modn = mod ( n, 2 ) if ( modn /= 0 ) then x(1,ns2+1) = x(1,ns2+1) + x(1,ns2+1) end if lenx = inc * ( nm1 - 1 ) + 1 lnsv = nm1 + int ( log ( real ( nm1, kind = 4 ) ) ) + 4 lnwk = nm1 call rfft1f ( nm1, inc, x, lenx, wsave(n+1), lnsv, work, lnwk, ier1 ) if ( ier1 /= 0 ) then ier = 20 call xerfft ( 'costf1', -5 ) return end if snm1 = 1.0E+00 / real ( nm1, kind = 4 ) dsum = snm1 * dsum if ( mod ( nm1, 2 ) == 0 ) then x(1,nm1) = x(1,nm1) + x(1,nm1) end if do i = 3, n, 2 xi = 0.5E+00 * x(1,i) x(1,i) = 0.5E+00 * x(1,i-1) x(1,i-1) = dsum dsum = dsum + xi end do if ( modn == 0 ) then x(1,n) = dsum end if x(1,1) = 0.5E+00 * x(1,1) x(1,n) = 0.5E+00 * x(1,n) return end