!IDEAL:MODEL_LAYER:INITIALIZATION ! ! This MODULE holds the routines which are used to perform various initializations ! for the individual domains. ! This MODULE CONTAINS the following routines: ! initialize_field_test - 1. Set different fields to different constant ! values. This is only a test. If the correct ! domain is not found (based upon the "id") ! then a fatal error is issued. !----------------------------------------------------------------------- MODULE module_initialize_ideal USE module_domain USE module_io_domain USE module_state_description USE module_model_constants USE module_bc USE module_timing USE module_configure USE module_init_utilities USE module_soil_pre !AK/ak for full surface initialization #ifdef DM_PARALLEL USE module_dm #endif USE module_fr_fire_util, ONLY: continue_at_boundary,crash,read_array_2d_real, & read_array_2d_integer,interpolate_2d,set_ideal_coord,print_2d_stats USE module_fr_fire_phys, ONLY: fuelmc_g,read_namelist_fire CONTAINS !------------------------------------------------------------------- ! this is a wrapper for the solver-specific init_domain routines. ! Also dereferences the grid variables and passes them down as arguments. ! This is crucial, since the lower level routines may do message passing ! and this will get fouled up on machines that insist on passing down ! copies of assumed-shape arrays (by passing down as arguments, the ! data are treated as assumed-size -- ie. f77 -- arrays and the copying ! business is avoided). Fie on the F90 designers. Fie and a pox. SUBROUTINE init_domain ( grid ) IMPLICIT NONE ! Input data. TYPE (domain), POINTER :: grid ! Local data. INTEGER :: idum1, idum2 CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 ) CALL init_domain_rk( grid & ! #include "actual_new_args.inc" ! ) END SUBROUTINE init_domain !------------------------------------------------------------------- SUBROUTINE init_domain_rk ( grid & ! # include "dummy_new_args.inc" ! ) IMPLICIT NONE ! Input data. TYPE (domain), POINTER :: grid # include "dummy_new_decl.inc" TYPE (grid_config_rec_type) :: config_flags LOGICAL, EXTERNAL :: wrf_dm_on_monitor ! Local data INTEGER :: & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte, & i, j, k INTEGER, PARAMETER :: nl_max = 1000 REAL, DIMENSION(nl_max) :: zk, p_in, theta, rho, u, v, qv, pd_in INTEGER :: nl_in INTEGER :: icm,jcm, ii, im1, jj, jm1, loop, error, fid, nxc, nyc REAL :: B1, B2, B3, B4, B5 REAL :: u_mean,v_mean, f0, p_surf, p_level, qvf, z_at_v, z_at_u REAL :: z_scale, xrad, yrad, zrad, rad, delt, cof1, cof2 REAL :: x_rad, y_rad, z_rad, hght_pert !Ak/ak character (len=256) :: mminlu2 !AK/ak land use scheme (USGS) ! REAL, EXTERNAL :: interp_0 REAL :: hm REAL :: pi ! stuff from original initialization that has been dropped from the Registry REAL :: vnu, xnu, xnus, dinit0, cbh, p0_temp, t0_temp, zd, zt REAL :: qvf1, qvf2, pd_surf INTEGER :: it real :: thtmp, ptmp, temp(3) LOGICAL :: moisture_init LOGICAL :: stretch_grd, dry_sounding LOGICAL :: stretch_hyp, sfc_init !AK/ak switches for hyperbolic grid streching and surface initialization INTEGER :: xs , xe , ys , ye INTEGER :: mtn_type INTEGER :: & ! fire mesh sizes iots,iote,jots,jote, & ! tile dims out ifds,ifde, kfds,kfde, jfds,jfde, & ifms,ifme, kfms,kfme, jfms,jfme, & ifts,ifte, kfts,kfte, jfts,jfte REAL :: mtn_ht, mtn_max, mtn_x, mtn_y, mtn_z, grad_max REAL :: tign_max,tign_min REAL :: mtn_axs, mtn_ays, mtn_axe, mtn_aye REAL :: mtn_fxs, mtn_fys, mtn_fxe, mtn_fye REAL :: mtn_xs, mtn_ys, mtn_xe, mtn_ye REAL :: fdx,fdy ! fire mesh step INTEGER:: ir,jr ! refinement factors REAL :: minhfx,maxhfx,totheat logical have_fire_ht,have_fire_grad,have_atm_grad !*** executable SELECT CASE ( model_data_order ) CASE ( DATA_ORDER_ZXY ) kds = grid%sd31 ; kde = grid%ed31 ; ids = grid%sd32 ; ide = grid%ed32 ; jds = grid%sd33 ; jde = grid%ed33 ; kms = grid%sm31 ; kme = grid%em31 ; ims = grid%sm32 ; ime = grid%em32 ; jms = grid%sm33 ; jme = grid%em33 ; kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch CASE ( DATA_ORDER_XYZ ) ids = grid%sd31 ; ide = grid%ed31 ; jds = grid%sd32 ; jde = grid%ed32 ; kds = grid%sd33 ; kde = grid%ed33 ; ims = grid%sm31 ; ime = grid%em31 ; jms = grid%sm32 ; jme = grid%em32 ; kms = grid%sm33 ; kme = grid%em33 ; its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch CASE ( DATA_ORDER_XZY ) ids = grid%sd31 ; ide = grid%ed31 ; kds = grid%sd32 ; kde = grid%ed32 ; jds = grid%sd33 ; jde = grid%ed33 ; ims = grid%sm31 ; ime = grid%em31 ; kms = grid%sm32 ; kme = grid%em32 ; jms = grid%sm33 ; jme = grid%em33 ; its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch END SELECT ! z_scale = .40 pi = 2.*asin(1.0) write(6,*) ' pi is ',pi nxc = (ide-ids)/2 nyc = (jde-jds)/2 CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) ! here we check to see if the boundary conditions are set properly CALL boundary_condition_check( config_flags, bdyzone, error, grid%id ) delt = config_flags%delt_perturbation x_rad = config_flags%xrad_perturbation y_rad = config_flags%yrad_perturbation z_rad = config_flags%zrad_perturbation hght_pert = config_flags%hght_perturbation stretch_grd = config_flags%stretch_grd stretch_hyp = config_flags%stretch_hyp z_scale = config_flags%z_grd_scale sfc_init = config_flags%sfc_full_init moisture_init = .true. !AK/ak grid%itimestep=0 #ifdef DM_PARALLEL CALL wrf_dm_bcast_bytes( icm , IWORDSIZE ) CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE ) #endif !AK/ak land use initialization (USGS) IF (sfc_init) THEN mminlu2=' ' mminlu2(1:4) = 'USGS' !Ak/ak CALL nl_set_mminlu(1, mminlu2) !Ak/ak CALL nl_get_iswater(1,grid%iswater) ! Ak/ak ENDIF CALL nl_set_iswater(1,0) CALL nl_set_cen_lat(1,40.) CALL nl_set_cen_lon(1,-105.) CALL nl_set_truelat1(1,0.) CALL nl_set_truelat2(1,0.) CALL nl_set_moad_cen_lat (1,0.) CALL nl_set_stand_lon (1,0.) CALL nl_set_pole_lon (1,0.) CALL nl_set_pole_lat (1,90.) CALL nl_set_map_proj(1,0) ! here we initialize data we currently is not initialized ! in the input data DO j = jts, jte DO i = its, ite grid%msftx(i,j) = 1. grid%msfty(i,j) = 1. grid%msfux(i,j) = 1. grid%msfuy(i,j) = 1. grid%msfvx(i,j) = 1. grid%msfvx_inv(i,j)= 1. grid%msfvy(i,j) = 1. grid%sina(i,j) = 0. grid%cosa(i,j) = 1. grid%e(i,j) = 0. grid%f(i,j) = 0. END DO END DO ! ***** fire write(6,*) '*************************************' !AK/ak surface initialization latitude, longitude, landuse index from from LANDUSE.TBL skin temperature and soil temperature IF (sfc_init) THEN DO j = jts, jte DO i = its, ite grid%xlat(i,j) = config_flags%fire_lat_init !Ak/sk (35) grid%xlong(i,j) = config_flags%fire_lon_init !Ak/ak (-111) grid%xland(i,j) = 1. !Ak/ak grid%lu_index(i,j) = config_flags%sfc_lu_index !AK/ak land use index (28) grid%tsk(i,j) = config_flags%sfc_tsk !AK/ak surface skin temperature [K] (285) grid%tmn(i,j) = config_flags%sfc_tmn !AK/ak soil temperature at lower boundary [K] (285) END DO END DO ! read land use data from files, overwriting the constant if(config_flags%fire_read_lu) & call read_array_2d_real('input_lu',grid%lu_index,ids,ide,jds,jde,ims,ime,jms,jme) if(config_flags%fire_read_tsk) & call read_array_2d_real ('input_tsk',grid%tsk, ids,ide,jds,jde,ims,ime,jms,jme) if(config_flags%fire_read_tmn) & call read_array_2d_real ('input_tmn',grid%tmn, ids,ide,jds,jde,ims,ime,jms,jme) ! for Noah LSM, additional variables need to be initializedi !AK/ak | other_masked_fields : SELECT CASE ( model_config_rec%sf_surface_physics(grid%id) ) CASE (SLABSCHEME) write(6,*) ' SLAB surface scheme activated' CASE (LSMSCHEME) write(6,*) ' Noah unified LSM scheme activated with:' write(6,*) ' vegetation fraction=',config_flags%sfc_vegfra write(6,*) ' canopy water=',config_flags%sfc_canwat write(6,*) ' dominant veg. type=',config_flags%sfc_ivgtyp write(6,*) ' dominant soil type=',config_flags%sfc_isltyp DO j = jts , MIN(jde-1,jte) DO i = its , MIN(ide-1,ite) grid%vegfra(i,j) = config_flags%sfc_vegfra !0.5 grid%canwat(i,j) = config_flags%sfc_canwat !0. grid%ivgtyp(i,j) = config_flags%sfc_ivgtyp !18 grid%isltyp(i,j) = config_flags%sfc_isltyp !7 grid%xice(i,j) = 0. grid%snow(i,j) = 0. END DO END DO CASE (RUCLSMSCHEME) write(6,*) ' RUS surface scheme activated' END SELECT other_masked_fields !AK/ak | ENDIF DO j = jts, jte DO k = kts, kte DO i = its, ite grid%ww(i,k,j) = 0. END DO END DO END DO grid%step_number = 0 IF (sfc_init) THEN write(6,*) ' full surface initialization activated ' ! write(6,*) ' land use index =', config_flags%sfc_lu_index ! write(6,*) ' skin temperature=',grid%tsk(10,10),& ! '[K] soil temperature=', grid%tmn(10,10),'[K]' ! Process the soil; note that there are some things hard-wired into share/module_soil_pre.F CALL process_soil_ideal(grid%xland,grid%xice,grid%vegfra,grid%snow,grid%canwat, & grid%ivgtyp,grid%isltyp,grid%tslb,grid%smois, & grid%tsk,grid%tmn,grid%zs,grid%dzs,model_config_rec%num_soil_layers, & model_config_rec%sf_surface_physics(grid%id), & ids,ide, jds,jde, kds,kde,& ims,ime, jms,jme, kms,kme,& its,ite, jts,jte, kts,kte ) ELSE write(6,*) 'full surface initialization is turned off!! ' ENDIF !end of surface initialization ! set up the grid write(6,*) '*************************************' IF (stretch_grd) THEN ! exponential or hyperbolic tangential stretch for eta IF (stretch_hyp) THEN ! hyperbolic tangential stretch (more levels at the surface) write(6,*) ' hyperbolic tangential stretching activated with z_scale =',z_scale DO k=1, kde grid%znw(k) = -1.* (tanh(z_scale*(float(k-1) / float(kde-1) -1.)))/ & (tanh(z_scale)) ENDDO ELSE ! exponential stretch for eta (nearly constant dz) write(6,*) ' exponential grid stretching activated with z_scale =',z_scale DO k=1, kde grid%znw(k) = (exp(-(k-1)/float(kde-1)/z_scale) - exp(-1./z_scale))/ & (1.-exp(-1./z_scale)) ENDDO ENDIF ELSE write(6,*) ' no grid stretching' DO k=1, kde grid%znw(k) = 1. - float(k-1)/float(kde-1) ENDDO ENDIF write(6,*) '*************************************' DO k=1, kde-1 grid%dnw(k) = grid%znw(k+1) - grid%znw(k) grid%rdnw(k) = 1./grid%dnw(k) grid%znu(k) = 0.5*(grid%znw(k+1)+grid%znw(k)) ENDDO DO k=2, kde-1 grid%dn(k) = 0.5*(grid%dnw(k)+grid%dnw(k-1)) grid%rdn(k) = 1./grid%dn(k) grid%fnp(k) = .5* grid%dnw(k )/grid%dn(k) grid%fnm(k) = .5* grid%dnw(k-1)/grid%dn(k) ENDDO cof1 = (2.*grid%dn(2)+grid%dn(3))/(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(2) cof2 = grid%dn(2) /(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(3) grid%cf1 = grid%fnp(2) + cof1 grid%cf2 = grid%fnm(2) - cof1 - cof2 grid%cf3 = cof2 grid%cfn = (.5*grid%dnw(kde-1)+grid%dn(kde-1))/grid%dn(kde-1) grid%cfn1 = -.5*grid%dnw(kde-1)/grid%dn(kde-1) grid%rdx = 1./config_flags%dx grid%rdy = 1./config_flags%dy ! get the sounding from the ascii sounding file, first get dry sounding and ! calculate base state dry_sounding = .true. IF ( wrf_dm_on_monitor() ) THEN write(6,*) ' getting dry sounding for base state ' CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in ) ENDIF CALL wrf_dm_bcast_real( zk , nl_max ) CALL wrf_dm_bcast_real( p_in , nl_max ) CALL wrf_dm_bcast_real( pd_in , nl_max ) CALL wrf_dm_bcast_real( theta , nl_max ) CALL wrf_dm_bcast_real( rho , nl_max ) CALL wrf_dm_bcast_real( u , nl_max ) CALL wrf_dm_bcast_real( v , nl_max ) CALL wrf_dm_bcast_real( qv , nl_max ) CALL wrf_dm_bcast_integer ( nl_in , 1 ) write(6,*) ' returned from reading sounding, nl_in is ',nl_in ! find ptop for the desired ztop (ztop is input from the namelist), ! and find surface pressure grid%p_top = interp_0( p_in, zk, config_flags%ztop, nl_in ) ! For hybrid coord DO k=kts, kte IF ( config_flags%hybrid_opt .EQ. 0 ) THEN grid%c3f(k) = grid%znw(k) ELSE IF ( config_flags%hybrid_opt .EQ. 1 ) THEN grid%c3f(k) = grid%znw(k) ELSE IF ( config_flags%hybrid_opt .EQ. 2 ) THEN B1 = 2. * grid%etac**2 * ( 1. - grid%etac ) B2 = -grid%etac * ( 4. - 3. * grid%etac - grid%etac**3 ) B3 = 2. * ( 1. - grid%etac**3 ) B4 = - ( 1. - grid%etac**2 ) B5 = (1.-grid%etac)**4 grid%c3f(k) = ( B1 + B2*grid%znw(k) + B3*grid%znw(k)**2 + B4*grid%znw(k)**3 ) / B5 IF ( grid%znw(k) .LT. grid%etac ) THEN grid%c3f(k) = 0. END IF IF ( k .EQ. kds ) THEN grid%c3f(k) = 1. ELSE IF ( k .EQ. kde ) THEN grid%c3f(k) = 0. END IF ELSE IF ( config_flags%hybrid_opt .EQ. 3 ) THEN grid%c3f(k) = grid%znw(k)*sin(0.5*3.14159*grid%znw(k))**2 IF ( k .EQ. kds ) THEN grid%c3f(k) = 1. ELSE IF ( k .EQ. kds ) THEN grid%c3f(kde) = 0. END IF ELSE CALL wrf_message ( 'ERROR: --- hybrid_opt' ) CALL wrf_message ( 'ERROR: --- hybrid_opt=0 ==> Standard WRF terrain-following coordinate' ) CALL wrf_message ( 'ERROR: --- hybrid_opt=1 ==> Standard WRF terrain-following coordinate, hybrid c1, c2, c3, c4' ) CALL wrf_message ( 'ERROR: --- hybrid_opt=2 ==> Hybrid, Klemp polynomial' ) CALL wrf_message ( 'ERROR: --- hybrid_opt=3 ==> Hybrid, sin^2' ) CALL wrf_error_fatal ( 'ERROR: --- Invalid option' ) END IF END DO ! c4 is a function of c3 and eta. DO k=1, kde grid%c4f(k) = ( grid%znw(k) - grid%c3f(k) ) * ( p1000mb - grid%p_top ) ENDDO ! Now on half levels, just add up and divide by 2 (for c3h). Use (eta-c3)*(p00-pt) for c4 on half levels. DO k=1, kde-1 grid%znu(k) = ( grid%znw(k+1) + grid%znw(k) ) * 0.5 grid%c3h(k) = ( grid%c3f(k+1) + grid%c3f(k) ) * 0.5 grid%c4h(k) = ( grid%znu(k) - grid%c3h(k) ) * ( p1000mb - grid%p_top ) ENDDO ! c1 = d(B)/d(eta). We define c1f as c1 on FULL levels. For a vertical difference, ! we need to use B and eta on half levels. The k-loop ends up referring to the ! full levels, neglecting the top and bottom. DO k=kds+1, kde-1 grid%c1f(k) = ( grid%c3h(k) - grid%c3h(k-1) ) / ( grid%znu(k) - grid%znu(k-1) ) ENDDO ! The boundary conditions to get the coefficients: ! 1) At k=kts: define d(B)/d(eta) = 1. This gives us the same value of B and d(B)/d(eta) ! when doing the sigma-only B=eta. ! 2) At k=kte: define d(B)/d(eta) = 0. The curve B SMOOTHLY goes to zero, and at the very ! top, B continues to SMOOTHLY go to zero. Note that for almost all cases of non B=eta, ! B is ALREADY=ZERO at the top, so this is a reasonable BC to assume. grid%c1f(kds) = 1. IF ( ( config_flags%hybrid_opt .EQ. 0 ) .OR. ( config_flags%hybrid_opt .EQ. 1 ) ) THEN grid%c1f(kde) = 1. ELSE grid%c1f(kde) = 0. END IF ! c2 = ( 1. - c1(k) ) * (p00 - pt). There is no vertical differencing, so we can do the ! full kds to kde looping. DO k=kds, kde grid%c2f(k) = ( 1. - grid%c1f(k) ) * ( p1000mb - grid%p_top ) ENDDO ! Now on half levels for c1 and c2. The c1h will result from the full level c3 and full ! level eta differences. The c2 value use the half level c1(k). DO k=1, kde-1 grid%c1h(k) = ( grid%c3f(k+1) - grid%c3f(k) ) / ( grid%znw(k+1) - grid%znw(k) ) grid%c2h(k) = ( 1. - grid%c1h(k) ) * ( p1000mb - grid%p_top ) ENDDO ! get fire mesh dimensions CALL get_ijk_from_subgrid ( grid , & ifds,ifde, jfds,jfde,kfds,kfde, & ifms,ifme, jfms,jfme,kfms,kfme, & ifts,ifte, jfts,jfte,kfts,kfte) write (6,*)' ******** SFIRE ideal initialization ********' ! fire grid step size fdx = grid%dx/grid%sr_x fdy = grid%dy/grid%sr_y ! refinement ratios ir = grid%sr_x jr = grid%sr_y write (6,*)' atm mesh step ',grid%dx,grid%dy write (6,*)' fire mesh step ',fdx,fdy write (6,*)' refinement ratio ',grid%sr_x,grid%sr_y write (6,*)' atm domain bounds ',ids,ide, jds,jde,kds,kde write (6,*)' atm memory bounds ',ims,ime, jms,jme,kms,kme write (6,*)' atm tile bounds ',its,ite, jts,jte,kts,kte write (6,*)' fire domain bounds ',ifds,ifde, jfds,jfde,kfds,kfde write (6,*)' fire memory bounds ',ifms,ifme, jfms,jfme,kfms,kfme write (6,*)' fire tile bounds ',ifts,ifte, jfts,jfte,kfts,kfte write (6,*)' Note that atm mesh and fire mesh are cell-centered' ! set ideal coordinates call set_ideal_coord( fdx,fdy, & ifds,ifde,jfds,jfde, & ifms,ifme,jfms,jfme, & ifts,ifte,jfts,jfte, & grid%fxlong,grid%fxlat ) call set_ideal_coord( grid%dx,grid%dy, & ids,ide,jds,jde, & ims,ime,jms,jme, & its,ite,jts,jte, & grid%xlong,grid%xlat ) ! set terrain height DO j=jts,jte DO i=its,ite grid%ht(i,j) = 0. ENDDO ENDDO if(config_flags%fire_fmc_read.eq.2) then write(6,*)'Reading fuel moisture from file input_fmc_g' call read_array_2d_real ('input_fmc_g',grid%fmc_g, ifds,ifde,jfds,jfde,ifms,ifme,jfms,jfme) endif call read_namelist_fire(.false.) ! read fuel coefficienrs if(config_flags%fire_fmc_read.eq.0) then write(6,*)'Setting fuel moisture in wrfinput to constant ', fuelmc_g do j = jfds,jfde do i= ifds,ifde grid%fmc_g(i,j)=fuelmc_g enddo enddo endif call print_2d_stats(ifds,ifde,jfds,jfde, & ifms,ifme,jfms,jfme, & grid%fmc_g, 'fmc_g') if(config_flags%fire_fuel_read.eq.2) then write(6,*)'Reading fuel map from file input_fc' call read_array_2d_real('input_fc',grid%nfuel_cat,ifds,ifde,jfds,jfde,ifms,ifme,jfms,jfme) endif have_fire_grad=.false. have_atm_grad=.false. have_fire_ht=.false. !******* set terrain height ! copy params from the namelist mtn_type = config_flags%fire_mountain_type mtn_xs = config_flags%fire_mountain_start_x mtn_ys = config_flags%fire_mountain_start_y mtn_xe = config_flags%fire_mountain_end_x mtn_ye = config_flags%fire_mountain_end_y mtn_ht = config_flags%fire_mountain_height IF(mtn_type .ne. 0)THEN ! idealized mountain ! atmospheric grid coordinates of the mountain mtn_axs = mtn_xs/grid%dx + ids - 0.5 mtn_axe = mtn_xe/grid%dx + ids - 0.5 mtn_ays = mtn_ys/grid%dy + jds - 0.5 mtn_aye = mtn_ye/grid%dy + jds - 0.5 ! fire grid coordinates of the mountain mtn_fxs = mtn_xs/fdx + ifds - 0.5 mtn_fxe = mtn_xe/fdx + ifds - 0.5 mtn_fys = mtn_ys/fdy + jfds - 0.5 mtn_fye = mtn_ye/fdy + jfds - 0.5 write(6,*)' Mountain height ',mtn_ht,' type',mtn_type write(6,*)' Mountain (m) LL=(0,0) ',mtn_xs,':',mtn_xe,' ',mtn_ys,':',mtn_ye write(6,*)' Mountain on atm grid ',mtn_axs,':',mtn_axe,' ',mtn_ays,':',mtn_aye write(6,*)' Mountain on fire grid ',mtn_fxs,':',mtn_fxe,' ',mtn_fys,':',mtn_fye mtn_max = 0. DO j=jts,jte DO i=its,ite mtn_x = pi + 2*pi* max(0. , min( (i - mtn_axs)/(mtn_axe - mtn_axs), 1. )) mtn_y = pi + 2*pi* max(0. , min( (j - mtn_ays)/(mtn_aye - mtn_ays), 1. )) SELECT CASE(mtn_type) CASE (1) ! circ/elliptic mountain mtn_z = mtn_ht * 0.25 * (1. + COS(mtn_x))*(1. + COS(mtn_y)) CASE (2) ! EW ridge mtn_z = mtn_ht * 0.5 * (1. + COS(mtn_y)) CASE (3) ! NS ridge mtn_z = mtn_ht * 0.5 * (1. + COS(mtn_x)) CASE DEFAULT call wrf_error_fatal ( ' bad fire_mountain_type ' ) END SELECT mtn_max = max(mtn_max, mtn_z) grid%ht(i,j) = mtn_z ENDDO ENDDO write(6, *)' Atm tile ',its,':',ite,' ',jts,':',jte,' max terrain height ',mtn_max DO j=jfts,jfte DO i=ifts,ifte mtn_x = pi + 2*pi* max(0. , min( (i - mtn_fxs)/(mtn_fxe - mtn_fxs), 1. )) mtn_y = pi + 2*pi* max(0. , min( (j - mtn_fys)/(mtn_fye - mtn_fys), 1. )) SELECT CASE(mtn_type) CASE (1) ! circ/elliptic mountain mtn_z = mtn_ht * 0.25 * (1. + COS(mtn_x))*(1. + COS(mtn_y)) CASE (2) ! EW ridge mtn_z = mtn_ht * 0.5 * (1. + COS(mtn_y)) CASE (3) ! NS ridge mtn_z = mtn_ht * 0.5 * (1. + COS(mtn_x)) CASE DEFAULT call wrf_error_fatal ( ' bad fire_mountain_type ' ) END SELECT grid%zsf(i,j) = mtn_z ENDDO ENDDO have_fire_ht=.true. ELSE ! mtn_type if(config_flags%fire_read_atm_ht)then ! call read_array_2d_real('input_ht',grid%ht,ids,ide,jds,jde,ims,ime,jms,jme) ! no flag - we always have the terrain height on atm mesh, zero if not set endif if(config_flags%fire_read_fire_ht)then ! call read_array_2d_real('input_zsf',grid%zsf,ifds,ifde,jfds,jfde,ifms,ifme,jfms,jfme) have_fire_ht=.true. endif if(config_flags%fire_read_atm_grad)then ! call crash('Reading terrain gradient on atm mesh from file not supported.') have_atm_grad=.true. endif if(config_flags%fire_read_fire_grad)then ! call read_array_2d_real('input_dzdxf',grid%dzdxf,ifds,ifde,jfds,jfde,ifms,ifme,jfms,jfme) call read_array_2d_real('input_dzdyf',grid%dzdyf,ifds,ifde,jfds,jfde,ifms,ifme,jfms,jfme) have_fire_grad=.true. endif ENDIF ! mtn_type if(have_fire_ht)then write(6, *)'Fine-resolution terrain height on the fire mesh used.' else write(6,*)'Interpolating the terrain height from the atm mesh to the fire mesh' call interpolate_2d( & ims,ime,jms,jme, & ! memory dims atm grid tile its,ite,jts,jte, & ! where atm grid values set ifms,ifme,jfms,jfme, & ! array dims fire grid ifts,ifte,jfts,jfte, & ! dimensions fire grid tile ir,jr, & ! refinement ratio real(ids),real(jds),ifds+(ir-1)*0.5,jfds+(jr-1)*0.5, & ! line up by lower left corner of domain grid%ht, & ! atm grid arrays in grid%zsf) ! fire grid arrays out have_fire_ht=.true. endif if(have_fire_grad)then write(6, *)'Fine-resolution terrain gradient on the fire mesh used.' else write(6,*)'Computing the terrain gradient from fire mesh height' if(.not.have_fire_ht)then write(6,*)'WARNING: Fire mesh terrain height not given, setting to zero' do j=jfts,jfte do i=ifts,ifte grid%zsf(i,j) = 0. enddo enddo endif ! extend the terrain height one beyond the domain call continue_at_boundary(1,1,0., & ! do x direction or y direction ifms,ifme,jfms,jfme, & ! memory dims ifds,ifde,jfds,jfde, & ! domain dims ifds,ifde,jfds,jfde, & ! patch dims = domain, not parallel! ifts,ifte,jfts,jfte, & ! tile dims iots,iote,jots,jote, & ! tile dims out grid%zsf) ! array ! compute the terrain gradient by differencing do j=jfts,jfte do i=ifts,ifte grid%dzdxf(i,j) = (grid%zsf(i+1,j)-grid%zsf(i-1,j))/(2.*fdx) grid%dzdyf(i,j) = (grid%zsf(i,j+1)-grid%zsf(i,j-1))/(2.*fdy) enddo enddo have_fire_grad=.true. endif ! have_fire_grad if(.not.have_fire_grad)call crash('Fire mesh terrain gradient not set') mtn_max = 0. DO j=jts,jte DO i=its,ite mtn_max = max(mtn_max, grid%ht(i,j)) ENDDO ENDDO write(6, *)' Max terrain height on the atmosphere mesh ',mtn_max mtn_max = 0. grad_max =0. DO j=jfts,jfte DO i=ifts,ifte mtn_max = max(mtn_max, grid%zsf(i,j)) grad_max = max( grad_max, sqrt(grid%dzdxf(i,j)**2+grid%dzdyf(i,j)**2) ) ENDDO ENDDO write(6, *)' Max terrain height on the fire mesh ',mtn_max write(6, *)' Max terrain gradient on the fire mesh ',grad_max ! the rest of initialization dependent on the atmosphere grid terrain height set DO j=jts,jte DO i=its,ite grid%phb(i,1,j) = g * grid%ht(i,j) grid%ph0(i,1,j) = g * grid%ht(i,j) ENDDO ENDDO DO J = jts, jte DO I = its, ite p_surf = interp_0( p_in, zk, grid%phb(i,1,j)/g, nl_in ) grid%mub(i,j) = p_surf-grid%p_top ! this is dry hydrostatic sounding (base state), so given grid%p (coordinate), ! interp theta (from interp) and compute 1/rho from eqn. of state DO K = 1, kte-1 p_level = grid%c3h(k)*(p_surf - grid%p_top)+grid%c4h(k) + grid%p_top grid%pb(i,k,j) = p_level grid%t_init(i,k,j) = interp_0( theta, p_in, p_level, nl_in ) - t0 grid%alb(i,k,j) = (r_d/p1000mb)*(grid%t_init(i,k,j)+t0)*(grid%pb(i,k,j)/p1000mb)**cvpm ENDDO ! calc hydrostatic balance (alternatively we could interp the geopotential from the ! sounding, but this assures that the base state is in exact hydrostatic balance with ! respect to the model eqns. DO k = 2,kte grid%phb(i,k,j) = grid%phb(i,k-1,j) - grid%dnw(k-1)*(grid%c1h(k-1)*grid%mub(i,j)+grid%c2h(k-1))*grid%alb(i,k-1,j) ENDDO ENDDO ENDDO IF ( wrf_dm_on_monitor() ) THEN write(6,*) ' ptop is ',grid%p_top write(6,*) ' base state grid%mub(1,1), p_surf is ',grid%mub(1,1),grid%mub(1,1)+grid%p_top ENDIF ! calculate full state for each column - this includes moisture. write(6,*) ' getting moist sounding for full state ' dry_sounding = .false. CALL get_sounding( zk, p_in, pd_in, theta, rho, u, v, qv, dry_sounding, nl_max, nl_in ) DO J = jts, min(jde-1,jte) DO I = its, min(ide-1,ite) ! At this point grid%p_top is already set. find the DRY mass in the column ! by interpolating the DRY pressure. pd_surf = interp_0( pd_in, zk, grid%phb(i,1,j)/g, nl_in ) ! compute the perturbation mass and the full mass grid%mu_1(i,j) = pd_surf-grid%p_top - grid%mub(i,j) grid%mu_2(i,j) = grid%mu_1(i,j) grid%mu0(i,j) = grid%mu_1(i,j) + grid%mub(i,j) ! given the dry pressure and coordinate system, interp the potential ! temperature and qv do k=1,kde-1 p_level = grid%c3h(k)*(pd_surf - grid%p_top)+grid%c4h(k) + grid%p_top moist(i,k,j,P_QV) = interp_0( qv, pd_in, p_level, nl_in ) grid%t_1(i,k,j) = interp_0( theta, pd_in, p_level, nl_in ) - t0 grid%t_2(i,k,j) = grid%t_1(i,k,j) enddo ! integrate the hydrostatic equation (from the RHS of the bigstep ! vertical momentum equation) down from the top to get grid%p. ! first from the top of the model to the top pressure k = kte-1 ! top level qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k,j,P_QV)) qvf2 = 1./(1.+qvf1) qvf1 = qvf1*qvf2 grid%p(i,k,j) = - 0.5*((grid%c1f(k+1)*grid%mu_1(i,j))+qvf1*(grid%c1f(k+1)*grid%mub(i,j)+grid%c2f(k+1)))/grid%rdnw(k)/qvf2 qvf = 1. + rvovrd*moist(i,k,j,P_QV) grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) ! down the column do k=kte-2,1,-1 qvf1 = 0.5*(moist(i,k,j,P_QV)+moist(i,k+1,j,P_QV)) qvf2 = 1./(1.+qvf1) qvf1 = qvf1*qvf2 grid%p(i,k,j) = grid%p(i,k+1,j) - ((grid%c1f(k+1)*grid%mu_1(i,j)) + qvf1*(grid%c1f(k+1)*grid%mub(i,j)+grid%c2f(k+1)))/qvf2/grid%rdn(k+1) qvf = 1. + rvovrd*moist(i,k,j,P_QV) grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) enddo ! this is the hydrostatic equation used in the model after the ! small timesteps. In the model, grid%al (inverse density) ! is computed from the geopotential. grid%ph_1(i,1,j) = 0. DO k = 2,kte grid%ph_1(i,k,j) = grid%ph_1(i,k-1,j) - (grid%dnw(k-1))*( & ((grid%c1h(k-1)*grid%mub(i,j)+grid%c2h(k-1))+(grid%c1h(k-1)*grid%mu_1(i,j)))*grid%al(i,k-1,j)+ & (grid%c1h(k-1)*grid%mu_1(i,j))*grid%alb(i,k-1,j) ) grid%ph_2(i,k,j) = grid%ph_1(i,k,j) grid%ph0(i,k,j) = grid%ph_1(i,k,j) + grid%phb(i,k,j) ENDDO IF ( wrf_dm_on_monitor() ) THEN if((i==2) .and. (j==2)) then write(6,*) ' grid%ph_1 calc ',grid%ph_1(2,1,2),grid%ph_1(2,2,2),& grid%mu_1(2,2)+grid%mub(2,2),grid%mu_1(2,2), & grid%alb(2,1,2),grid%al(1,2,1),grid%rdnw(1) endif ENDIF ENDDO ENDDO ! checking if the perturbation (bubble) is to be applied IF ((delt/=0.) .and. (x_rad > 0.) & .and. (y_rad > 0.) & .and. (z_rad > 0.)) THEN ! thermal perturbation to kick off convection write(6,*) ' nxc, nyc for perturbation ',nxc,nyc write(6,'(A23,f18.16)') ' delt for perturbation ',delt write(6,'(A30,f18.12)') ' x radius of the perturbation ' ,x_rad write(6,'(A30,f18.12)') ' y radius of the perturbation ' ,y_rad write(6,'(A30,f18.12)') ' z radius of the perturbation ' ,z_rad write(6,'(A30,f18.12)') ' height of the perturbation ' ,hght_pert DO J = jts, min(jde-1,jte) yrad = config_flags%dy*float(j-nyc)/y_rad ! yrad = 0. DO I = its, min(ide-1,ite) xrad = config_flags%dx*float(i-nxc)/x_rad ! xrad = 0. DO K = 1, kte-1 ! put in preturbation theta (bubble) and recalc density. note, ! the mass in the column is not changing, so when theta changes, ! we recompute density and geopotential zrad = 0.5*(grid%ph_1(i,k,j)+grid%ph_1(i,k+1,j) & +grid%phb(i,k,j)+grid%phb(i,k+1,j))/g zrad = (zrad-hght_pert)/z_rad RAD=SQRT(xrad*xrad+yrad*yrad+zrad*zrad) IF(RAD <= 1.) THEN grid%t_1(i,k,j)=grid%t_1(i,k,j)+delt*COS(.5*PI*RAD)**2 grid%t_2(i,k,j)=grid%t_1(i,k,j) qvf = 1. + rvovrd*moist(i,k,j,P_QV) grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) ENDIF ENDDO ! rebalance hydrostatically DO k = 2,kte grid%ph_1(i,k,j) = grid%ph_1(i,k-1,j) - (grid%dnw(k-1))*( & ((grid%c1h(k-1)*grid%mub(i,j)+grid%c2h(k-1))+(grid%c1h(k-1)*grid%mu_1(i,j)))*grid%al(i,k-1,j)+ & (grid%c1h(k-1)*grid%mu_1(i,j))*grid%alb(i,k-1,j) ) grid%ph_2(i,k,j) = grid%ph_1(i,k,j) grid%ph0(i,k,j) = grid%ph_1(i,k,j) + grid%phb(i,k,j) ENDDO ENDDO ENDDO !End of setting up the perturbation (bubble) ENDIF IF ( wrf_dm_on_monitor() ) THEN write(6,*) ' grid%mu_1 from comp ', grid%mu_1(1,1) write(6,*) ' full state sounding from comp, ph, grid%p, grid%al, grid%t_1, qv ' do k=1,kde-1 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%ph_1(1,k,1)+grid%phb(1,k,1), & grid%p(1,k,1)+grid%pb(1,k,1), grid%alt(1,k,1), & grid%t_1(1,k,1)+t0, moist(1,k,1,P_QV) enddo write(6,*) ' pert state sounding from comp, grid%ph_1, pp, alp, grid%t_1, qv ' do k=1,kde-1 write(6,'(i3,1x,5(1x,1pe10.3))') k, grid%ph_1(1,k,1), & grid%p(1,k,1), grid%al(1,k,1), & grid%t_1(1,k,1), moist(1,k,1,P_QV) enddo ENDIF ! interp v DO J = jts, jte DO I = its, min(ide-1,ite) IF (j == jds) THEN z_at_v = grid%phb(i,1,j)/g ELSE IF (j == jde) THEN z_at_v = grid%phb(i,1,j-1)/g ELSE z_at_v = 0.5*(grid%phb(i,1,j)+grid%phb(i,1,j-1))/g END IF p_surf = interp_0( p_in, zk, z_at_v, nl_in ) DO K = 1, kte-1 p_level = grid%c3h(k)*(p_surf - grid%p_top)+grid%c4h(k) + grid%p_top grid%v_1(i,k,j) = interp_0( v, p_in, p_level, nl_in ) grid%v_2(i,k,j) = grid%v_1(i,k,j) ENDDO ENDDO ENDDO ! interp u DO J = jts, min(jde-1,jte) DO I = its, ite IF (i == ids) THEN z_at_u = grid%phb(i,1,j)/g ELSE IF (i == ide) THEN z_at_u = grid%phb(i-1,1,j)/g ELSE z_at_u = 0.5*(grid%phb(i,1,j)+grid%phb(i-1,1,j))/g END IF p_surf = interp_0( p_in, zk, z_at_u, nl_in ) DO K = 1, kte-1 p_level = grid%c3h(k)*(p_surf - grid%p_top)+grid%c4h(k) + grid%p_top grid%u_1(i,k,j) = interp_0( u, p_in, p_level, nl_in ) grid%u_2(i,k,j) = grid%u_1(i,k,j) ENDDO ENDDO ENDDO ! set w DO J = jts, min(jde-1,jte) DO K = kts, kte DO I = its, min(ide-1,ite) grid%w_1(i,k,j) = 0. grid%w_2(i,k,j) = 0. ENDDO ENDDO ENDDO ! set a few more things DO J = jts, min(jde-1,jte) DO K = kts, kte-1 DO I = its, min(ide-1,ite) grid%h_diabatic(i,k,j) = 0. ENDDO ENDDO ENDDO IF ( wrf_dm_on_monitor() ) THEN DO k=1,kte-1 grid%t_base(k) = grid%t_1(1,k,1) grid%qv_base(k) = moist(1,k,1,P_QV) grid%u_base(k) = grid%u_1(1,k,1) grid%v_base(k) = grid%v_1(1,k,1) grid%z_base(k) = 0.5*(grid%phb(1,k,1)+grid%phb(1,k+1,1)+grid%ph_1(1,k,1)+grid%ph_1(1,k+1,1))/g ENDDO ENDIF CALL wrf_dm_bcast_real( grid%t_base , kte ) CALL wrf_dm_bcast_real( grid%qv_base , kte ) CALL wrf_dm_bcast_real( grid%u_base , kte ) CALL wrf_dm_bcast_real( grid%v_base , kte ) CALL wrf_dm_bcast_real( grid%z_base , kte ) DO J = jts, min(jde-1,jte) DO I = its, min(ide-1,ite) thtmp = grid%t_2(i,1,j)+t0 ptmp = grid%p(i,1,j)+grid%pb(i,1,j) temp(1) = thtmp * (ptmp/p1000mb)**rcp thtmp = grid%t_2(i,2,j)+t0 ptmp = grid%p(i,2,j)+grid%pb(i,2,j) temp(2) = thtmp * (ptmp/p1000mb)**rcp thtmp = grid%t_2(i,3,j)+t0 ptmp = grid%p(i,3,j)+grid%pb(i,3,j) temp(3) = thtmp * (ptmp/p1000mb)**rcp ! grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3) !AK/AK it is already declared via namelist.input if sfc_init=.true. ! grid%tmn(I,J)=grid%tsk(I,J)-0.5 !AK/AK it is already declared via namelist.input if sfc_init=.true. ENDDO ENDDO IF (.NOT.sfc_init) THEN write(6,*) ' setting tsk and tmn default' DO J = jts, min(jde-1,jte) DO I = its, min(ide-1,ite) grid%tsk(I,J)=grid%cf1*temp(1)+grid%cf2*temp(2)+grid%cf3*temp(3) grid%tmn(I,J)=grid%tsk(I,J)-0.5 ENDDO ENDDO ENDIF ! Save the dry perturbation potential temperature. DO j = jts, min(jde-1,jte) DO k = kts, kte DO i = its, min(ide-1,ite) grid%th_phy_m_t0(i,k,j) = grid%t_2(i,k,j) END DO END DO END DO ! Turn dry potential temperature into moist potential temperature ! at the very end of this routine ! This field will be in the model IC and and used to construct the ! BC file. IF ( ( config_flags%use_theta_m .EQ. 1 ) .AND. (P_Qv .GE. PARAM_FIRST_SCALAR) ) THEN DO J = jts, min(jde-1,jte) DO K = kts, kte-1 DO I = its, min(ide-1,ite) grid%t_2(i,k,j) = ( grid%t_2(i,k,j) + T0 ) * (1. + (R_v/R_d) * moist(i,k,j,p_qv)) - T0 END DO END DO END DO ENDIF END SUBROUTINE init_domain_rk SUBROUTINE init_module_initialize END SUBROUTINE init_module_initialize !--------------------------------------------------------------------- ! test driver for get_sounding ! ! implicit none ! integer n ! parameter(n = 1000) ! real zk(n),p(n),theta(n),rho(n),u(n),v(n),qv(n),pd(n) ! logical dry ! integer nl,k ! ! dry = .false. ! dry = .true. ! call get_sounding( zk, p, pd, theta, rho, u, v, qv, dry, n, nl ) ! write(6,*) ' input levels ',nl ! write(6,*) ' sounding ' ! write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) ' ! do k=1,nl ! write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), pd(k), theta(k), rho(k), u(k), v(k), qv(k) ! enddo ! end ! !--------------------------------------------------------------------------- subroutine get_sounding( zk, p, p_dry, theta, rho, & u, v, qv, dry, nl_max, nl_in ) implicit none integer nl_max, nl_in real zk(nl_max), p(nl_max), theta(nl_max), rho(nl_max), & u(nl_max), v(nl_max), qv(nl_max), p_dry(nl_max) logical dry integer n parameter(n=1000) logical debug parameter( debug = .true.) ! input sounding data real p_surf, th_surf, qv_surf real pi_surf, pi(n) real h_input(n), th_input(n), qv_input(n), u_input(n), v_input(n) ! diagnostics real rho_surf, p_input(n), rho_input(n) real pm_input(n) ! this are for full moist sounding ! local data real r parameter (r = r_d) integer k, it, nl real qvf, qvf1, dz ! first, read the sounding call read_sounding( p_surf, th_surf, qv_surf, & h_input, th_input, qv_input, u_input, v_input,n, nl, debug ) if(dry) then do k=1,nl qv_input(k) = 0. enddo endif if(debug) write(6,*) ' number of input levels = ',nl nl_in = nl if(nl_in .gt. nl_max ) then write(6,*) ' too many levels for input arrays ',nl_in,nl_max call wrf_error_fatal ( ' too many levels for input arrays ' ) end if ! compute diagnostics, ! first, convert qv(g/kg) to qv(g/g) do k=1,nl qv_input(k) = 0.001*qv_input(k) enddo p_surf = 100.*p_surf ! convert to pascals qvf = 1. + rvovrd*qv_input(1) rho_surf = 1./((r/p1000mb)*th_surf*qvf*((p_surf/p1000mb)**cvpm)) pi_surf = (p_surf/p1000mb)**(r/cp) if(debug) then write(6,*) ' surface density is ',rho_surf write(6,*) ' surface pi is ',pi_surf end if ! integrate moist sounding hydrostatically, starting from the ! specified surface pressure ! -> first, integrate from surface to lowest level qvf = 1. + rvovrd*qv_input(1) qvf1 = 1. + qv_input(1) rho_input(1) = rho_surf dz = h_input(1) do it=1,10 pm_input(1) = p_surf & - 0.5*dz*(rho_surf+rho_input(1))*g*qvf1 rho_input(1) = 1./((r/p1000mb)*th_input(1)*qvf*((pm_input(1)/p1000mb)**cvpm)) enddo ! integrate up the column do k=2,nl rho_input(k) = rho_input(k-1) dz = h_input(k)-h_input(k-1) qvf1 = 0.5*(2.+(qv_input(k-1)+qv_input(k))) qvf = 1. + rvovrd*qv_input(k) ! qv is in g/kg here do it=1,10 pm_input(k) = pm_input(k-1) & - 0.5*dz*(rho_input(k)+rho_input(k-1))*g*qvf1 rho_input(k) = 1./((r/p1000mb)*th_input(k)*qvf*((pm_input(k)/p1000mb)**cvpm)) enddo enddo ! we have the moist sounding ! next, compute the dry sounding using p at the highest level from the ! moist sounding and integrating down. p_input(nl) = pm_input(nl) do k=nl-1,1,-1 dz = h_input(k+1)-h_input(k) p_input(k) = p_input(k+1) + 0.5*dz*(rho_input(k)+rho_input(k+1))*g enddo do k=1,nl zk(k) = h_input(k) p(k) = pm_input(k) p_dry(k) = p_input(k) theta(k) = th_input(k) rho(k) = rho_input(k) u(k) = u_input(k) v(k) = v_input(k) qv(k) = qv_input(k) enddo if(debug) then write(6,*) ' sounding ' write(6,*) ' k height(m) press (Pa) pd(Pa) theta (K) den(kg/m^3) u(m/s) v(m/s) qv(g/g) ' do k=1,nl write(6,'(1x,i3,8(1x,1pe10.3))') k, zk(k), p(k), p_dry(k), theta(k), rho(k), u(k), v(k), qv(k) enddo end if end subroutine get_sounding !------------------------------------------------------- subroutine read_sounding( ps,ts,qvs,h,th,qv,u,v,n,nl,debug ) implicit none integer n,nl real ps,ts,qvs,h(n),th(n),qv(n),u(n),v(n) logical end_of_file logical debug integer k open(unit=10,file='input_sounding',form='formatted',status='old') rewind(10) read(10,*) ps, ts, qvs if(debug) then write(6,*) ' input sounding surface parameters ' write(6,*) ' surface pressure (mb) ',ps write(6,*) ' surface pot. temp (K) ',ts write(6,*) ' surface mixing ratio (g/kg) ',qvs end if end_of_file = .false. k = 0 do while (.not. end_of_file) read(10,*,end=100) h(k+1), th(k+1), qv(k+1), u(k+1), v(k+1) k = k+1 if(debug) write(6,'(1x,i3,5(1x,e10.3))') k, h(k), th(k), qv(k), u(k), v(k) go to 110 100 end_of_file = .true. 110 continue enddo nl = k close(unit=10,status = 'keep') end subroutine read_sounding END MODULE module_initialize_ideal