#include "cppdefs.h" MODULE p4zsed !!====================================================================== !! *** MODULE p4sed *** !! TOP : PISCES Compute loss of organic matter in the sediments !!====================================================================== !! History : 1.0 ! 2004-03 (O. Aumont) Original code !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 !! 3.4 ! 2011-06 (C. Ethe) USE of fldread !! 3.5 ! 2012-07 (O. Aumont) improvment of river input of nutrients !!---------------------------------------------------------------------- #if defined key_pisces !! p4z_sed : Compute loss of organic matter in the sediments !!---------------------------------------------------------------------- USE sms_pisces ! PISCES Source Minus Sink variables USE p4zlim ! Co-limitations of differents nutrients USE p4zsbc ! External source of nutrients USE p4zint ! interpolation and computation of various fields USE sed ! Sediment module ! USE iom ! I/O manager IMPLICIT NONE PRIVATE PUBLIC p4z_sed PUBLIC p4z_sed_alloc !!* Substitution # include "ocean2pisces.h90" # include "top_substitute.h90" REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: nitrpot !: Nitrogen fixation REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,: ) :: sdenit !: Nitrate reduction in the sediments REAL(wp) :: r1_rday !: inverse of rday LOGICAL, SAVE :: lk_sed !!---------------------------------------------------------------------- !! NEMO/TOP 4.0 , NEMO Consortium (2018) !! $Id: p4zsed.F90 10780 2019-03-20 17:53:44Z aumont $ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE p4z_sed( kt, knt ) !!--------------------------------------------------------------------- !! *** ROUTINE p4z_sed *** !! !! ** Purpose : Compute loss of organic matter in the sediments. This !! is by no way a sediment model. The loss is simply !! computed to balance the inout from rivers and dust !! !! ** Method : - ??? !!--------------------------------------------------------------------- ! INTEGER, INTENT(in) :: kt, knt ! ocean time step INTEGER :: ji, jj, jk REAL(wp) :: zrivalk, zrivsil, zrivno3 REAL(wp) :: zwflux, zlim, zfact, zfactcal REAL(wp) :: zo2, zno3, zflx, zpdenit, z1pdenit, zolimit REAL(wp) :: zsiloss, zcaloss, zws3, zws4, zwsc, zdep REAL(wp) :: zwstpoc, zwstpon, zwstpop, zmsk REAL(wp) :: ztrfer, ztrpo4s, ztrdp, zwdust, zmudia, ztemp REAL(wp) :: xdiano3, xdianh4, zrfact2 ! CHARACTER (len=25) :: charout REAL(wp), DIMENSION(PRIV_3D_BIOARRAY) :: zsoufer, zlight REAL(wp), DIMENSION(PRIV_2D_BIOARRAY) :: zdenit2d, zbureff, zwork REAL(wp), DIMENSION(PRIV_2D_BIOARRAY) :: zwsbio3, zwsbio4 REAL(wp), DIMENSION(PRIV_2D_BIOARRAY) :: zsedcal, zsedsi, zsedc REAL(wp), ALLOCATABLE, DIMENSION(:,: ) :: zno3dep, znh4dep REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: ztrpo4, ztrdop, zirondep, zpdep REAL(wp), ALLOCATABLE, DIMENSION(:,: ) :: zsidep !!--------------------------------------------------------------------- ! IF( kt == nittrc000 .AND. knt == 1 ) THEN r1_rday = 1. / rday IF (ln_sediment .AND. ln_sed_2way) THEN lk_sed = .TRUE. ELSE lk_sed = .FALSE. ENDIF ENDIF ! ! Allocate temporary workspace ALLOCATE( ztrpo4(PRIV_3D_BIOARRAY) ) IF( ln_p5z ) ALLOCATE( ztrdop(PRIV_3D_BIOARRAY) ) zdenit2d(:,:) = 0.e0 zbureff (:,:) = 0.e0 zwork (:,:) = 0.e0 zsedsi (:,:) = 0.e0 zsedcal (:,:) = 0.e0 zsedc (:,:) = 0.e0 ! Add the external input of nutrients from dust deposition ! ---------------------------------------------------------- IF( ln_dust ) THEN ! ALLOCATE( zsidep(PRIV_2D_BIOARRAY), zpdep(PRIV_3D_BIOARRAY), zirondep(PRIV_3D_BIOARRAY) ) ! ! Iron and Si deposition at the surface DO jj = JRANGE DO ji = IRANGE zirondep(ji,jj,1) = dustsolub * dust(ji,jj) * mfrac * rfact2 / e3t_n(ji,jj,KSURF) / 55.85 zsidep(ji,jj) = 8.8 * 0.075 * dust(ji,jj) * mfrac * rfact2 / e3t_n(ji,jj,KSURF) / 28.1 zpdep (ji,jj,1) = 0.1 * 0.021 * dust(ji,jj) * mfrac * rfact2 / e3t_n(ji,jj,KSURF) / 31. / po4r END DO END DO ! ! Iron solubilization of particles in the water column ! ! dust in kg/m2/s ---> 1/55.85 to put in mol/Fe ; wdust in m/j zwdust = 0.03 * rday / ( wdust * 55.85 ) / ( 270. * rday ) DO jk = KRANGEL DO jj = JRANGE DO ji = IRANGE zirondep(ji,jj,jk) = dust(ji,jj) * mfrac * zwdust * rfact2 & & * EXP( -gdept_n(ji,jj,K) / 540. ) zpdep (ji,jj,jk) = zirondep(ji,jj,jk) * 0.023 END DO END DO END DO ! ! Iron solubilization of particles in the water column tra(:,:,1,jpsil) = tra(:,:,1,jpsil) + zsidep (:,:) DO jk = KRANGE tra(:,:,jk,jppo4) = tra(:,:,jk,jppo4) + zpdep (:,:,jk) tra(:,:,jk,jpfer) = tra(:,:,jk,jpfer) + zirondep(:,:,jk) ENDDO ! #if defined key_iomput IF( lk_iomput ) THEN IF( knt == nrdttrc ) THEN IF( iom_use( "Irondep" ) ) & & CALL iom_put( "Irondep", zirondep(:,:,1) * 1.e+3 * rfact2r * e3t_n(:,:,1) * tmask(:,:,1) ) ! surface downward dust depo of iron IF( iom_use( "pdust" ) ) & & CALL iom_put( "pdust" , dust(:,:) / ( wdust * rday ) * tmask(:,:,1) ) ! dust concentration at surface ENDIF ENDIF #endif ! #if defined key_trc_diaadd zrfact2 = 1.e+3 * rfact2r DO jj = JRANGE DO ji = IRANGE zmsk = zrfact2 * tmask(ji,jj,1) trc2d(ji,jj,jp_sildep) = zsidep(ji,jj) * zmsk ! iron deposition trc2d(ji,jj,jp_po4dep) = zpdep(ji,jj,1) * po4r * zmsk ! iron deposition END DO END DO DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE zmsk = zrfact2 * tmask(ji,jj,jk) trc3d(ji,jj,K,jp_irondep) = zirondep(ji,jj,jk) * zmsk ! iron flux from dust END DO END DO ENDDO DEALLOCATE( zsidep, zpdep, zirondep ) # endif ! ENDIF ! Add the external input of nutrients from river ! ---------------------------------------------------------- IF( ln_river ) THEN DO jj = JRANGE DO ji = IRANGE tra(ji,jj,1,jppo4) = tra(ji,jj,1,jppo4) + rivdip(ji,jj) * rfact2 tra(ji,jj,1,jpno3) = tra(ji,jj,1,jpno3) + rivdin(ji,jj) * rfact2 tra(ji,jj,1,jpfer) = tra(ji,jj,1,jpfer) + rivdic(ji,jj) * 5.e-5 * rfact2 tra(ji,jj,1,jpsil) = tra(ji,jj,1,jpsil) + rivdsi(ji,jj) * rfact2 tra(ji,jj,1,jpdic) = tra(ji,jj,1,jpdic) + rivdic(ji,jj) * rfact2 tra(ji,jj,1,jptal) = tra(ji,jj,1,jptal) + ( rivalk(ji,jj) - rno3 * rivdin(ji,jj) ) * rfact2 tra(ji,jj,1,jpdoc) = tra(ji,jj,1,jpdoc) + rivdoc(ji,jj) * rfact2 ENDDO ENDDO IF (ln_ligand) THEN DO jj = JRANGE DO ji = IRANGE tra(ji,jj,1,jplgw) = tra(ji,jj,1,jplgw) + rivdic(ji,jj) * 5.e-5 * rfact2 ENDDO ENDDO ENDIF IF( ln_p5z ) THEN DO jj = JRANGE DO ji = IRANGE tra(ji,jj,1,jpdop) = tra(ji,jj,1,jpdop) + rivdop(ji,jj) * rfact2 tra(ji,jj,1,jpdon) = tra(ji,jj,1,jpdon) + rivdon(ji,jj) * rfact2 ENDDO ENDDO ENDIF ENDIF ! Add the external input of nutrients from nitrogen deposition ! ---------------------------------------------------------- IF( ln_ndepo ) THEN ALLOCATE( zno3dep(PRIV_2D_BIOARRAY), znh4dep(PRIV_2D_BIOARRAY) ) DO jj = JRANGE DO ji = IRANGE ! conversion from KgN/m2/s to molC/L/s zfact = rfact2 / rno3 / 14. / e3t_n(ji,jj,KSURF) zno3dep(ji,jj) = zfact * no3dep(ji,jj) znh4dep(ji,jj) = zfact * nh4dep(ji,jj) ! tra(ji,jj,1,jpno3) = tra(ji,jj,1,jpno3) + zno3dep(ji,jj) tra(ji,jj,1,jpnh4) = tra(ji,jj,1,jpnh4) + znh4dep(ji,jj) tra(ji,jj,1,jptal) = tra(ji,jj,1,jptal) + rno3 * ( znh4dep(ji,jj) - zno3dep(ji,jj) ) END DO END DO #if defined key_trc_diaadd zrfact2 = 1.e+3 * rfact2r DO jj = JRANGE DO ji = IRANGE zmsk = zrfact2 * tmask(ji,jj,1) trc2d(ji,jj,jp_no3dep ) = zno3dep(ji,jj) * rno3 * zmsk ! iron deposition trc2d(ji,jj,jp_nh4dep ) = znh4dep(ji,jj) * rno3 * zmsk ! iron deposition END DO END DO # endif ! DEALLOCATE( zno3dep, znh4dep ) ! ENDIF ! OA: Warning, the following part is necessary to avoid CFL problems above the sediments ! -------------------------------------------------------------------- DO jj = JRANGE DO ji = IRANGE zdep = e3t_n(ji,jj,KSED) / xstep zwsbio4(ji,jj) = MIN( 0.99 * zdep, wsbio4(ji,jj,ikt) ) zwsbio3(ji,jj) = MIN( 0.99 * zdep, wsbio3(ji,jj,ikt) ) END DO END DO ! IF( .NOT.lk_sed ) THEN ! ! Add the external input of iron from sediment mobilization ! ------------------------------------------------------ IF( ln_ironsed ) THEN tra(:,:,:,jpfer) = tra(:,:,:,jpfer) + ironsed(:,:,:) * rfact2 ! #if defined key_iomput IF( lk_iomput .AND. knt == nrdttrc .AND. iom_use( "Ironsed" ) ) & & CALL iom_put( "Ironsed", ironsed(:,:,:) * 1.e+3 * tmask(:,:,:) ) ! iron inputs from sediments #endif #if defined key_trc_diaadd DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE trc3d(ji,jj,K,jp_ironsed ) = ironsed(ji,jj,jk) * 1e+3 * tmask(ji,jj,K) ! iron from sediment END DO END DO ENDDO #endif ! ENDIF ! Computation of the sediment denitrification proportion: The metamodel from midlleburg (2006) is being used ! Computation of the fraction of organic matter that is permanently buried from Dunne's model ! ------------------------------------------------------- DO jj = JRANGE DO ji = IRANGE IF( tmask(ji,jj,1) == 1 ) THEN zflx = ( trb(ji,jj,KSED,jpgoc) * zwsbio4(ji,jj) & & + trb(ji,jj,KSED,jppoc) * zwsbio3(ji,jj) ) * 1E3 * 1E6 / 1E4 zflx = LOG10( MAX( 1E-3, zflx ) ) zo2 = LOG10( MAX( 10. , trb(ji,jj,KSED,jpoxy) * 1E6 ) ) zno3 = LOG10( MAX( 1. , trb(ji,jj,KSED,jpno3) * 1E6 * rno3 ) ) zdep = LOG10( gdepw_n(ji,jj,ikt+1) ) zdenit2d(ji,jj) = -2.2567 - 1.185 * zflx - 0.221 * zflx**2 - 0.3995 * zno3 * zo2 + 1.25 * zno3 & & + 0.4721 * zo2 - 0.0996 * zdep + 0.4256 * zflx * zo2 zdenit2d(ji,jj) = 10.0**( zdenit2d(ji,jj) ) ! zflx = ( trb(ji,jj,KSED,jpgoc) * zwsbio4(ji,jj) & & + trb(ji,jj,KSED,jppoc) * zwsbio3(ji,jj) ) * 1E6 zbureff(ji,jj) = 0.013 + 0.53 * zflx**2 / ( 7.0 + zflx )**2 ENDIF END DO END DO ! ENDIF ! This loss is scaled at each bottom grid cell for equilibrating the total budget of silica in the ocean. ! Thus, the amount of silica lost in the sediments equal the supply at the surface (dust+rivers) ! ------------------------------------------------------ IF( .NOT.lk_sed ) zrivsil = 1.0 - sedsilfrac DO jj = JRANGE DO ji = IRANGE zdep = xstep / e3t_n(ji,jj,KSED) zwsc = zwsbio4(ji,jj) * zdep zsiloss = trb(ji,jj,KSED,jpgsi) * zwsc zcaloss = trb(ji,jj,KSED,jpcal) * zwsc ! tra(ji,jj,ikt,jpgsi) = tra(ji,jj,ikt,jpgsi) - zsiloss tra(ji,jj,ikt,jpcal) = tra(ji,jj,ikt,jpcal) - zcaloss END DO END DO ! IF( .NOT.lk_sed ) THEN DO jj = JRANGE DO ji = IRANGE zdep = xstep / e3t_n(ji,jj,KSED) zwsc = zwsbio4(ji,jj) * zdep zsiloss = trb(ji,jj,KSED,jpgsi) * zwsc zcaloss = trb(ji,jj,KSED,jpcal) * zwsc tra(ji,jj,ikt,jpsil) = tra(ji,jj,ikt,jpsil) + zsiloss * zrivsil ! zfactcal = MIN( excess(ji,jj,ikt), 0.2 ) zfactcal = MIN( 1., 1.3 * ( 0.2 - zfactcal ) / ( 0.4 - zfactcal ) ) zrivalk = sedcalfrac * zfactcal tra(ji,jj,ikt,jptal) = tra(ji,jj,ikt,jptal) + zcaloss * zrivalk * 2.0 tra(ji,jj,ikt,jpdic) = tra(ji,jj,ikt,jpdic) + zcaloss * zrivalk zsedcal(ji,jj) = (1.0 - zrivalk) * zcaloss * e3t_n(ji,jj,KSED) zsedsi (ji,jj) = (1.0 - zrivsil) * zsiloss * e3t_n(ji,jj,KSED) END DO END DO ENDIF ! DO jj = JRANGE DO ji = IRANGE zdep = xstep / e3t_n(ji,jj,KSED) zws4 = zwsbio4(ji,jj) * zdep zws3 = zwsbio3(ji,jj) * zdep tra(ji,jj,ikt,jpgoc) = tra(ji,jj,ikt,jpgoc) - trb(ji,jj,KSED,jpgoc) * zws4 tra(ji,jj,ikt,jppoc) = tra(ji,jj,ikt,jppoc) - trb(ji,jj,KSED,jppoc) * zws3 tra(ji,jj,ikt,jpbfe) = tra(ji,jj,ikt,jpbfe) - trb(ji,jj,KSED,jpbfe) * zws4 tra(ji,jj,ikt,jpsfe) = tra(ji,jj,ikt,jpsfe) - trb(ji,jj,KSED,jpsfe) * zws3 END DO END DO ! IF( ln_p5z ) THEN DO jj = JRANGE DO ji = IRANGE zdep = xstep / e3t_n(ji,jj,KSED) zws4 = zwsbio4(ji,jj) * zdep zws3 = zwsbio3(ji,jj) * zdep tra(ji,jj,ikt,jpgon) = tra(ji,jj,ikt,jpgon) - trb(ji,jj,KSED,jpgon) * zws4 tra(ji,jj,ikt,jppon) = tra(ji,jj,ikt,jppon) - trb(ji,jj,KSED,jppon) * zws3 tra(ji,jj,ikt,jpgop) = tra(ji,jj,ikt,jpgop) - trb(ji,jj,KSED,jpgop) * zws4 tra(ji,jj,ikt,jppop) = tra(ji,jj,ikt,jppop) - trb(ji,jj,KSED,jppop) * zws3 END DO END DO ENDIF IF( .NOT.lk_sed ) THEN ! The 0.5 factor in zpdenit is to avoid negative NO3 concentration after ! denitrification in the sediments. Not very clever, but simpliest option. DO jj = JRANGE DO ji = IRANGE zdep = xstep / e3t_n(ji,jj,KSED) zws4 = zwsbio4(ji,jj) * zdep zws3 = zwsbio3(ji,jj) * zdep zrivno3 = 1. - zbureff(ji,jj) zwstpoc = trb(ji,jj,KSED,jpgoc) * zws4 + trb(ji,jj,KSED,jppoc) * zws3 zpdenit = MIN( 0.5 * ( trb(ji,jj,KSED,jpno3) - rtrn ) & & / rdenit, zdenit2d(ji,jj) * zwstpoc * zrivno3 ) z1pdenit = zwstpoc * zrivno3 - zpdenit zolimit = MIN( ( trb(ji,jj,KSED,jpoxy) - rtrn ) / o2ut, z1pdenit * ( 1.- nitrfac(ji,jj,ikt) ) ) tra(ji,jj,ikt,jpdoc) = tra(ji,jj,ikt,jpdoc) + z1pdenit - zolimit tra(ji,jj,ikt,jppo4) = tra(ji,jj,ikt,jppo4) + zpdenit + zolimit tra(ji,jj,ikt,jpnh4) = tra(ji,jj,ikt,jpnh4) + zpdenit + zolimit tra(ji,jj,ikt,jpno3) = tra(ji,jj,ikt,jpno3) - rdenit * zpdenit tra(ji,jj,ikt,jpoxy) = tra(ji,jj,ikt,jpoxy) - zolimit * o2ut tra(ji,jj,ikt,jptal) = tra(ji,jj,ikt,jptal) + rno3 * (zolimit + (1.+rdenit) * zpdenit ) tra(ji,jj,ikt,jpdic) = tra(ji,jj,ikt,jpdic) + zpdenit + zolimit sdenit(ji,jj) = rdenit * zpdenit * e3t_n(ji,jj,KSED) zsedc(ji,jj) = (1. - zrivno3) * zwstpoc * e3t_n(ji,jj,KSED) IF( ln_p5z ) THEN zwstpop = trb(ji,jj,KSED,jpgop) * zws4 + trb(ji,jj,KSED,jppop) * zws3 zwstpon = trb(ji,jj,KSED,jpgon) * zws4 + trb(ji,jj,KSED,jppon) * zws3 tra(ji,jj,ikt,jpdon) = tra(ji,jj,ikt,jpdon) + ( z1pdenit - zolimit ) * zwstpon / (zwstpoc + rtrn) tra(ji,jj,ikt,jpdop) = tra(ji,jj,ikt,jpdop) + ( z1pdenit - zolimit ) * zwstpop / (zwstpoc + rtrn) ENDIF END DO END DO ENDIF ! Nitrogen fixation process ! Small source iron from particulate inorganic iron !----------------------------------- DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE zlight (ji,jj,jk) = ( 1.- EXP( -etot_ndcy(ji,jj,jk) / diazolight ) ) * ( 1. - fr_i(ji,jj) ) zsoufer(ji,jj,jk) = zlight(ji,jj,jk) * 2E-11 / ( 2E-11 + biron(ji,jj,jk) ) END DO END DO END DO IF( ln_p4z ) THEN DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE ! ! Potential nitrogen fixation dependant on temperature and iron ztemp = tsn(ji,jj,K,jp_tem) zmudia = MAX( 0.,-0.001096*ztemp**2 + 0.057*ztemp -0.637 ) / rno3 ! Potential nitrogen fixation dependant on temperature and iron xdianh4 = trb(ji,jj,K,jpnh4) / ( concnnh4 + trb(ji,jj,K,jpnh4) ) xdiano3 = trb(ji,jj,K,jpno3) / ( concnno3 & & + trb(ji,jj,K,jpno3) ) * (1. - xdianh4) zlim = ( 1.- xdiano3 - xdianh4 ) IF( zlim <= 0.1 ) zlim = 0.01 zfact = zlim * rfact2 ztrfer = biron(ji,jj,jk) / ( concfediaz + biron(ji,jj,jk) ) ztrpo4(ji,jj,jk) = trb(ji,jj,K,jppo4) & & / ( 1E-6 + trb(ji,jj,K,jppo4) ) ztrdp = ztrpo4(ji,jj,jk) nitrpot(ji,jj,jk) = zmudia * r1_rday * zfact * MIN( ztrfer, ztrdp ) * zlight(ji,jj,jk) END DO END DO END DO ELSE ! p5z DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE ! ! Potential nitrogen fixation dependant on temperature and iron ztemp = tsn(ji,jj,K,jp_tem) zmudia = MAX( 0.,-0.001096*ztemp**2 + 0.057*ztemp -0.637 ) / rno3 ! Potential nitrogen fixation dependant on temperature and iron xdianh4 = trb(ji,jj,K,jpnh4) / ( concnnh4 + trb(ji,jj,K,jpnh4) ) xdiano3 = trb(ji,jj,K,jpno3) / ( concnno3 & & + trb(ji,jj,K,jpno3) ) * (1. - xdianh4) zlim = ( 1.- xdiano3 - xdianh4 ) IF( zlim <= 0.1 ) zlim = 0.01 zfact = zlim * rfact2 ztrfer = biron(ji,jj,jk) / ( concfediaz + biron(ji,jj,jk) ) ztrpo4(ji,jj,jk) = trb(ji,jj,K,jppo4) & & / ( 1E-6 + trb(ji,jj,K,jppo4) ) ztrdop(ji,jj,jk) = trb(ji,jj,K,jpdop) & & / ( 1E-6 + trb(ji,jj,K,jpdop) ) * (1. - ztrpo4(ji,jj,jk)) ztrdp = ztrpo4(ji,jj,jk) + ztrdop(ji,jj,jk) nitrpot(ji,jj,jk) = zmudia * r1_rday * zfact * MIN( ztrfer, ztrdp ) * zlight(ji,jj,jk) END DO END DO END DO ENDIF ! Nitrogen change due to nitrogen fixation ! ---------------------------------------- IF( ln_p4z ) THEN DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE zfact = nitrpot(ji,jj,jk) * nitrfix tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) + zfact / 3.0 tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + rno3 * zfact / 3.0 tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) - zfact * 2.0 / 3.0 tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + zfact * 1.0 / 3.0 tra(ji,jj,jk,jppoc) = tra(ji,jj,jk,jppoc) + zfact * 1.0 / 3.0 * 2.0 / 3.0 tra(ji,jj,jk,jpgoc) = tra(ji,jj,jk,jpgoc) + zfact * 1.0 / 3.0 * 1.0 / 3.0 tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) + ( o2ut + o2nit ) * zfact * 2.0 / 3.0 + o2nit * zfact / 3.0 tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - 30E-6 * zfact * 1.0 / 3.0 tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + 30E-6 * zfact * 1.0 / 3.0 * 2.0 / 3.0 tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) + 30E-6 * zfact * 1.0 / 3.0 * 1.0 / 3.0 tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + 0.002 * 4E-10 * zsoufer(ji,jj,jk) * rfact2 / rday tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) + concdnh4 / ( concdnh4 + trb(ji,jj,K,jppo4) ) & & * 0.001 * trb(ji,jj,K,jpdoc) * xstep END DO END DO END DO ELSE ! p5z DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE zfact = nitrpot(ji,jj,jk) * nitrfix tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) + zfact / 3.0 tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + rno3 * zfact / 3.0 tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) - 16.0 / 46.0 * zfact * ( 1.0 - 1.0 / 3.0 ) & & * ztrpo4(ji,jj,jk) / (ztrpo4(ji,jj,jk) + ztrdop(ji,jj,jk) + rtrn) tra(ji,jj,jk,jpdon) = tra(ji,jj,jk,jpdon) + zfact * 1.0 / 3.0 tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + zfact * 1.0 / 3.0 tra(ji,jj,jk,jpdop) = tra(ji,jj,jk,jpdop) + 16.0 / 46.0 * zfact / 3.0 & & - 16.0 / 46.0 * zfact * ztrdop(ji,jj,jk) & & / (ztrpo4(ji,jj,jk) + ztrdop(ji,jj,jk) + rtrn) tra(ji,jj,jk,jppoc) = tra(ji,jj,jk,jppoc) + zfact * 1.0 / 3.0 * 2.0 / 3.0 tra(ji,jj,jk,jppon) = tra(ji,jj,jk,jppon) + zfact * 1.0 / 3.0 * 2.0 /3.0 tra(ji,jj,jk,jppop) = tra(ji,jj,jk,jppop) + 16.0 / 46.0 * zfact * 1.0 / 3.0 * 2.0 /3.0 tra(ji,jj,jk,jpgoc) = tra(ji,jj,jk,jpgoc) + zfact * 1.0 / 3.0 * 1.0 / 3.0 tra(ji,jj,jk,jpgon) = tra(ji,jj,jk,jpgon) + zfact * 1.0 / 3.0 * 1.0 /3.0 tra(ji,jj,jk,jpgop) = tra(ji,jj,jk,jpgop) + 16.0 / 46.0 * zfact * 1.0 / 3.0 * 1.0 /3.0 tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) + ( o2ut + o2nit ) * zfact * 2.0 / 3.0 + o2nit * zfact / 3.0 tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - 30E-6 * zfact * 1.0 / 3.0 tra(ji,jj,jk,jpsfe) = tra(ji,jj,jk,jpsfe) + 30E-6 * zfact * 1.0 / 3.0 * 2.0 / 3.0 tra(ji,jj,jk,jpbfe) = tra(ji,jj,jk,jpbfe) + 30E-6 * zfact * 1.0 / 3.0 * 1.0 / 3.0 tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) + 0.002 * 4E-10 * zsoufer(ji,jj,jk) * rfact2 / rday END DO END DO END DO ! ENDIF #if defined key_iomput IF( lk_iomput ) THEN IF( knt == nrdttrc ) THEN zfact = 1.e+3 * rfact2r ! conversion from molC/l/kt to molN/m3/s IF( iom_use("Nfix" ) ) CALL iom_put( "Nfix", nitrpot(:,:,:) * nitrfix * rno3 * zfact * tmask(:,:,:) ) ! nitrogen fixation IF( iom_use("INTNFIX") ) THEN ! nitrogen fixation rate in ocean ( vertically integrated ) zwork(:,:) = 0. DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE zwork(ji,jj) = zwork(ji,jj) + nitrpot(ji,jj,jk) * nitrfix * rno3 & & * zfact * e3t_n(ji,jj,K) * tmask(ji,jj,jk) END DO END DO END DO CALL iom_put( "INTNFIX" , zwork ) ENDIF IF( iom_use("SedCal" ) ) CALL iom_put( "SedCal", zsedcal(:,:) * zfact ) IF( iom_use("SedSi" ) ) CALL iom_put( "SedSi", zsedsi (:,:) * zfact ) IF( iom_use("SedC" ) ) CALL iom_put( "SedC", zsedc (:,:) * zfact ) IF( iom_use("Sdenit" ) ) CALL iom_put( "Sdenit", sdenit (:,:) * zfact * rno3 ) ENDIF ENDIF #endif ! #if defined key_trc_diaadd zfact = 1.e+3 * rfact2r zwork(:,:) = 0. DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE zwork(ji,jj) = zwork(ji,jj) + nitrpot(ji,jj,jk) * nitrfix * rno3 & & * zfact * e3t_n(ji,jj,K) * tmask(ji,jj,jk) END DO END DO END DO DO jj = JRANGE DO ji = IRANGE trc2d(ji,jj,jp_nfix ) = zwork(ji,jj) ! nitrogen fixation at surface END DO END DO zrfact2 = 1.e+3 * rfact2r DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE zmsk = zrfact2 * tmask(ji,jj,K) trc3d(ji,jj,K,jp_nfixo2 ) = nitrpot(ji,jj,jk) * rno3 * zmsk * nitrfix * o2nit ! O2 production by Nfix END DO END DO ENDDO # endif ! IF(ln_ctl) THEN ! print mean trends (USEd for debugging) WRITE(charout, fmt="('sed ')") CALL prt_ctl_trc_info(charout) CALL prt_ctl_trc( charout, ltra='tra') ENDIF ! IF( ln_p5z ) DEALLOCATE( ztrpo4, ztrdop ) ! END SUBROUTINE p4z_sed INTEGER FUNCTION p4z_sed_alloc() !!---------------------------------------------------------------------- !! *** ROUTINE p4z_sed_alloc *** !!---------------------------------------------------------------------- ALLOCATE( nitrpot(PRIV_3D_BIOARRAY), sdenit(PRIV_2D_BIOARRAY), STAT=p4z_sed_alloc ) ! IF( p4z_sed_alloc /= 0 ) CALL ctl_warn( 'p4z_sed_alloc: failed to allocate arrays' ) ! END FUNCTION p4z_sed_alloc #else !!====================================================================== !! Dummy module : No PISCES bio-model !!====================================================================== CONTAINS SUBROUTINE p4z_sed ! Empty routine END SUBROUTINE p4z_sed #endif !!====================================================================== END MODULE p4zsed