subroutine cmf5kb ( lot, ido, l1, na, cc, im1, in1, ch, im2, in2, wa ) !*****************************************************************************80 ! !! CMF5KB is an FFTPACK5 auxiliary routine. ! ! ! Copyright (C) 1995-2004, Scientific Computing Division, ! University Corporation for Atmospheric Research ! ! Modified: ! ! 27 March 2009 ! ! Author: ! ! Paul Swarztrauber ! Richard Valent ! ! Reference: ! ! Paul Swarztrauber, ! Vectorizing the Fast Fourier Transforms, ! in Parallel Computations, ! edited by G. Rodrigue, ! Academic Press, 1982. ! ! Paul Swarztrauber, ! Fast Fourier Transform Algorithms for Vector Computers, ! Parallel Computing, pages 45-63, 1984. ! ! Parameters: ! implicit none integer ( kind = 4 ) ido integer ( kind = 4 ) in1 integer ( kind = 4 ) in2 integer ( kind = 4 ) l1 real ( kind = 4 ) cc(2,in1,l1,ido,5) real ( kind = 4 ) ch(2,in2,l1,5,ido) real ( kind = 4 ) chold1 real ( kind = 4 ) chold2 real ( kind = 4 ) ci2 real ( kind = 4 ) ci3 real ( kind = 4 ) ci4 real ( kind = 4 ) ci5 real ( kind = 4 ) cr2 real ( kind = 4 ) cr3 real ( kind = 4 ) cr4 real ( kind = 4 ) cr5 real ( kind = 4 ) di2 real ( kind = 4 ) di3 real ( kind = 4 ) di4 real ( kind = 4 ) di5 real ( kind = 4 ) dr2 real ( kind = 4 ) dr3 real ( kind = 4 ) dr4 real ( kind = 4 ) dr5 integer ( kind = 4 ) i integer ( kind = 4 ) im1 integer ( kind = 4 ) im2 integer ( kind = 4 ) k integer ( kind = 4 ) lot integer ( kind = 4 ) m1 integer ( kind = 4 ) m1d integer ( kind = 4 ) m2 integer ( kind = 4 ) m2s integer ( kind = 4 ) na real ( kind = 4 ) ti2 real ( kind = 4 ) ti3 real ( kind = 4 ) ti4 real ( kind = 4 ) ti5 real ( kind = 4 ), parameter :: ti11 = 0.9510565162951536E+00 real ( kind = 4 ), parameter :: ti12 = 0.5877852522924731E+00 real ( kind = 4 ) tr2 real ( kind = 4 ) tr3 real ( kind = 4 ) tr4 real ( kind = 4 ) tr5 real ( kind = 4 ), parameter :: tr11 = 0.3090169943749474E+00 real ( kind = 4 ), parameter :: tr12 = -0.8090169943749474E+00 real ( kind = 4 ) wa(ido,4,2) m1d = ( lot - 1 ) * im1 + 1 m2s = 1 - im2 if ( 1 < ido .or. na == 1 ) then do k = 1, l1 m2 = m2s do m1 = 1, m1d, im1 m2 = m2 + im2 ti5 = cc(2,m1,k,1,2)-cc(2,m1,k,1,5) ti2 = cc(2,m1,k,1,2)+cc(2,m1,k,1,5) ti4 = cc(2,m1,k,1,3)-cc(2,m1,k,1,4) ti3 = cc(2,m1,k,1,3)+cc(2,m1,k,1,4) tr5 = cc(1,m1,k,1,2)-cc(1,m1,k,1,5) tr2 = cc(1,m1,k,1,2)+cc(1,m1,k,1,5) tr4 = cc(1,m1,k,1,3)-cc(1,m1,k,1,4) tr3 = cc(1,m1,k,1,3)+cc(1,m1,k,1,4) ch(1,m2,k,1,1) = cc(1,m1,k,1,1)+tr2+tr3 ch(2,m2,k,1,1) = cc(2,m1,k,1,1)+ti2+ti3 cr2 = cc(1,m1,k,1,1)+tr11*tr2+tr12*tr3 ci2 = cc(2,m1,k,1,1)+tr11*ti2+tr12*ti3 cr3 = cc(1,m1,k,1,1)+tr12*tr2+tr11*tr3 ci3 = cc(2,m1,k,1,1)+tr12*ti2+tr11*ti3 cr5 = ti11*tr5+ti12*tr4 ci5 = ti11*ti5+ti12*ti4 cr4 = ti12*tr5-ti11*tr4 ci4 = ti12*ti5-ti11*ti4 ch(1,m2,k,2,1) = cr2-ci5 ch(1,m2,k,5,1) = cr2+ci5 ch(2,m2,k,2,1) = ci2+cr5 ch(2,m2,k,3,1) = ci3+cr4 ch(1,m2,k,3,1) = cr3-ci4 ch(1,m2,k,4,1) = cr3+ci4 ch(2,m2,k,4,1) = ci3-cr4 ch(2,m2,k,5,1) = ci2-cr5 end do end do do i = 2, ido do k = 1, l1 m2 = m2s do m1 = 1, m1d, im1 m2 = m2 + im2 ti5 = cc(2,m1,k,i,2)-cc(2,m1,k,i,5) ti2 = cc(2,m1,k,i,2)+cc(2,m1,k,i,5) ti4 = cc(2,m1,k,i,3)-cc(2,m1,k,i,4) ti3 = cc(2,m1,k,i,3)+cc(2,m1,k,i,4) tr5 = cc(1,m1,k,i,2)-cc(1,m1,k,i,5) tr2 = cc(1,m1,k,i,2)+cc(1,m1,k,i,5) tr4 = cc(1,m1,k,i,3)-cc(1,m1,k,i,4) tr3 = cc(1,m1,k,i,3)+cc(1,m1,k,i,4) ch(1,m2,k,1,i) = cc(1,m1,k,i,1)+tr2+tr3 ch(2,m2,k,1,i) = cc(2,m1,k,i,1)+ti2+ti3 cr2 = cc(1,m1,k,i,1)+tr11*tr2+tr12*tr3 ci2 = cc(2,m1,k,i,1)+tr11*ti2+tr12*ti3 cr3 = cc(1,m1,k,i,1)+tr12*tr2+tr11*tr3 ci3 = cc(2,m1,k,i,1)+tr12*ti2+tr11*ti3 cr5 = ti11*tr5+ti12*tr4 ci5 = ti11*ti5+ti12*ti4 cr4 = ti12*tr5-ti11*tr4 ci4 = ti12*ti5-ti11*ti4 dr3 = cr3-ci4 dr4 = cr3+ci4 di3 = ci3+cr4 di4 = ci3-cr4 dr5 = cr2+ci5 dr2 = cr2-ci5 di5 = ci2-cr5 di2 = ci2+cr5 ch(1,m2,k,2,i) = wa(i,1,1) * dr2 - wa(i,1,2) * di2 ch(2,m2,k,2,i) = wa(i,1,1) * di2 + wa(i,1,2) * dr2 ch(1,m2,k,3,i) = wa(i,2,1) * dr3 - wa(i,2,2) * di3 ch(2,m2,k,3,i) = wa(i,2,1) * di3 + wa(i,2,2) * dr3 ch(1,m2,k,4,i) = wa(i,3,1) * dr4 - wa(i,3,2) * di4 ch(2,m2,k,4,i) = wa(i,3,1) * di4 + wa(i,3,2) * dr4 ch(1,m2,k,5,i) = wa(i,4,1) * dr5 - wa(i,4,2) * di5 ch(2,m2,k,5,i) = wa(i,4,1) * di5 + wa(i,4,2) * dr5 end do end do end do else do k = 1, l1 do m1 = 1, m1d, im1 ti5 = cc(2,m1,k,1,2)-cc(2,m1,k,1,5) ti2 = cc(2,m1,k,1,2)+cc(2,m1,k,1,5) ti4 = cc(2,m1,k,1,3)-cc(2,m1,k,1,4) ti3 = cc(2,m1,k,1,3)+cc(2,m1,k,1,4) tr5 = cc(1,m1,k,1,2)-cc(1,m1,k,1,5) tr2 = cc(1,m1,k,1,2)+cc(1,m1,k,1,5) tr4 = cc(1,m1,k,1,3)-cc(1,m1,k,1,4) tr3 = cc(1,m1,k,1,3)+cc(1,m1,k,1,4) chold1 = cc(1,m1,k,1,1) + tr2 + tr3 chold2 = cc(2,m1,k,1,1) + ti2 + ti3 cr2 = cc(1,m1,k,1,1) + tr11 * tr2 + tr12 * tr3 ci2 = cc(2,m1,k,1,1) + tr11 * ti2 + tr12 * ti3 cr3 = cc(1,m1,k,1,1) + tr12 * tr2 + tr11 * tr3 ci3 = cc(2,m1,k,1,1) + tr12 * ti2 + tr11 * ti3 cc(1,m1,k,1,1) = chold1 cc(2,m1,k,1,1) = chold2 cr5 = ti11*tr5 + ti12*tr4 ci5 = ti11*ti5 + ti12*ti4 cr4 = ti12*tr5 - ti11*tr4 ci4 = ti12*ti5 - ti11*ti4 cc(1,m1,k,1,2) = cr2-ci5 cc(1,m1,k,1,5) = cr2+ci5 cc(2,m1,k,1,2) = ci2+cr5 cc(2,m1,k,1,3) = ci3+cr4 cc(1,m1,k,1,3) = cr3-ci4 cc(1,m1,k,1,4) = cr3+ci4 cc(2,m1,k,1,4) = ci3-cr4 cc(2,m1,k,1,5) = ci2-cr5 end do end do end if return end