#include "cppdefs.h" MODULE p4zflx !!====================================================================== !! *** MODULE p4zflx *** !! TOP : PISCES CALCULATES GAS EXCHANGE AND CHEMISTRY AT SEA SURFACE !!====================================================================== !! History : - ! 1988-07 (E. MAIER-REIMER) Original code !! - ! 1998 (O. Aumont) additions !! - ! 1999 (C. Le Quere) modifications !! 1.0 ! 2004 (O. Aumont) modifications !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 !! ! 2011-02 (J. Simeon, J. Orr) Include total atm P correction !!---------------------------------------------------------------------- #if defined key_pisces !! p4z_flx : CALCULATES GAS EXCHANGE AND CHEMISTRY AT SEA SURFACE !! p4z_flx_init : Read the namelist !!---------------------------------------------------------------------- USE sms_pisces ! PISCES Source Minus Sink variables USE p4zche ! Chemical model ! USE iom ! I/O manager IMPLICIT NONE PRIVATE PUBLIC p4z_flx PUBLIC p4z_flx_init PUBLIC p4z_flx_alloc !!* Substitution #include "ocean2pisces.h90" #include "top_substitute.h90" ! !!** Namelist nampisext ** REAL(wp) :: atcco2 !: pre-industrial atmospheric [co2] (ppm) ! !!* nampisatm namelist (Atmospheric PRessure) * REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: patm, satmco2 !: atmospheric pco2 REAL(wp) :: xconv = 0.01 / 3600. !: coefficients for conversion !!---------------------------------------------------------------------- !! NEMO/TOP 4.0 , NEMO Consortium (2018) !! $Id: p4zflx.F90 10425 2018-12-19 21:54:16Z smasson $ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE p4z_flx ( kt, knt ) !!--------------------------------------------------------------------- !! *** ROUTINE p4z_flx *** !! !! ** Purpose : CALCULATES GAS EXCHANGE AND CHEMISTRY AT SEA SURFACE !! !! ** Method : !! - Include total atm P correction via Esbensen & Kushnir (1981) !! - Remove Wanninkhof chemical enhancement; !! - Add option for time-interpolation of atcco2.txt !!--------------------------------------------------------------------- INTEGER, INTENT(in) :: kt, knt ! ! INTEGER :: ji, jj, jm, iind, iindm1 REAL(wp) :: ztc, ztc2, ztc3, ztc4, zws, zkgwan REAL(wp) :: zfld, zflu, zfld16, zflu16, zfact REAL(wp) :: zvapsw, zsal, zfco2, zxc2, xCO2approx, ztkel, zfugcoeff REAL(wp) :: zph, zdic, zsch_o2, zsch_co2 REAL(wp) :: zyr_dec, zdco2dt CHARACTER (len=25) :: charout REAL(wp), DIMENSION(PRIV_2D_BIOARRAY) :: zkgco2, zkgo2, zh2co3, & & zoflx, zpco2atm, oce_co2, zdpco2 REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zw2d !!--------------------------------------------------------------------- ! ! SURFACE CHEMISTRY (PCO2 AND [H+] IN ! SURFACE LAYER); THE RESULT OF THIS CALCULATION ! IS USED TO COMPUTE AIR-SEA FLUX OF CO2 DO jj = JRANGE DO ji = IRANGE ! DUMMY VARIABLES FOR DIC, H+, AND BORATE zfact = rhop(ji,jj,KSURF) / 1000. + rtrn zdic = trb(ji,jj,KSURF,jpdic) zph = MAX( hi(ji,jj,1), 1.e-10 ) / zfact ! CALCULATE [H2CO3] zh2co3(ji,jj) = zdic/(1. + ak13(ji,jj,1)/zph + ak13(ji,jj,1)*ak23(ji,jj,1)/zph**2) END DO END DO ! -------------- ! COMPUTE FLUXES ! -------------- ! FIRST COMPUTE GAS EXCHANGE COEFFICIENTS ! ------------------------------------------- DO jj = JRANGE DO ji = IRANGE ztc = MIN( 35., tsn(ji,jj,KSURF,jp_tem) ) ztc2 = ztc * ztc ztc3 = ztc * ztc2 ztc4 = ztc2 * ztc2 ! Compute the schmidt Number both O2 and CO2 zsch_co2 = 2116.8 - 136.25 * ztc + 4.7353 * ztc2 - 0.092307 * ztc3 + 0.0007555 * ztc4 zsch_o2 = 1920.4 - 135.6 * ztc + 5.2122 * ztc2 - 0.109390 * ztc3 + 0.0009377 * ztc4 ! wind speed zws = wndm(ji,jj) & & * wndm(ji,jj) ! Compute the piston velocity for O2 and CO2 zkgwan = 0.251 * zws zkgwan = zkgwan * xconv * ( 1.- fr_i(ji,jj) ) * tmask(ji,jj,1) ! compute gas exchange for CO2 and O2 zkgco2(ji,jj) = zkgwan * SQRT( 660./ zsch_co2 ) zkgo2 (ji,jj) = zkgwan * SQRT( 660./ zsch_o2 ) END DO END DO DO jj = JRANGE DO ji = IRANGE ztkel = tempis(ji,jj,1) + 273.15 zsal = salinprac(ji,jj,1) + ( 1.- tmask(ji,jj,1) ) * 35. zvapsw = EXP(24.4543 - 67.4509*(100.0/ztkel) - 4.8489*LOG(ztkel/100) - 0.000544*zsal) zpco2atm(ji,jj) = satmco2(ji,jj) * ( patm(ji,jj) - zvapsw ) zxc2 = ( 1.0 - zpco2atm(ji,jj) * 1E-6 )**2 zfugcoeff = EXP( patm(ji,jj) * (chemc(ji,jj,2) + 2.0 * zxc2 * chemc(ji,jj,3) ) & & / ( 82.05736 * ztkel )) zfco2 = zpco2atm(ji,jj) * zfugcoeff ! Compute CO2 flux for the sea and air zfld = zfco2 * chemc(ji,jj,1) * zkgco2(ji,jj) ! (mol/L) * (m/s) zflu = zh2co3(ji,jj) * zkgco2(ji,jj) ! (mol/L) (m/s) ? oce_co2(ji,jj) = ( zfld - zflu ) * rfact2 * tmask(ji,jj,1) * 1000. ! compute the trend tra(ji,jj,1,jpdic) = tra(ji,jj,1,jpdic) + ( zfld - zflu ) * rfact2 / e3t_n(ji,jj,KSURF) * tmask(ji,jj,1) ! Compute O2 flux zfld16 = patm(ji,jj) * chemo2(ji,jj,1) * zkgo2(ji,jj) ! (mol/L) * (m/s) zflu16 = trb(ji,jj,KSURF,jpoxy) * zkgo2(ji,jj) zoflx(ji,jj) = ( zfld16 - zflu16 ) * tmask(ji,jj,1) tra(ji,jj,1,jpoxy) = tra(ji,jj,1,jpoxy) + zoflx(ji,jj) * rfact2 / e3t_n(ji,jj,KSURF) END DO END DO IF(ln_ctl) THEN ! print mean trends (used for debugging) WRITE(charout, FMT="('flx ')") CALL prt_ctl_trc_info(charout) CALL prt_ctl_trc( charout, ltra='tra') ! CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm) ENDIF #if defined key_iomput IF( lk_iomput .AND. knt == nrdttrc ) THEN ALLOCATE( zw2d(PRIV_2D_BIOARRAY) ) IF( iom_use( "Cflx" ) ) THEN zw2d(:,:) = oce_co2(:,:) * rfact2r CALL iom_put( "Cflx" , zw2d ) ENDIF IF( iom_use( "Oflx" ) ) THEN zw2d(:,:) = zoflx(:,:) * 1000 * tmask(:,:,1) CALL iom_put( "Oflx" , zw2d ) ENDIF IF( iom_use( "Kg" ) ) THEN zw2d(:,:) = zkgco2(:,:) * tmask(:,:,1) CALL iom_put( "Kg" , zw2d ) ENDIF IF( iom_use( "Dpco2" ) ) THEN zw2d(:,:) = ( zpco2atm(:,:) - zh2co3(:,:) / ( chemc(:,:,1) + rtrn ) ) * tmask(:,:,1) CALL iom_put( "Dpco2" , zw2d ) ENDIF IF( iom_use( "Dpo2" ) ) THEN zw2d(:,:) = ( atcox * patm(:,:) - atcox * trb(:,:,KSURF,jpoxy) / ( chemo2(:,:,1) + rtrn ) ) * tmask(:,:,1) CALL iom_put( "Dpo2" , zw2d ) ENDIF ! DEALLOCATE( zw2d ) ENDIF #endif ! #if defined key_trc_diaadd DO jj = JRANGE DO ji = IRANGE ! Save diagnostics zdpco2(ji,jj) = (zpco2atm(ji,jj) - zh2co3(ji,jj) & & / ( chemc(ji,jj,1) + rtrn ) ) * tmask(ji,jj,1) ! trc2d(ji,jj,jp_flxco2) = oce_co2(ji,jj) ! carbon flux trc2d(ji,jj,jp_flxo2 ) = zoflx(ji,jj) * 1000. ! O2 flux trc2d(ji,jj,jp_kgco2 ) = zkgco2(ji,jj) ! gas exchange for CO2 trc2d(ji,jj,jp_dpco2 ) = zdpco2(ji,jj) ! delta pco2 END DO END DO #endif END SUBROUTINE p4z_flx SUBROUTINE p4z_flx_init !!---------------------------------------------------------------------- !! *** ROUTINE p4z_flx_init *** !! !! ** Purpose : Initialization of atmospheric conditions !! !! ** Method : Read the nampisext namelist and check the parameters !! called at the first timestep (nittrc000) !! !! ** input : Namelist nampisext !!---------------------------------------------------------------------- INTEGER :: jm, ios ! Local integer !! NAMELIST/nampisext/atcco2 !!---------------------------------------------------------------------- IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) ' p4z_flx_init : atmospheric conditions for air-sea flux calculation' WRITE(numout,*) ' ~~~~~~~~~~~~' ENDIF ! REWIND( numnatp_ref ) ! Namelist nampisext in reference namelist : Pisces atm. conditions READ ( numnatp_ref, nampisext, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nampisext in reference namelist', lwp ) REWIND( numnatp_cfg ) ! Namelist nampisext in configuration namelist : Pisces atm. conditions READ ( numnatp_cfg, nampisext, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nampisext in configuration namelist', lwp ) IF(lwm) WRITE ( numonp, nampisext ) ! IF(lwp) THEN ! control print WRITE(numout,*) ' Namelist : nampisext --- parameters for air-sea exchange' WRITE(numout,*) ' Constant Atmospheric pCO2 value atcco2 =', atcco2 ENDIF satmco2(:,:) = atcco2 ! Initialisation of atmospheric pco2 patm(:,:) = 1.0 ! END SUBROUTINE p4z_flx_init INTEGER FUNCTION p4z_flx_alloc() !!---------------------------------------------------------------------- !! *** ROUTINE p4z_flx_alloc *** !!---------------------------------------------------------------------- ALLOCATE( satmco2(PRIV_2D_BIOARRAY), patm(PRIV_2D_BIOARRAY), STAT=p4z_flx_alloc ) ! IF( p4z_flx_alloc /= 0 ) CALL ctl_warn( 'p4z_flx_alloc : failed to allocate arrays' ) ! END FUNCTION p4z_flx_alloc #else !!====================================================================== !! Dummy module : No PISCES bio-model !!====================================================================== CONTAINS SUBROUTINE p4z_flx ! Empty routine END SUBROUTINE p4z_flx #endif !!====================================================================== END MODULE p4zflx