#include "cppdefs.h" MODULE p4zprod !!====================================================================== !! *** MODULE p4zprod *** !! TOP : Growth Rate of the two phytoplanktons groups !!====================================================================== !! History : 1.0 ! 2004 (O. Aumont) Original code !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 !! 3.4 ! 2011-05 (O. Aumont, C. Ethe) New parameterization of light limitation !!---------------------------------------------------------------------- #if defined key_pisces !! p4z_prod : Compute the growth Rate of the two phytoplanktons groups !! p4z_prod_init : Initialization of the parameters for growth !! p4z_prod_alloc : Allocate variables for growth !!---------------------------------------------------------------------- USE sms_pisces ! PISCES Source Minus Sink variables USE p4zlim ! Co-limitations of differents nutrients ! USE prtctl_trc ! print control for debugging ! USE iom ! I/O manager IMPLICIT NONE PRIVATE PUBLIC p4z_prod ! called in p4zbio.F90 PUBLIC p4z_prod_init ! called in trcsms_pisces.F90 PUBLIC p4z_prod_alloc !!* Substitution # include "ocean2pisces.h90" # include "top_substitute.h90" REAL(wp), PUBLIC :: pislopen !: REAL(wp), PUBLIC :: pisloped !: REAL(wp), PUBLIC :: xadap !: REAL(wp), PUBLIC :: excretn !: REAL(wp), PUBLIC :: excretd !: REAL(wp), PUBLIC :: bresp !: REAL(wp), PUBLIC :: chlcnm !: REAL(wp), PUBLIC :: chlcdm !: REAL(wp), PUBLIC :: chlcmin !: REAL(wp), PUBLIC :: fecnm !: REAL(wp), PUBLIC :: fecdm !: REAL(wp), PUBLIC :: grosip !: REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: quotan !: proxy of N quota in Nanophyto REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: quotad !: proxy of N quota in diatomee REAL(wp) :: r1_rday ! 1 / rday REAL(wp) :: texcretn ! 1 - excretn REAL(wp) :: texcretd ! 1 - excretd !!---------------------------------------------------------------------- !! NEMO/TOP 4.0 , NEMO Consortium (2018) !! $Id: p4zprod.F90 11117 2019-06-17 08:50:02Z cetlod $ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE p4z_prod( kt , knt ) !!--------------------------------------------------------------------- !! *** ROUTINE p4z_prod *** !! !! ** Purpose : Compute the phytoplankton production depending on !! light, temperature and nutrient availability !! !! ** Method : - ??? !!--------------------------------------------------------------------- INTEGER, INTENT(in) :: kt, knt ! ! INTEGER :: ji, jj, jk REAL(wp) :: zsilfac, znanotot, zdiattot, zconctemp, zconctemp2 REAL(wp) :: zratio, zmax, zsilim, ztn, zadap, zlim, zsilfac2, zsiborn REAL(wp) :: zprod, zproreg, zproreg2, zprochln, zprochld REAL(wp) :: zmaxday, zdocprod, zpislopen, zpisloped REAL(wp) :: zmxltst, zmxlday REAL(wp) :: zrum, zcodel, zargu, zval, zfeup, chlcnm_n, chlcdm_n REAL(wp) :: zfact, zmsk CHARACTER (len=25) :: charout REAL(wp), DIMENSION(PRIV_2D_BIOARRAY) :: zw2d REAL(wp), DIMENSION(PRIV_3D_BIOARRAY) :: zw3d REAL(wp), DIMENSION(PRIV_2D_BIOARRAY) :: zstrn, zmixnano, zmixdiat REAL(wp), DIMENSION(PRIV_3D_BIOARRAY) :: zprmaxn,zprmaxd REAL(wp), DIMENSION(PRIV_3D_BIOARRAY) :: zpislopeadn, zpislopeadd, zysopt REAL(wp), DIMENSION(PRIV_3D_BIOARRAY) :: zprdia, zprbio, zprdch, zprnch REAL(wp), DIMENSION(PRIV_3D_BIOARRAY) :: zprorcan, zprorcad, zprofed, zprofen REAL(wp), DIMENSION(PRIV_3D_BIOARRAY) :: zpronewn, zpronewd REAL(wp), DIMENSION(PRIV_3D_BIOARRAY) :: zmxl_fac, zmxl_chl REAL(wp), DIMENSION(PRIV_3D_BIOARRAY) :: zpligprod1, zpligprod2 !!--------------------------------------------------------------------- ! ! Allocate temporary workspace ! zprorcan(:,:,:) = 0. ; zprorcad(:,:,:) = 0. ; zprofed (:,:,:) = 0. zprofen (:,:,:) = 0. ; zysopt (:,:,:) = 0. zpronewn(:,:,:) = 0. ; zpronewd(:,:,:) = 0. ; zprdia (:,:,:) = 0. zprbio (:,:,:) = 0. ; zprdch (:,:,:) = 0. ; zprnch (:,:,:) = 0. zmxl_fac(:,:,:) = 0. ; zmxl_chl(:,:,:) = 0. ! Computation of the optimal production zprmaxn(:,:,:) = 0.8 * r1_rday * tgfunc(:,:,:) zprmaxd(:,:,:) = zprmaxn(:,:,:) ! compute the day length depending on latitude and the day zrum = FLOAT( nday_year - 80 ) / nyear_len zcodel = ASIN( SIN( zrum * rpi * 2. ) * SIN( rad * 23.5 ) ) ! day length in hours zstrn(:,:) = 0. DO jj = JRANGE DO ji = IRANGE zargu = TAN( zcodel ) * TAN( gphit(ji,jj) * rad ) zargu = MAX( -1., MIN( 1., zargu ) ) zstrn(ji,jj) = MAX( 0.0, 24. - 2. * ACOS( zargu ) / rad / 15. ) END DO END DO ! Impact of the day duration and light intermittency on phytoplankton growth DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN zval = MAX( 1., zstrn(ji,jj) ) IF( gdept_n(ji,jj,K) <= hmld(ji,jj) ) THEN zval = zval * MIN(1., heup_01(ji,jj) / ( hmld(ji,jj) + rtrn )) ENDIF zmxl_chl(ji,jj,jk) = zval / 24. zmxl_fac(ji,jj,jk) = 1.5 * zval / ( 12. + zval ) ENDIF END DO END DO END DO zprbio(:,:,:) = zprmaxn(:,:,:) * zmxl_fac(:,:,:) zprdia(:,:,:) = zprmaxd(:,:,:) * zmxl_fac(:,:,:) ! Maximum light intensity WHERE( zstrn(:,:) < 1.e0 ) zstrn(:,:) = 24. ! Computation of the P-I slope for nanos and diatoms DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN ztn = MAX( 0., tsn(ji,jj,K,jp_tem) - 15. ) zadap = xadap * ztn / ( 2.+ ztn ) zconctemp = MAX( 0.e0 , trb(ji,jj,K,jpdia) - xsizedia ) zconctemp2 = trb(ji,jj,K,jpdia) - zconctemp ! zpislopeadn(ji,jj,jk) = pislopen * ( 1.+ zadap * EXP( -0.25 * enano(ji,jj,jk) ) ) & & * trb(ji,jj,K,jpnch) /( trb(ji,jj,K,jpphy) * 12. + rtrn) ! zpislopeadd(ji,jj,jk) = (pislopen * zconctemp2 + pisloped * zconctemp) & & / ( trb(ji,jj,K,jpdia) + rtrn ) & & * trb(ji,jj,K,jpdch) /( trb(ji,jj,K,jpdia) * 12. + rtrn) ENDIF END DO END DO END DO DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN ! Computation of production function for Carbon ! --------------------------------------------- zpislopen = zpislopeadn(ji,jj,jk) / ( ( r1_rday + bresp * r1_rday ) & & * zmxl_fac(ji,jj,jk) * rday + rtrn) zpisloped = zpislopeadd(ji,jj,jk) / ( ( r1_rday + bresp * r1_rday ) & & * zmxl_fac(ji,jj,jk) * rday + rtrn) zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * ( 1.- EXP( -zpislopen * enano(ji,jj,jk) ) ) zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * ( 1.- EXP( -zpisloped * ediat(ji,jj,jk) ) ) ! Computation of production function for Chlorophyll !-------------------------------------------------- zpislopen = zpislopeadn(ji,jj,jk) / ( zprmaxn(ji,jj,jk) * zmxl_chl(ji,jj,jk) * rday + rtrn ) zpisloped = zpislopeadd(ji,jj,jk) / ( zprmaxd(ji,jj,jk) * zmxl_chl(ji,jj,jk) * rday + rtrn ) zprnch(ji,jj,jk) = zprmaxn(ji,jj,jk) * ( 1.- EXP( -zpislopen * enanom(ji,jj,jk) ) ) zprdch(ji,jj,jk) = zprmaxd(ji,jj,jk) * ( 1.- EXP( -zpisloped * ediatm(ji,jj,jk) ) ) ENDIF END DO END DO END DO ! Computation of a proxy of the N/C ratio ! --------------------------------------- DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE zval = MIN( xnanopo4(ji,jj,jk), ( xnanonh4(ji,jj,jk) + xnanono3(ji,jj,jk) ) ) & & * zprmaxn(ji,jj,jk) / ( zprbio(ji,jj,jk) + rtrn ) quotan(ji,jj,jk) = MIN( 1., 0.2 + 0.8 * zval ) zval = MIN( xdiatpo4(ji,jj,jk), ( xdiatnh4(ji,jj,jk) + xdiatno3(ji,jj,jk) ) ) & & * zprmaxd(ji,jj,jk) / ( zprdia(ji,jj,jk) + rtrn ) quotad(ji,jj,jk) = MIN( 1., 0.2 + 0.8 * zval ) END DO END DO END DO DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN ! Si/C of diatoms ! ------------------------ ! Si/C increases with iron stress and silicate availability ! Si/C is arbitrariliy increased for very high Si concentrations ! to mimic the very high ratios observed in the Southern Ocean (silpot2) zlim = trb(ji,jj,K,jpsil) / ( trb(ji,jj,K,jpsil) + xksi1 ) zsilim = MIN( zprdia(ji,jj,jk) / ( zprmaxd(ji,jj,jk) + rtrn ), xlimsi(ji,jj,jk) ) zsilfac = 4.4 * EXP( -4.23 * zsilim ) * MAX( 0.e0, MIN( 1., 2.2 * ( zlim - 0.5 ) ) ) + 1.e0 zsiborn = trb(ji,jj,K,jpsil)**3 IF (gphit(ji,jj) < -30 ) THEN zsilfac2 = 1. + 2. * zsiborn / ( zsiborn + xksi2**3 ) ELSE zsilfac2 = 1. + zsiborn / ( zsiborn + xksi2**3 ) ENDIF zysopt(ji,jj,jk) = grosip * zlim * zsilfac * zsilfac2 ENDIF END DO END DO END DO ! Mixed-layer effect on production ! Sea-ice effect on production DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE zprbio(ji,jj,jk) = zprbio(ji,jj,jk) * ( 1. - fr_i(ji,jj) ) zprdia(ji,jj,jk) = zprdia(ji,jj,jk) * ( 1. - fr_i(ji,jj) ) END DO END DO END DO ! Computation of the various production terms DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN ! production terms for nanophyto. (C) zprorcan(ji,jj,jk) = zprbio(ji,jj,jk) * xlimphy(ji,jj,jk) * trb(ji,jj,K,jpphy) * rfact2 zpronewn(ji,jj,jk) = zprorcan(ji,jj,jk)* xnanono3(ji,jj,jk) / ( xnanono3(ji,jj,jk) + xnanonh4(ji,jj,jk) + rtrn ) ! zratio = trb(ji,jj,K,jpnfe) & & /(trb(ji,jj,K,jpphy) * fecnm + rtrn) zmax = MAX( 0., ( 1. - zratio ) / ABS( 1.05 - zratio ) ) zprofen(ji,jj,jk) = fecnm * zprmaxn(ji,jj,jk) * ( 1.0 - fr_i(ji,jj) ) & & * ( 4. - 4.5 * xlimnfe(ji,jj,jk) / ( xlimnfe(ji,jj,jk) + 0.5 ) ) & & * biron(ji,jj,jk) / ( biron(ji,jj,jk) + concnfe(ji,jj,jk) ) & & * zmax * trb(ji,jj,K,jpphy) * rfact2 ! production terms for diatoms (C) zprorcad(ji,jj,jk) = zprdia(ji,jj,jk) * xlimdia(ji,jj,jk) * trb(ji,jj,K,jpdia) * rfact2 zpronewd(ji,jj,jk) = zprorcad(ji,jj,jk) * xdiatno3(ji,jj,jk) / ( xdiatno3(ji,jj,jk) + xdiatnh4(ji,jj,jk) + rtrn ) ! zratio = trb(ji,jj,K,jpdfe) & & / ( trb(ji,jj,K,jpdia) * fecdm + rtrn ) zmax = MAX( 0., ( 1. - zratio ) / ABS( 1.05 - zratio ) ) zprofed(ji,jj,jk) = fecdm * zprmaxd(ji,jj,jk) * ( 1.0 - fr_i(ji,jj) ) & & * ( 4. - 4.5 * xlimdfe(ji,jj,jk) / ( xlimdfe(ji,jj,jk) + 0.5 ) ) & & * biron(ji,jj,jk) / ( biron(ji,jj,jk) + concdfe(ji,jj,jk) ) & & * zmax * trb(ji,jj,K,jpdia) * rfact2 ENDIF END DO END DO END DO ! Computation of the chlorophyll production terms DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN ! production terms for nanophyto. ( chlorophyll ) znanotot = enanom(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) zprod = rday * zprorcan(ji,jj,jk) * zprnch(ji,jj,jk) * xlimphy(ji,jj,jk) zprochln = chlcmin * 12. * zprorcan (ji,jj,jk) chlcnm_n = MIN ( chlcnm, ( chlcnm / (1. - 1.14 / 43.4 *tsn(ji,jj,K,jp_tem))) * (1. - 1.14 / 43.4 * 20.)) zprochln = zprochln + (chlcnm_n-chlcmin) * 12. * zprod / & & ( zpislopeadn(ji,jj,jk) * znanotot +rtrn) ! production terms for diatoms ( chlorophyll ) zdiattot = ediatm(ji,jj,jk) / ( zmxl_chl(ji,jj,jk) + rtrn ) zprod = rday * zprorcad(ji,jj,jk) * zprdch(ji,jj,jk) * xlimdia(ji,jj,jk) zprochld = chlcmin * 12. * zprorcad(ji,jj,jk) chlcdm_n = MIN ( chlcdm, ( chlcdm / (1. - 1.14 / 43.4 * tsn(ji,jj,K,jp_tem))) * (1. - 1.14 / 43.4 * 20.)) zprochld = zprochld + (chlcdm_n-chlcmin) * 12. * zprod / & & ( zpislopeadd(ji,jj,jk) * zdiattot +rtrn ) ! Update the arrays TRA which contain the Chla sources and sinks tra(ji,jj,jk,jpnch) = tra(ji,jj,jk,jpnch) + zprochln * texcretn tra(ji,jj,jk,jpdch) = tra(ji,jj,jk,jpdch) + zprochld * texcretd ENDIF END DO END DO END DO ! Update the arrays TRA which contain the biological sources and sinks DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN zproreg = zprorcan(ji,jj,jk) - zpronewn(ji,jj,jk) zproreg2 = zprorcad(ji,jj,jk) - zpronewd(ji,jj,jk) zdocprod = excretd * zprorcad(ji,jj,jk) + excretn * zprorcan(ji,jj,jk) tra(ji,jj,jk,jppo4) = tra(ji,jj,jk,jppo4) - zprorcan(ji,jj,jk) - zprorcad(ji,jj,jk) tra(ji,jj,jk,jpno3) = tra(ji,jj,jk,jpno3) - zpronewn(ji,jj,jk) - zpronewd(ji,jj,jk) tra(ji,jj,jk,jpnh4) = tra(ji,jj,jk,jpnh4) - zproreg - zproreg2 tra(ji,jj,jk,jpphy) = tra(ji,jj,jk,jpphy) + zprorcan(ji,jj,jk) * texcretn tra(ji,jj,jk,jpnfe) = tra(ji,jj,jk,jpnfe) + zprofen(ji,jj,jk) * texcretn tra(ji,jj,jk,jpdia) = tra(ji,jj,jk,jpdia) + zprorcad(ji,jj,jk) * texcretd tra(ji,jj,jk,jpdfe) = tra(ji,jj,jk,jpdfe) + zprofed(ji,jj,jk) * texcretd tra(ji,jj,jk,jpdsi) = tra(ji,jj,jk,jpdsi) + zprorcad(ji,jj,jk) * zysopt(ji,jj,jk) * texcretd tra(ji,jj,jk,jpdoc) = tra(ji,jj,jk,jpdoc) + zdocprod tra(ji,jj,jk,jpoxy) = tra(ji,jj,jk,jpoxy) + o2ut * ( zproreg + zproreg2) & & + ( o2ut + o2nit ) * ( zpronewn(ji,jj,jk) + zpronewd(ji,jj,jk) ) ! zfeup = texcretn * zprofen(ji,jj,jk) + texcretd * zprofed(ji,jj,jk) tra(ji,jj,jk,jpfer) = tra(ji,jj,jk,jpfer) - zfeup tra(ji,jj,jk,jpsil) = tra(ji,jj,jk,jpsil) - texcretd * zprorcad(ji,jj,jk) * zysopt(ji,jj,jk) tra(ji,jj,jk,jpdic) = tra(ji,jj,jk,jpdic) - zprorcan(ji,jj,jk) - zprorcad(ji,jj,jk) tra(ji,jj,jk,jptal) = tra(ji,jj,jk,jptal) + rno3 * ( zpronewn(ji,jj,jk) + zpronewd(ji,jj,jk) ) & & - rno3 * ( zproreg + zproreg2 ) ENDIF END DO END DO END DO ! IF( ln_ligand ) THEN zpligprod1(:,:,:) = 0.0 ; zpligprod2(:,:,:) = 0.0 DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE IF( etot_ndcy(ji,jj,jk) > 1.E-3 ) THEN zdocprod = excretd * zprorcad(ji,jj,jk) + excretn * zprorcan(ji,jj,jk) zfeup = texcretn * zprofen(ji,jj,jk) + texcretd * zprofed(ji,jj,jk) tra(ji,jj,jk,jplgw) = tra(ji,jj,jk,jplgw) + zdocprod * ldocp & & - zfeup * plig(ji,jj,jk) / ( rtrn + plig(ji,jj,jk) + 2.E3 * (1.0 - plig(ji,jj,jk) ) ) zpligprod1(ji,jj,jk) = zdocprod * ldocp zpligprod2(ji,jj,jk) = zfeup * plig(ji,jj,jk) * lthet ENDIF END DO END DO END DO ENDIF #if defined key_iomput IF( lk_iomput ) THEN IF( knt == nrdttrc ) THEN zfact = 1.e+3 * rfact2r ! conversion from mol/l/kt to mol/m3/s ! IF( iom_use( "PPPHYN" ) .OR. iom_use( "PPPHYD" ) ) THEN DO jk = KRANGE zw3d(:,:,jk) = zprorcan(:,:,jk) * zfact * tmask(:,:,jk) ! primary production by nanophyto END DO CALL iom_put( "PPPHYN" , zw3d ) ! DO jk = KRANGE zw3d(:,:,jk) = zprorcad(:,:,jk) * zfact * tmask(:,:,jk) ! primary production by diatomes END DO CALL iom_put( "PPPHYD" , zw3d ) ENDIF IF( iom_use( "PPNEWN" ) .OR. iom_use( "PPNEWD" ) ) THEN DO jk = KRANGE zw3d(:,:,jk) = zpronewn(:,:,jk) * zfact * tmask(:,:,jk) ! new primary production by nanophyto END DO CALL iom_put( "PPNEWN" , zw3d ) ! DO jk = KRANGE zw3d(:,:,jk) = zpronewd(:,:,jk) * zfact * tmask(:,:,jk) ! new primary production by diatomes END DO CALL iom_put( "PPNEWD" , zw3d ) ENDIF IF( iom_use( "PBSi" ) ) THEN DO jk = KRANGE zw3d(:,:,jk) = zprorcad(:,:,jk) * zfact * tmask(:,:,jk) * zysopt(:,:,jk) ! biogenic silica production END DO CALL iom_put( "PBSi" , zw3d ) ENDIF IF( iom_use( "PFeN" ) .OR. iom_use( "PFeD" ) ) THEN DO jk = KRANGE zw3d(:,:,jk) = zprofen(:,:,jk) * zfact * tmask(:,:,jk) ! biogenic iron production by nanophyto END DO CALL iom_put( "PFeN" , zw3d ) ! DO jk = KRANGE zw3d(:,:,jk) = zprofed(:,:,jk) * zfact * tmask(:,:,jk) ! biogenic iron production by diatomes END DO CALL iom_put( "PFeD" , zw3d ) ENDIF IF( iom_use( "LPRODP" ) ) THEN DO jk = KRANGE zw3d(:,:,jk) = zpligprod1(:,:,jk) * 1e9 * zfact * tmask(:,:,jk) END DO CALL iom_put( "LPRODP" , zw3d ) ENDIF IF( iom_use( "LDETP" ) ) THEN DO jk = KRANGE zw3d(:,:,jk) = zpligprod2(:,:,jk) * 1e9 * zfact * tmask(:,:,jk) END DO CALL iom_put( "LDETP" , zw3d ) ENDIF IF( iom_use( "Mumax" ) ) THEN DO jk = KRANGE zw3d(:,:,jk) = zprmaxn(:,:,jk) * tmask(:,:,jk) ! Maximum growth rate END DO CALL iom_put( "Mumax" , zw3d ) ENDIF IF( iom_use( "MuN" ) .OR. iom_use( "MuD" ) ) THEN DO jk = KRANGE zw3d(:,:,jk) = zprbio(:,:,jk) * xlimphy(:,:,jk) * tmask(:,:,jk) ! Realized growth rate for nanophyto END DO CALL iom_put( "MuN" , zw3d ) ! DO jk = KRANGE zw3d(:,:,jk) = zprdia(:,:,jk) * xlimdia(:,:,jk) * tmask(:,:,jk) ! Realized growth rate for diatoms END DO CALL iom_put( "MuD" , zw3d ) ENDIF IF( iom_use( "LNlight" ) .OR. iom_use( "LDlight" ) ) THEN DO jk = KRANGE zw3d(:,:,jk) = zprbio (:,:,jk) / (zprmaxn(:,:,jk) + rtrn) * tmask(:,:,jk) ! light limitation term END DO CALL iom_put( "LNlight" , zw3d ) ! DO jk = KRANGE zw3d(:,:,jk) = zprdia (:,:,jk) / (zprmaxd(:,:,jk) + rtrn) * tmask(:,:,jk) ! light limitation term END DO CALL iom_put( "LDlight" , zw3d ) ENDIF IF( iom_use( "TPP" ) ) THEN DO jk = KRANGE zw3d(:,:,jk) = ( zprorcan(:,:,jk) + zprorcad(:,:,jk) ) * zfact * tmask(:,:,jk) ! total primary production END DO CALL iom_put( "TPP" , zw3d ) ENDIF IF( iom_use( "TPNEW" ) ) THEN DO jk = KRANGE zw3d(:,:,jk) = ( zpronewn(:,:,jk) + zpronewd(:,:,jk) ) * zfact * tmask(:,:,jk) ! total new production END DO CALL iom_put( "TPNEW" , zw3d ) ENDIF IF( iom_use( "TPBFE" ) ) THEN DO jk = KRANGE zw3d(:,:,jk) = ( zprofen(:,:,jk) + zprofed(:,:,jk) ) * zfact * tmask(:,:,jk) ! total biogenic iron production END DO CALL iom_put( "TPBFE" , zw3d ) ENDIF IF( iom_use( "INTPPPHYN" ) .OR. iom_use( "INTPPPHYD" ) ) THEN zw2d(:,:) = 0. DO jk = KRANGE zw2d(:,:) = zw2d(:,:) + zprorcan(:,:,jk) * e3t_n(:,:,K) * zfact * tmask(:,:,jk) ! vert. integrated primary produc. by nano ENDDO CALL iom_put( "INTPPPHYN" , zw2d ) ! zw2d(:,:) = 0. DO jk = KRANGE zw2d(:,:) = zw2d(:,:) + zprorcad(:,:,jk) * e3t_n(:,:,K) * zfact * tmask(:,:,jk) ! vert. integrated primary produc. by diatom ENDDO CALL iom_put( "INTPPPHYD" , zw2d ) ENDIF IF( iom_use( "INTPP" ) ) THEN zw2d(:,:) = 0. DO jk = KRANGE zw2d(:,:) = zw2d(:,:) + ( zprorcan(:,:,jk) + zprorcad(:,:,jk) ) * e3t_n(:,:,K) * zfact * tmask(:,:,jk) ! vert. integrated pp ENDDO CALL iom_put( "INTPP" , zw2d ) ENDIF IF( iom_use( "INTPNEW" ) ) THEN zw2d(:,:) = 0. DO jk = KRANGE zw2d(:,:) = zw2d(:,:) + ( zpronewn(:,:,jk) + zpronewd(:,:,jk) ) * e3t_n(:,:,K) * zfact * tmask(:,:,jk) ! vert. integrated new prod ENDDO CALL iom_put( "INTPNEW" , zw2d ) ENDIF IF( iom_use( "INTPBFE" ) ) THEN ! total biogenic iron production ( vertically integrated ) zw2d(:,:) = 0. DO jk = KRANGE zw2d(:,:) = zw2d(:,:) + ( zprofen(:,:,jk) + zprofed(:,:,jk) ) * e3t_n(:,:,K) * zfact * tmask(:,:,jk) ! vert integr. bfe prod ENDDO CALL iom_put( "INTPBFE" , zw2d ) ENDIF IF( iom_use( "INTPBSI" ) ) THEN ! total biogenic silica production ( vertically integrated ) zw2d(:,:) = 0. DO jk = KRANGE zw2d(:,:) = zw2d(:,:) + zprorcad(:,:,jk) * zysopt(:,:,jk) * e3t_n(:,:,K) * zfact * tmask(:,:,jk) ! vert integr. bsi prod ENDDO CALL iom_put( "INTPBSI" , zw2d ) ENDIF ! ENDIF ENDIF #endif #if defined key_trc_diaadd ! Supplementary diagnostics zfact = 1.e3 * rfact2r DO jk = KRANGE DO jj = JRANGE DO ji = IRANGE zmsk = zfact * tmask(ji,jj,K) trc3d(ji,jj,K,jp_pphy ) = zprorcan(ji,jj,jk) * zmsk ! primary production by nanophyto trc3d(ji,jj,K,jp_pphy2 ) = zprorcad(ji,jj,jk) * zmsk ! primary production by diatom trc3d(ji,jj,K,jp_pnew ) = zpronewn(ji,jj,jk) * zmsk ! new primary production by nanophyto trc3d(ji,jj,K,jp_pnew2 ) = zpronewd(ji,jj,jk) * zmsk ! new primary production by diatom trc3d(ji,jj,K,jp_pbsi ) = zprorcad(ji,jj,jk) * zysopt(ji,jj,jk) * zmsk ! biogenic silica production trc3d(ji,jj,K,jp_pfed ) = zprofed (ji,jj,jk) * zmsk ! biogenic iron production by diatom trc3d(ji,jj,K,jp_pfen ) = zprofen (ji,jj,jk) * zmsk! biogenic iron production by nanophyto trc3d(ji,jj,K,jp_pnewo2) = ( o2ut + o2nit ) & ! Oxygen production by the New Produc. & * ( zpronewn(ji,jj,jk) + zpronewd(ji,jj,jk) ) * zmsk trc3d(ji,jj,K,jp_prego2) = o2ut * & ! Oxygen production by the Regen Produc. & ( zprorcan(ji,jj,jk) - zpronewn(ji,jj,jk) & & + zprorcad(ji,jj,jk) - zpronewd(ji,jj,jk) ) * zmsk END DO END DO END DO #endif IF(ln_ctl) THEN ! print mean trends (used for debugging) WRITE(charout, FMT="('prod')") CALL prt_ctl_trc_info(charout) CALL prt_ctl_trc( charout, ltra='tra') ! CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) ENDIF ! END SUBROUTINE p4z_prod SUBROUTINE p4z_prod_init !!---------------------------------------------------------------------- !! *** ROUTINE p4z_prod_init *** !! !! ** Purpose : Initialization of phytoplankton production parameters !! !! ** Method : Read the nampisprod namelist and check the parameters !! called at the first timestep (nittrc000) !! !! ** input : Namelist nampisprod !!---------------------------------------------------------------------- INTEGER :: ios ! Local integer ! NAMELIST/namp4zprod/ pislopen, pisloped, xadap, bresp, excretn, excretd, & & chlcnm, chlcdm, chlcmin, fecnm, fecdm, grosip !!---------------------------------------------------------------------- ! IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'p4z_prod_init : phytoplankton growth' WRITE(numout,*) '~~~~~~~~~~~~~' ENDIF ! REWIND( numnatp_ref ) ! Namelist nampisprod in reference namelist : Pisces phytoplankton production READ ( numnatp_ref, namp4zprod, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namp4zprod in reference namelist', lwp ) REWIND( numnatp_cfg ) ! Namelist nampisprod in configuration namelist : Pisces phytoplankton production READ ( numnatp_cfg, namp4zprod, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namp4zprod in configuration namelist', lwp ) IF(lwm) WRITE( numonp, namp4zprod ) IF(lwp) THEN ! control print WRITE(numout,*) ' Namelist : namp4zprod' WRITE(numout,*) ' mean Si/C ratio grosip =', grosip WRITE(numout,*) ' P-I slope pislopen =', pislopen WRITE(numout,*) ' Acclimation factor to low light xadap =', xadap WRITE(numout,*) ' excretion ratio of nanophytoplankton excretn =', excretn WRITE(numout,*) ' excretion ratio of diatoms excretd =', excretd WRITE(numout,*) ' basal respiration in phytoplankton bresp =', bresp WRITE(numout,*) ' Maximum Chl/C in phytoplankton chlcmin =', chlcmin WRITE(numout,*) ' P-I slope for diatoms pisloped =', pisloped WRITE(numout,*) ' Minimum Chl/C in nanophytoplankton chlcnm =', chlcnm WRITE(numout,*) ' Minimum Chl/C in diatoms chlcdm =', chlcdm WRITE(numout,*) ' Maximum Fe/C in nanophytoplankton fecnm =', fecnm WRITE(numout,*) ' Minimum Fe/C in diatoms fecdm =', fecdm ENDIF ! r1_rday = 1. / rday texcretn = 1. - excretn texcretd = 1. - excretd ! END SUBROUTINE p4z_prod_init INTEGER FUNCTION p4z_prod_alloc() !!---------------------------------------------------------------------- !! *** ROUTINE p4z_prod_alloc *** !!---------------------------------------------------------------------- ALLOCATE( quotan(PRIV_3D_BIOARRAY), quotad(PRIV_3D_BIOARRAY), STAT = p4z_prod_alloc ) ! IF( p4z_prod_alloc /= 0 ) CALL ctl_warn( 'p4z_prod_alloc : failed to allocate arrays.' ) ! END FUNCTION p4z_prod_alloc #else !!====================================================================== !! Dummy module : No PISCES bio-model !!====================================================================== CONTAINS SUBROUTINE p4z_prod ! Empty routine END SUBROUTINE p4z_prod #endif !!====================================================================== END MODULE p4zprod