DRAFT User’s Manual for an S-Coordinate Primitive
Equation Ocean Circulation Model
(SCRUM) Version 3.0

Katherine S. Hedstrém
Institute of Marine and Coastal Sciences
Rutgers University

November 11, 1997

This document was prepared with IWTEX and xfig.

Acknowledgments

The SPEM model had a free-surface version written by Dale Haidvogel and myself, which
was never adequately well-behaved. We asked Tony Song to try to fix it and Tony made
many changes, including the introduction of the vertical s-coordinate. John Wilkin therefore
named it SCRUM, the S-Coordinate Rutgers University Model. Hernan Arango has since
made even more changes, cleaning up the numerics and the code, writing new NetCDF
I/O routines, etc. Bob Chant has also contributed to the SCRUM effort, providing the
Smolarkiewicz advection scheme. Bernard Barnier and Anne-Marie Treguier convinced us
to try the vertical finite difference approach which has proven to be numerically much more
stable than either the original spectral scheme or the finite elements that Tony introduced.
John Wilkin, Aike Beckmann and Dale Haidvogel provided the rotated mixing tensors for
the horizontal viscosity/diffusion. Bill Large provided us with the code for their planetary
boundary layer option and Scott Durski put it into SPEM. I owe all these people and the rest
of the SPEM/SCRUM community, especially Hernan Arango for making his notes available
and for the comments describing all the subroutines and variables in the model.

Thanks to the Usenet community for providing great tools like perl, patch, cpp, rcs,
and imake to aid in software development (and to make it more fun). Cathy Lascara talked
me into trying imake with SPEM which has been well worth the trouble.

The Prism debugger from Thinking Machines has been invaluable.

Development and testing of the SPEM model has been funded by the Office of Naval
Research (SC-53789), the National Science Foundation (OCE 90-12754-01), the Minerals
Management Service (14-35-0001-30675), and the National Aeronautics and Space Admin-
istration (GC-R-261348-006-C).

Development and testing of the SCRUM model has been funded by the Minerals Manage-
ment Service (14-35-01-96-CT030818) and the Office of Naval Research (N00014-93-1-0758,
N00014-95-1-0457, and N00014-93-1-0197).

UNIX is a registered trademark of UNIX System Laboratories.

CRAY, C-90, and Y-MP are trademarks of Cray Research, Inc.

SPARCstation is a trademark of SPARC International, Inc.

Sun is a trademark of Sun Microsystems, Inc.

Indigo?2 is a trademark of Silicon Graphics, Inc.

Kubota and Titan are trademarks of Kubota Pacific Corp.

IBM and RS/6000 are trademarks of International Business Machines.

Thinking Machines and Connection Machine are registered trademarks of Thinking Ma-
chines Corporation.

Prism and CM Fortran are trademarks of Thinking Machines Corporation.

This is Contribution #97-10 of the Institute of Marine and Coastal Sciences, Rutgers
University.

Abstract

The S-Coordinate Rutgers University Model (SCRUM), authored by Dr. Hernan Arango
et al. of the Institute of Marine and Coastal Sciences at Rutgers University, is one approach
to regional and basin-scale ocean modeling. This user’s manual for SCRUM describes the
model equations and algorithms, as well as additional user configurations necessary for
specific applications.

Contents

1 Introduction
1.1 Acquiring the SCRUM code
1.2 The SCRUM email list
1.3 Futureplans. L e e
1.4 Warningsand bugs

2 Model Formulation
2.1 Equations of motion oL Lo oL
2.2 Vertical boundary conditions oL o oL
2.3 Horizontal boundary conditions L oo
2.4 s (stretched vertical) coordinate system
2.5 Horizontal curvilinear coordinateso,

3 Numerical Solution Technique
3.1 Vertical and horizontal discretization
3.1.1 Horizontal grid
3.1.2 Vertical grid
3.2 Masking of land areaso e
3.2.1 Velocity e
3.2.2 Temperature, salinity and surface elevation
3.3 Conservation properties Lo oo
3.4 Vertical viscosity and diffusion o000
3.5 Depth-integrated equations Lo oL
3.6 Time stepping: internal velocity modes, temperature, and salinity
3.7 Determination of the vertical velocity and density fields
3.8 The pressure gradient terms oL o oL
3.9 Horizontal friction and diffusion oo 0oL
3.9.1 Laplacian L
3.9.2 Biharmonico
3.9.3 Rotated mixing tensors Lo oL

4 Detalils of the Code
4.1 Main subroutines L. e e e e
4.2 Other subroutines and functions
4.3 C preprocessor variables o

>R W N =

S oo~

12
12
12
13
13
14
15
16
17
19
19
20
20
20
21
21

4.4 TImportant parameters 36
4.5 Include files and the variables within them 36
4.6 Statement functionso 47
Support Programs for Initialization 48
5.1 Grid generationo 48
51.1 ezgrid. e 48
51.2 gridpak 49
5.2 Masking e 49
5.2.1 The mask program 49
5.3 Objective Analysis e 50
54 Forcing fields 52
5.4.1 Initial and climatology fields 53
Configuring SCRUM for a Specific Application 54
6.1 Configuring SCRUM e 55
6.1.1 cppdefs.h and checkdefs.F 55
6.1.2 Model domaino e 56
6.1.3 z,ygrid e 56
6.1.4 &Emgrid ..o Lo 57
6.1.5 Imitial conditions L oL 57
6.1.6 Equationofstate 57
6.1.7 Boundary conditions Lo oL 57
6.1.8 Model forcing 59
6.1.9 scrum.inl 59
6.1.10 User variables and subroutines 66
6.2 Upwelling/Downwelling Example 66
6.2.1 cppdefs.h 66
6.2.2 Modeldomain 67
6.2.3 ana_grid 67
6.2.4 Initial conditions and the equation of state 67
6.2.5 Boundary conditionso Lo L 68
6.2.6 Modelforcing 68
6.2.7 scrum.nl e e e e 68
6.2.8 Output 68
6.3 North Atlantic exampleo, 71
6.3.1 cppdefs.h 71
6.3.2 Model domain Lo e 7
6.3.3 gridpak 78
6.3.4 Inmitial conditionso L Lo 78
6.3.5 Boundary conditions Lo L oL 78
6.3.6 Forcing L 79
6.3.7 Climatology e 79
6.3.8 scrum.n L L 79
6.3.9 Output 79

ii

Plotting Programs for Postprocessing 88

A Model Timestep 91
The vertical s-coordinate 93
B.1 Horizontal curvilinear coordinates 96
Viscosity and Diffusion 97
C.1 Horizontal viscosity L 97
C.2 Horizontal Diffusion e 97
C.3 Vertical Viscosity and Diffusiono 97
The C preprocessor 99
D.1 Fileinclusion & i e e e e e e e e e e 99
D.2 Macro substitution e e e e e 100
D.3 Conditional inclusion e e e e e e e e e e 100
D4 Ccomments o i v e e e e e e e e 102
D.5 Potential problemso 102
D.6 Modern Fortran e e e e 103
The patch program 104
Makefiles 105

F.0.1 imake e 106

F.0.2 Your Makefile 107
Perl scripts for Fortran 109
G.1 redo e e 110
G.2 findent e 110
G.3 relabel e e 110
G.4 unenddo e e e e e e, 111
G.5 ifspace e 111
G.6 sfmakedepend 112

iii

List of Figures

1.1

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2

6.1
6.2
6.3

6.4
6.5

6.6
6.7
6.8
6.9

B.1

F.1

Tree structure of anonymous ftp directory 3
Placement of variables on an Arakawa C grid 12
Placement of variables on staggered vertical grid 13
Masked region within the domain L. 14
The split timestepping used in the model. 18
Flow chart of the model main program. 24
Flow chart of the initial subroutine. 25
Small grid with masked regions 49
The scrum_mask program in action 50
The whole grid. 58
The upwelling/downwelling bathymetry. 72
Surface velocities after one day, showing the flow to the left of the wind

(southern hemisphere). L 73
Constant € slices of the u,v,w and Q2 fieldsat day 1. 74
Constant ¢ slices of the T', S (tracer), kinetic energy and Ertel potential

vorticity at day 1. L. 75
The North Atlantic grid. 84
The raw bathymetry from etopo5. 85
The smoothed North Atlantic bathymetry. 86
The surface elevation for day 20. 87

The s-surfaces for the North Atlantic with (a) & = 0.0001 and b = 0, (b)
0 =8and b =0, (c) # =8 and b = 1. (d) The actual values used in this
domain were 0 =5and b=04. oo oL 94

Creating Makefiles oo, 107

v

List of Tables

2.1 The variables used in the description of the ocean model
2.2 The variables used in the vertical boundary conditions for the ocean model

Chapter 1

Introduction

This user’s manual for the S-Coordinate Rutgers University Model (SCRUM) describes
the model equations and algorithms, as well as additional user configurations necessary for
specific applications. Some initial tests of SCRUM are described in Song and Haidvogel
[33], while others will be described in Haidvogel and Beckmann [12].

The principle attributes of the model are as follows:

General

Horizontal

Vertical

Primitive equations with potential temperature, salinity, and an equation of
state.

Hydrostatic and Boussinesq approximations.

Optional Smolarkiewicz advection scheme on tracers (potential temperature,
salinity, etc.).

Orthogonal-curvilinear coordinates.
Arakawa C grid.

Closed basin, periodic, prescribed, radiation, and reduced-physics open bound-
ary conditions.

Masking of land areas.

s (terrain-following) coordinate.
Free surface.

Tridiagonal solve with implicit treatment of vertical viscosity and diffusivity.

Mixing options

Horizontal Laplacian and biharmonic viscosity and diffusion along constant
s, z or in situ density surfaces.

Horizontal free-slip or no-slip boundaries.

e Vertical harmonic viscosity and diffusion with a spatially variable coefficient,
with options to compute the coefficients with Large et al. [18], Mellor-Yamada
[22], or Pacanowski-Philander [24] mixing schemes.

Implementation

e Dimensional in MKS units.
e Fortran 77 and common extensions.

e Separate CM Fortran version which ought to be easily modified for Fortran
95 compilers.

e Runs under UNIX, requires the C preprocessor.
e Al I/O is done in NetCDF [27], requires the NetCDF library.
e Optimized for vector (Cray) computers.

e Pre- and post-processing graphics package available which uses the NCAR
graphics libraries.

Chapters 2 and 3 describe the model physics and numerical techniques and are an update
of the description in Song and Haidvogel [33]. Chapter 4 lists the model subroutines,
functions and variables. Chapter 5 describes the support programs which are needed to
provide SCRUM with data files. As distributed, SCRUM is ready to run with a number
of example problems. The process of configuring SCRUM for a particular application is
described in Chapter 6, including a discussion of a few example applications. Finally,
Chapter 7 describes Hernan Arango’s plotting programs cnt, cent, sec, and csec.

1.1 Acquiring the SCRUM code

The version of the model described in this document is available over Internet via the file
transfer protocol (ftp). The user is ftp or anonymous with the password being your electronic
mail address. The files are on ahab.rutgers.edu (IP number 128.6.142.5). When connected,
you will be in the ftp directory. The directory structure is shown in Fig. 1.1. Everyone
has write permission in the pub/incoming directory. To get to the SCRUM source code,
type ‘cd pub/scrum/tars’ and then ‘get scrum3_f77.tar.gz’. It might be more convenient to
access these files through our web site:

http://marine.rutgers.edu/po/index.html

The UNIX convention is that a filename ending in .gz has been compressed with the
gnu gzip utility. The corresponding gunzip also comes with it. Likewise, a .tar ending
designates a file created with the Unix tar (tape archive) utility. The steps in unpacking
these files are:

% gunzip gridpak.tar.gz
% tar xvf gridpak.tar

or

ftp pub scrum —7— Examples Basin
incomingl— pin CanyonA

util — cm — Patches CanyonB
gridpak — config Grav
perl — contrib Tasman
— doc Upwelling
— {77 — Patches
— forcing
— grid
— hydro
— initial
— lib
— matlab mask
— oa mexcdf4
— netcdf L ncedit mexcdfb
— plot Data tools tools
— tars E Palettes
Patches

— xcoast

Figure 1.1: Tree structure of anonymous ftp directory

% zcat gridpak.tar.gz | tar xvf -

Note that both .tar and .gz files are binary and must be retrieved using binary mode in ftp.
If you are unable to acquire the code in this fashion feel free to contact Hernan Arango
at:

Hernan G. Arango

Institute of Marine and Coastal Sciences
P.O. Box 231

New Brunswick, NJ 08903
(908)-932-3704

Internet: arango@ahab.rutgers.edu

1.2 The SCRUM email list

We maintain an electronic mailing list of SCRUM users. If you would like to be added
(or taken off) the easiest thing to do is to send email to majordomo@imcs.rutgers.edu
with a message containing the word “help”. Other possible messages include “subscribe
scrum” and “unsubscribe scrum”, both with the obvious meanings. Hernan Arango, Dale
Haidvogel and I use the list to send out announcements of new model versions, patches to
old versions, and news of SCRUM meetings. There are even occasional announcements of
job opportunities. The email list is a mail alias on imcs.rutgers.edu such that all mail sent

to scrum@imcs.rutgers.edu will go to everyone on the list. We strongly recommend that
you subscribe to this list if you use SCRUM (and learn to use patch!).

1.3 Future plans

Our group is continuing to explore new directions in ocean modeling, but SCRUM 3.0 is
meant to be a relatively stable model. Our plans include:

e We have a 2-dimensional model which uses spectral finite elements in the horizontal
[15]). The corresponding 3-dimensional model has been written and is being tested on
more and more realistic problems. Ask Mohamed Iskandarani (mohamed@ahab.rutgers.edu)
for more information.

e Coupling to Paul Budgell’s versions of the Hibler sea-ice model. This coupled model
exists and is being tested. Please ask Dale Haidvogel or myself for more information.

e Improvements to gridpak, time permitting. The wish list is growing faster than
progress is being made.

e Lagrangian floats from SPEM. This is just a matter of time.

e Multi-threaded parallel version of SCRUM for shared memory machines such as those
produced by SGI and Cray.

1.4 Warnings and bugs

SCRUM is not a large program by some standards, but it is still complex enough to require
some effort to use effectively. Section 6.1 attempts to describe what the user is responsible
for—please read it carefully.

More specific things to be wary of include:

e [t is recommended that you use 64 bits of precision rather than 32 bits.

e The code must be run through the C preprocessor before it is compiled. This can oc-
casionally be dangerous, especially with the newer ANSI C versions of cpp. Potential
problems are listed in Appendix D.

e I have started declaring all variables as being of type BIGREAL and then defining
them to be real*8 (except on a Cray). This usually works for variables, but some
compilers do not like

real*8 function vmin(varl, var2)

If you run into one of these finicky compilers, you will just have to fix each BIGREAL
function by hand.

e The SCRUM grid generation software was originally developed for use with SPEM.
Through the years there have been several file formats for the SPEM grid file. Make
sure that your grid generation software is recent enough to create a NetCDF grid
file as opposed to a binary fort.3. The unformatted binary files created portability
problems with different architectures and with single vs. double precision.

e The vertical s coordinate was chosen as being a sensible way to handle variations in
the water depth. It has been used with success when the maximum and minimum
depths differ by a factor of twenty or less, and the value of the stretching parameter,
THETA S, is between zero and five. It is also desirable to have the depth varia-
tions be well resolved by the horizontal grid. For realistic problems we often fail to
resolve the bathymetric slopes and we then resort to bathymetric smoothing. This is
something of an art and we do not yet know how much smoothing is required.

Chapter 2

Model Formulation

2.1 Equations of motion

The primitive equations in Cartesian coordinates can be written:

ou 09
E—%U-Vu—fv— ax—i—}"u—l—?)u (2.1)
ov 09
E+’u-VU—I—fu- 8—y+.7—",,+’DU (2.2)
T
aa—t-l-’l_)'-VT:fT—i-DT (2.3)
aa—f—l-z‘)'-VS:}"g—l—Dg (2.4)
p=o(T,5,P) (25)
09 _ —pg
7 2.
3z~ (2.6)
ou Ov Ow
%+8_y+$_0' (2.7)

The variables are shown in Table 2.1. Equations (2.1) and (2.2) express the momentum
balance in the z- and y-directions, respectively. The time evolution of the potential temper-
ature and salinity fields, T'(z,y, z,t) and S(z,y, z,t), are governed by the advective-diffusive
equations (2.3) and (2.4). The equation of state is given by equation (2.5). In the Boussi-
nesq approximation, density variations are neglected in the momentum equations except in
their contribution to the buoyancy force in the vertical momentum equation (2.6). Under
the hydrostatic approximation, it is further assumed that the vertical pressure gradient
balances the buoyancy force. Lastly, equation (2.7) expresses the continuity equation for
an incompressible fluid. For the moment, the effects of forcing and dissipation will be rep-
resented by the schematic terms F and D, respectively. The horizontal and vertical mixing
will be described more fully in §3.9.

Variable Description
Dy, Dy, Dr,Dg | diffusive terms
Fuy Fu, Fr,Fs | forcing terms

flz,y) Coriolis parameter
g acceleration of gravity
P total pressure P =~ —p,gz

d(z,y,2,t) dynamic pressure ¢ = (P/p,)
po + p(z,y,2,t) | total in situ density
S(z,y, z,1) salinity

T(z,y,z,t) potential temperature
Uy Vy W the (z,y, z) components of vector velocity ¥
¢(x,y,t) the surface elevation

Table 2.1: The variables used in the description of the ocean model

2.2 Vertical boundary conditions

The vertical boundary conditions can be prescribed as follows:

top (z:C(x,y,t)) VEZTS(
v =1Y(z,y,1)

pp L = 3L 4 LG9 (T _ Tpy)

kS 8z = "o
vet

and bottom (z = —h(z,y)) v % =17 (z,y,1)
v =1Y(z,y,1)
KT %—Z =0
g 25 _
—w+v-Vh =

The surface boundary condition variables are defined in Table 2.2. Since Qr is a strong

Variable | Description
¥, 7Y | surface wind stress

Qr surface heat flux
E — P | evaporation minus precipition
Tref surface reference temperature

Table 2.2: The variables used in the vertical boundary conditions for the ocean model

function of the surface temperature, it is also prudent to include a correction term for the
change in Q as the surface temperature drifts away from the reference temperature that

was used in computing Q7. On the variable bottom, z = —h(z, y), the horizontal velocity
components are constrained to accommodate a prescribed bottom stress which is a sum of

linear and quadratic terms:
Ty = (m + 12Vu? +0?)u
0 = (1 +1evVu? + v

The vertical heat and salt flux may also be prescribed at the bottom, although they are
usually set to zero.

2.3 Horizontal boundary conditions

As distributed, the model can easily be configured for a periodic channel, a doubly periodic
domain, or a closed basin. Code is also included for open boundaries which may or may
not work for your particular application. Appropriate boundary conditions are provided for
u,v,T, S, and (. At every timestep the subroutines bes2d and bes3d are called to fill in
the necessary boundary values.

The model domain is logically rectangular, but it is possible to mask out land areas
on the boundary and in the interior. Boundary conditions on these masked regions are
straightforward, with a choice of no-slip or free-slip walls.

If biharmonic friction is used, a higher order boundary condition must also be provided.
The model currently has this built into the code where the biharmonic terms are calculated.

The high order boundary conditions used are 3% (% %) = 0 on the eastern and western

boundaries and a% (% g—z%) = 0 on the northern and southern boundaries. The boundary

conditions for v, T, and S are similar. These boundary conditions were chosen because they
preserve the property of no gain or loss of volume-integrated momentum, temperature, or
salt.

2.4 s (stretched vertical) coordinate system

From the point of view of the computational model, it is highly convenient to introduce a
stretched vertical coordinate system which essentially “flattens out” the variable bottom at
z = —h(z,y). Such “s” coordinate systems have long been used, with slight appropriate
modification, in both meteorology and oceanography (e.g., Phillips [25] and Freeman et al.
[8]). To proceed, we make the coordinate transformation:

and

See Appendix B for the form of s used here. In the stretched system, the vertical coordinate
s spans the range —1 < s < 0; we are therefore left with level upper (s = 0) and lower
(s = —1) bounding surfaces. The chain rules for this transformation are:

().~ (&), (&) (5).5
().~ (). (&) (),

o_(ea_10
0z \0z/) 0s H,O0s
where 3
z
H, = s

As a trade-off for this geometric simplification, the dynamic equations become somewhat
more complicated. The resulting dynamic equations are, after dropping the carats:

u_ oLz _Eﬂ_@yk_%
5 fv+79-Vu= o (Po e g&z; + Fu + Dy, (2.8)
v 7wy~ 9% _ @)%_EK
8t+fu+v Vo = By (po By gay—l-fv—FDv (2.9)
T
(?9—t+17-VT:fT+DT (2.10)
%—f-l—z')'-VS:fs-l-Ds (2.11)
p=p(T,S,P) (2.12)
¢ _gHzp)
- = 2.1
- (= (213)
O0H, 0(H,u) A 0(Hw) O0(H,Q)
%t et t o =" (2.14)
where
v = (u,v,)
S, 0 0

The vertical velocity in s coordinates is

_ 1 a¢ 0z 0z
Yoy, s t) = g0 |w= ()5 —ug, —vg,
and 5))
VA VA z
= o - tv— +QH,.
w= o +u8w —H)ay +

In the stretched coordinate system, the vertical boundary conditions become:

top (s= 0) (%) 5t = r2(z,9.1)

(
(
(

v \ov _ -y
33_T x,
a

)
) G5 = 220+ g @ (1 = L)
)

R

s
5
S

wn

&=
Q)|
|
®
S

S

Q=0

and bottom (s = —1) (HLZ) ‘g—’: =17(z,y,t)
(HLZ) % = T[:)u(xay’t)
() 8
() 8 =0
Q=0.

Note the simplification of the boundary conditions on vertical velocity that arises from the
s coordinate transformation.

2.5 Horizontal curvilinear coordinates

In many applications of interest (e.g., flow adjacent to a coastal boundary), the fluid may be
confined horizontally within an irregular region. In such problems, a horizontal coordinate
system which conforms to the irregular lateral boundaries is advantageous. It is often also
true in many geophysical problems that the simulated flow fields have regions of enhanced
structure (e.g., boundary currents or fronts) which occupy a relatively small fraction of
the physical/computational domain. In these problems, added efficiency can be gained by
placing more computational resolution in such regions.

The requirement for a boundary-following coordinate system and for a laterally variable
grid resolution can both be met, for suitably smooth domains, by introducing an appropriate
orthogonal coordinate transformation in the horizontal. Let the new coordinates be &(z,y)
and n(z,y), where the relationship of horizontal arc length to the differential distance is
given by:

(ds)e = (%) de (2.15)

(ds)y = (%) dn (2.16)

Here, m(&,n) and n(€,n) are the scale factors which relate the differential distances (A&, An)
to the actual (physical) arc lengths. Appendix B.1 contains the curvilinear version of several
common vector quantities.

Denoting the velocity components in the new coordinate system by

~

v-E=u (2.17)

10

and
v-N=wv (2.18)

the equations of motion (2.8)-(2.14) can be re-written (see, e.g., Arakawa and Lamb [1]) as:

8 (H u) 5(I{nu) +a% (H:v) +% (Hm1:7,9>

{(mn) <%> a a2 <_)}sz _
- (HT> (%g_z t —> —Z (Fu+ D) (2.19)

9 (qu> +3 (quv> +3 Hv? +3 (HZ’UQ)
at \ mn o¢ n on\ m 0s \ mn
mn)

() ())
n on \m 2=
_(H- L 9p0z |)
(m) (Po 37) ‘7: +Dy) (2.20)
o (H,T\ 0 (HuT\ 0 (HwT\ K 0
a<mn)+8_§(n)+3_77< m) 8_() (fT+DT) (2.21)
Jd (H,S 0 (H,uS 0 (H,S 0 (HQS\
a(mn>+8_§< n >+377< m) Os (mn>_ = (Fs + Ds) (2.22)
o¢ gHzP)
F 2.24
Os (Po (2.24)
5 (o) e () 5 (5) + 3 (o) =0 (2.25)
Since z is a linear function of ¢, equation (2.25) can be rewritten as:
9 (¢ 8 (Hu\ 0 (Hpw\ 0 (HQ\
a(%>+a_§(n)+a_’q<m>+%(mn>_0 (2'26)

All boundary conditions remain unchanged.

11

Chapter 3

Numerical Solution Technique

3.1 Vertical and horizontal discretization

3.1.1 Horizontal grid

In the horizontal (¢,7), a traditional, centered, second-order finite-difference approximation
is adopted. In particular, the horizontal arrangement of variables is as shown in Fig. 3.1.
This is equivalent to the well known Arakawa “C” grid, which is well suited for problems
with horizontal resolution that is fine compared to the first radius of deformation (Arakawa
and Lamb [1]).

Ag
f

Vij+1]

Ui j (o hs [, Q)i wir

*

Vi j |

Figure 3.1: Placement of variables on an Arakawa C grid

3.1.2 Vertical grid

The vertical discretization also uses a second-order finite-difference approximation. Just as
we use a staggered horizontal grid, the model was found to be more well-behaved with a

12

staggered vertical grid. The vertical grid is shown in Fig. 3.2.

WN
® /N
—— WNm
® ONm

o

o

— w

® o

— w

® 1
wo

Figure 3.2: Placement of variables on staggered vertical grid

3.2 Masking of land areas

SCRUM has the ability to work with interior land areas, although the computations occur
over the entire model domain. One grid cell is shown in Fig. 3.1 while several cells are shown
in Fig. 3.3, including two land cells. The process of defining which areas are to be masked
is described in §5.2, while this section describes how the masking affects the computation
of the various terms in the equations of motion.

3.2.1 Velocity

At the end of every timestep, the values of many variables within the masked region are set
to zero by multiplying by the mask for either the u, v or p points. This is appropriate for
the v points E and L in Fig. 3.3, since the flow in and out of the land should be zero. It
is likewise appropriate for the u point at I, but is not necessarily correct for point G. The
only term in the u equation that requires the u value at point G is the horizontal viscosity,
which has a term of the form a%”g_z- Since point G is used in this term by both points A
and M, it is not sufficient to replace its value with that of the image point for A. Instead,

the term g—x is computed and the values at points D and K are replaced with the values

appropriate for either free-slip or no-slip boundary conditions. Likewise, the term {%I/g—g in
the v equation must be corrected at the mask boundaries.

This is accomplished by having a fourth mask array defined at the v points, in which
the values depend on whether or not free-slip boundaries are desired. In the case of free-slip,
the value of % is simply set to zero at points D and K. For no-slip boundaries, we count on
the values inside the land (point G) having been zeroed out. For point D, the image point
at G should contain minus the value of u at point A. The desired value of g—%‘ is therefore
2ua while instead we have simply ua. In order to achieve the correct result, we multiply

13

A B C
O O O O
D E F
= L 4 = = \ 4 = ®
G H | J
O O X O O
K L
= L 4 = \ 4 = \ 4 = ®
X — u points
M N
O O O O 0O — v points
O — p points
= 4 = 4 = L 4 = L 4
® — ¢ points

Figure 3.3: Masked region within the domain

by a mask which contains the value 2 at point D. It also contains a 2 at point K so that
3_15 there will acquire the desired value of —2upg.

The corner point F is treated in the same way as points D and K. This can be changed
in get_mask if desired.

3.2.2 Temperature, salinity and surface elevation

The handling of masks by the temperature, salinity and surface elevation equations is similar
to that in the momentum equations, and is in fact simpler. Values of T, S and (inside the
land masks, such as point H in Fig. 3.3, are set to zero after every timestep. This point
would be used by the horizontal diffusion term for points B, J, and N. This is handled by
setting the first derivative terms at points E, I, and L to zero, to be consistent with a no-flux
boundary condition. Note that the equation of state must be able to handle T = S = 0
since this is the value inside masked regions.

14

3.3 Conservation properties

SCRUM conserves the first moments of u,v,.S, and T. This is accomplished by using the
flux form of the momentum and tracer equations. It is also necessary to be careful when
averaging between the velocity and tracer grids, for instance to obtain u at p points. The
semi-discrete form of the dynamic equations (2.19)—(2.22) is:

€ e 7N e ——t
0 (vH uH vH .0
v z —£ z — z _s z
6t<mfﬁ§)+65 u< 7é) +5”{un<m’i> }+5s{u(mn) }
7 N 1 —¢
(s () -, (1) Yo =
mn n m

-7 7€ 7€
H gH," _ gH _
- _z,g 56(125 - _Z‘g pgéfz - _Z‘g (po + P£)5£€ + Du + fu (31)
n PoTl PoT

. T&ﬁ -7 =\ " —
0 (vH, ¢ uH, _n(vH: _S(HzQ)
§<mnﬁ”)+5§{v<ﬁ§) }+5"{U<mn) }—i—&{v o

1 1 "
Jr{i + o §¢ (—) —uté, (—)}Hﬂﬁ =
mn n m

£

" H,"_ m," _
e I 55,2 — iom” (Po +7")0yC + Dy + Fo (3.2)
3 (KT) 5 WH,*T® 5 o H T
ot \'mn ¢ mé " mh
_ H,Q
+4, (T > =Dr+ Fr (3.3)
mn
Fl (hS) 5 (VIESH o (oIS
ot \'mn ¢ nt " mn
—s ZQ
15, (5 n) — D + Fs (3.4)
_ 90
#(s) = —p—Is H,p (3.6)

Here d¢, 0, and d5 denote simple centered finite-difference approximations to 9/9¢, 0/0n
and 0/0s with the differences taken over the distances A¢, An and As, respectively. ()5,

15

()" and () represent averages taken over the distances A, An and A,. I? indicates
a second-order vertical integral computed as a sum from level s to the surface at s = 0.
This method of averaging was chosen because it internally conserves first moments in
the model domain, although it is still possible to exchange mass and energy through the
open boundaries. The method is similar to that used in Arakawa and Lamb [1]; however,
their scheme also conserves enstrophy.
The continuity equation will be discussed below in §3.7.

3.4 Vertical viscosity and diffusion

The D, Dy, Dr and Dg terms in equations (3.1)—(3.4) represent both horizontal and vertical
mixing processes. The horizontal options will be covered in §3.9. The vertical viscosity and

diffusion terms have the form:
(=) (3.7)
ds \ H,mn 0s '

where ¢ represents one of u, v, T or S. This is timestepped using a semi-implicit Crank-
Nicholson scheme with a weighting of 0.5 on the old timestep and 0.5 on the new timestep.
Specifically, the equation of motion for ¢ can be written as:

8(H,¢) P (K 8¢>

ot :manH—% E%

(3.8)

where Ry represents all of the forcing terms other than the vertical viscosity or diffusion.
Since we want the diffusion term to be evaluated partly at the current timestep n and partly
at the next timestep n + 1, we introduce the parameter A and rewrite equation (3.8) as:

O(H, o) 0 (K ng") 0 [k o™t
- 1—2)— [~ — = : :
ot mnly + (A) ds \H, 0Os +)\85 H, 0s (3.9)
The discrete form of equation (3.9) is:
H;1+1¢Z+1 - H7 ¢;cl (1 —)‘) Kk n Kk—1 /n n
k - R — mnRy + A2 H—Zk(ébkﬂ — k) — ', . (% — Pi—1)
+ X [H’“ (Gl - ™) — (G - ,:%)] (3.10)
23 Zk—1

where k is used as the vertical level index. This can be reorganized so that all the terms
involving ¢"t! are on the left and all the other terms are on the right. The equation for
¢Z+1 will contain terms involving the neighbors above and below (¢Zii and qﬁ’,;;%) which
leads to a set of coupled equations with boundary conditions for the top and bottom. The

general form of these equations is:

Aty + Brdy T+ Crgptt = Dy, (3.11)

16

where the boundary conditions are written into the coefficients for the end points. In this
case the coefficients become:

A1) = 0 (3.12)
A2:N) = —ﬁ;TZjl (3.13)
B(1) = HQI+1+£§7;1£L (3.14)
B(2:Nm) = HJ'+ Aﬁ;’;} iit;ﬁ’;l (3.15)
B(N) = Hg;urif;i% (3.16)
C(1:Nm) = —Alfi;[’;c’; (3.17)
C(N) = 0 (3.18)
D(1) = H"¢+ AtmnRy, + %;A);—;(ug —umy - 2_27” (3.19)
D(2:Nm) = H, ¢;+AtmnRy, + (3.20)
S |t — o)~ 321)

D(N) = Hj ¢x + AtmnRyy — At(Alsz A Z;N“; (Ul —ul,) + 2—278 (3.22)

This is a standard tridiagonal system for which the solution procedure can be found in any
standard reference such as Press et al. [26].

3.5 Depth-integrated equations
The depth average of a quantity A is given by:

_ 1 0
A= /_ H.Ads (3.23)

where the overbar indicates a vertically averaged quantity and

D = (& n,t) +h(&,n) (3.24)

17

is the total depth of the water column. The vertical integral of equation (2.19) is:

0 (Duy, (D, 0 (D) Du
at \mn o\ n on \ m mn

[Q) (=258

+% (.Tu + ﬁhu) + % (T§ - Tf) (3.25)

where ¢, includes the % term, Dy, is the horizontal viscosity and the vertical viscosity only

contributes through the upper and lower boundary conditions. The corresponding vertical
integral of equation (2.20) is:

2 (Dvy, b (Dw), o (D) Dfs
ot \mn 0\ n on\ m mn

e ()G (o2 (5)

+% (Fo +Dn,)

(9 — 7). (3.26)

_I__
mn

We also need the vertical integral of equation (2.26). Using the vertical boundary conditions

on () we get:
0 (¢ 0 (Du 0 (Dv\

The presence of a free surface introduces waves which propagate at a speed of /gh.
These waves usually impose a more severe timestep limit than any of the internal processes.
We have therefore chosen to solve the full equations by means of a split timestep. In other
words, the depth integrated equations (3.25), (3.26), and (3.27) are integrated using a short
timestep and the values of w and v are used to replace those found by integrating the full
equations on a longer timestep. A diagram of the timestepping is shown in Fig. 3.4.

dtfast
dt I ¢
n—1 n n+1 n—+ 2
||||||||||||||‘|||||||‘|||||||
K_,—Y\J time

Cavg

Figure 3.4: The split timestepping used in the model.

18

Some of the terms in equations (3.25) and (3.26) are updated on the short timestep
while others are not. The contributions from the slow terms are computed once per long
timestep and stored. If we call these terms R and R equations (3.25) and (3.26)

Uslow VUslow ?
become:
b (D) 0 (DEw) , 0 (DEr) DI
ot \mn 0¢ n on \ m mmn
91\ __ 8 [1 B ¢ D 1
— [UU8_§ (ﬁ) uva—n (E)] D=R,,, -l-g(95 + mnDu mnTb (3.28)
b (D) b (Du) | 0 (DvT DIy
ot n o\ n on\ m mn
0 (1 __0 /(1 B o, D 1 4
" [UU3_§ <E> o (EH D= B +ga77 T T mm (3.29)

When timestepping the model, we compute the right-hand-sides for equations (3.1) and
(3.2) as well as the right-hand-sides for equations (3.28) and (3.29). The vertical integral
of the 3-D right-hand-sides are obtained and then the 2-D right-hand-sides are subtracted.
The resulting fields are the slow forcings R, and R, . This was found to be the easiest
way to retain the baroclinic contributions of the non-linear terms such as wu — u .

The model is timestepped from time n to time n+1 by using short timesteps on equations
(3.28), (3.29) and (3.27). A trapezoidal-leapfrog timestepping is used. In practice, we
actually timestep all the way to time (n + 2) — dtfast and then average the values of 7,
7 and (. The averages are used to replace the values at time n + 1. These time averages
damp out certain instabilities which would otherwise grow to dominate the solution.

3.6 Time stepping: internal velocity modes, temperature,
and salinity

The momentum equations (3.1) and(3.2) are advanced by computing all the terms except
the vertical viscosity and then using the implicit scheme described in §3.4 to find the new
values for 4 and v. The depth-averaged component is then removed and replaced by the
% and T computed as in §3.5. A third-order Adams-Bashforth timestepping is used when
computing the right-hand-side terms (see Appendix A). The temperature and salinity
equations (3.3) and (3.4) are also advanced as in §3.4. There is also an option to advect
the temperature and salinity using a Smolarkiewicz scheme as described in [31] and [32].

3.7 Determination of the vertical velocity and density fields

Having obtained a complete specification of the u,v,T, and S fields at the next time level
by the methods outlined above, the vertical velocity and density fields can be calculated.
The vertical velocity is obtained by combining equations (2.26) and (3.27) to obtain:

e (n) o () o G) -3 () - (W) =0 om0

19

Solving for H,2/mn and using the semi-discrete notation of §3.3 we obtain:

¢ —7y 7€ .
() o () () e () e

The integral is actually computed as a sum from the bottom upwards and also as a sum
from the top downwards. The value used is a linear combination of the two, weighted so
that the surface down value is used near the surface while the other is used near the bottom.

The density is obtained from temperature and salinity via an equation of state. SCRUM
provides a choice of a nonlinear equation of state p = p(T, S, z) or a linear equation of state
p = p(T). The nonlinear equation of state has been modified and now corresponds to the
UNESCO equation of state as derived by Jackett and McDougall [16]. It computes in situ
density as a function of potential temperature, salinity and pressure.

Warning: although we have used it quite extensively, McDougall (personal communi-
cation) claims that the single-variable (p = p(T')) equation of state is not dynamically
appropriate as is. He has worked out the extra source and sink terms required, arising from
vertical motions and the compressibility of water. They are quite complicated and we have
not implemented them to see if they alter the flow.

3.8 The pressure gradient terms

The pressure gradient terms in equations (2.19) and (2.20) are written in the form

g+ Moy, 4 g ve (3.32)
o
This is the form traditionally used in sigma-coordinate models to account for the horizontal
differences being taken along surfaces of constant s. This form can be shown to lead to
significant errors when |Vh| is large (Haney [13]; and Beckmann and Haidvogel [3]).

The pressure ¢ is computed by a vertical integration of the density field using equation
(2.24). Prior to the integration, a horizontal average of the density, p(z), is subtracted from
p. As discussed by Haney [13] and McCalpin [20], p does not contribute to the pressure
gradient in the analytic equations. However, when numerically computing its contribution
to the pressure gradient, the error from this term can be unacceptably large.

3.9 Horizontal friction and diffusion

In Chapter 2 the diffusive terms were written simply as D,, D,,Dr, and Dg. The vertical
component of these terms was described in §3.4. Here we describe SCRUM’s options for
representing the horizontal component of these terms.

3.9.1 Laplacian

The Laplacian of a scalar ¢ in curvilinear coordinates is (see Batchelor [2], Appendix 2):

v veeml) Se)] o

20

This term in SCRUM is multiplied by % and becomes

[0 (Vszm%> n 0 (VgHzn@)]

8_§ n 0€ m 0n

on

(3.34)

where ¢ is any of u, v, T', and S. This form guarantees that the term does not contribute to
the volume-integrated equations, except when using no-slip boundaries in the momentum
equations.

3.9.2 Biharmonic

The biharmonic operator is V* = V2V?2; the corresponding term is computed using a
temporary variable Y

e e I
and is 8 (H,mdY\ 0 (H,ndY
(o5 %) ol 1830

where ¢ is once again any of u, v, T, and S. Note that v and v are treated as independent
scalar quantities rather than as a vector. The complete Laplacian operator on a vector
quantity % contains additional terms, including v terms in the u equation and vice versa.
These extra terms were found to be small in a test problem and have been left out of the
model.

3.9.3 Rotated mixing tensors

Both the Laplacian and biharmonic terms above operate on surfaces of constant s and can
contribute substantially to the vertical mixing. However, the oceans are thought to mix
along constant density surfaces so this is not entirely satisfactory. Therefore, the option of
using rotated mixing tensors for the Laplacian and biharmonic operators has been added.
Options exist both to diffuse on constant z surfaces (MIX_GP_UV, MIX_GP_TS) and
constant in situ density surfaces (MIX_EN_UV, MIX_EN_TS).

The horizontal Laplacian diffusion operator is computed by finding the three components
of the flux of the quantity ¢. The & and n components are locally horizontal, rather than
along the s surface. These fluxes are:

dp 1y 0z 0
Fé = -z _ 2 - e | — .
N MIX_EN P
MIX GP
op 1o 0z ¢
F" = pon— — 22 |22 b .
s =g [Mae 5y | s (3.38)
. L MIX_EN
MIX GP

21

1 0z 1 0z
FP=——|m= +8 —— |n0— +85, | F" 3.39
H, o0& Z H, | 0np <2 ()
. MIX_EN . MIX_EN
MIX GP MIX_GP
where) 5
3 dp _ ﬂ&_/}]
g _ 3 [maf H, OF Ds
T op T 1 9p
0z H, 0s
ap [n@ _ LQ@]
S — dy on H, On 0s
L7 1 9p
oz H, Os

No flux boundary conditions are easily imposed by setting

F¢=0 at & walls
F1=0 at n walls
F° =0 at s =—1,0

Finally, the flux divergence is calculated and is added to the right-hand-side term for
the field being computed:

0 (H,F¢ 0 (H,F" 0 (H,F?
= — = 3.40
8§<n>+8n(m>+as(mn) (340)
The biharmonic rotated mixing tensors are computed much as the non-rotated bihar-
monic mixing. We define a temporary variable Y based on equation (3.40):

mn | 0 (H,F¢ o (H,F" 0 (H,FS$
Y‘HJ@?(n >+8_n<m>+%(mn)]' (341

We then build up fluxes of Y as in equations (3.37)—(3.39). We then apply equation (3.40)
to these Y fluxes to obtain the biharmonic mixing tensors.

22

Chapter 4

Details of the Code

4.1 Main subroutines

A flow chart for the main program is shown in Fig. 4.1. The boxes refer to subroutines
which are described as follows:

couple Couples 3-D and 2-D momentum fields. It computes and removes the vertical
means from the newly computed 3-D velocities and replaces those means with the
more accurate 2-D velocities.

depth2d Computes the evolving total depth of the water column that is associated with the
2-D momentum equations. It also computes the coefficients used in the advection
and viscosity of 2-D momentum.

depth3d Computes the evolving depths of the model grid and its associated vertical trans-
formation metric H,. It also computes the coefficients which contain H, and are
used in the horizontal advection of momentum and tracers and in the horizontal
mixing.

frc2drhs Computes the forcing terms (rufrc,rvfrc) for the 2-D momentum equations
which are held constant over the short time steps. These forcing terms contains
the vertically integrated terms from the 3-D momentum equations which are not
considered in the 2-D equations.

initial Does everything that needs to be done to start up the model run. It reads initial
parameters and u,v,T,S, and (fields from disk or calls ana_initial. It then
calculates the remaining initial fields and opens the restart file. The flow chart
for initial is shown in Fig. 4.2.

omega Calculates the scaled vertical velocity H,2/mn according to equation (3.31).
prsgrd Calculates the horizontal pressure gradients according to equation (3.32).
rho_eos Calculates the density anomaly, p, using the equation of state (§3.7).

set_vbc Sets the vertical boundary conditions for momentum and tracers.

23

initial

set_vbc

depth3d

omega

prsgrd

Y

u3drhs

Y

v3drhs

loop over short steps

Y

zetarhs

trhs

Y

u2drhs

frc2drhs

v2drhs

step2d

vert_mix

depth2d

step3d

rho_eos

couple

Figure 4.1: Flow chart of the model main program.

zero_arrays

inp_par

grid file?

oA
ana_grid get_grid

N/

metrics

get_mask

set_scoord

initial file?

no \3’68

ana_initial get_initial

N/

depth2d

depth3d

omega

set_vbc

initialize Akt

rho_eos

initialize output files

Figure 4.2: Flow chart of the initial subroutine.

25

step2d

step3d

trhs

u2drhs

u3drhs

v2drhs

v3drhs

Time steps free-surface and 2-D momentum equations. Also does the time-
averaging described in §3.5.

Time steps the 3-D momentum and tracers (usually potential temperature and
salinity), using the tridiagonal solver described in §3.4

Calculates and stores contributions to the right-hand-side of the tracer equations
(2.21) and 2.22), where the advective terms have been moved to the right-hand-
side.

Calculates and stores contributions to the right-hand-side of equation (3.28),
where all the terms other than 5(“) have been moved to the right-hand-side.

Calculates and stores contributions to the right-hand-side of equation (2.19),
where all the terms other than E(Hz“) have been moved to the right-hand-side.

Calculates and stores contributions to the right-hand-side of equation (3.29),
where all the terms other than E() have been moved to the right-hand-side.

Calculates and stores contributions to the right-hand-side of equation (2.20),
where all the terms other than m(HZ”) have been moved to the right-hand-side.

vert_mix Computes the vertical mixing coefficients for momentum (Akv) and tracers

(Akt).

zetarhs Computes the right-hand-side of equation (3.27), where all the terms other than

aat(—) have been moved to the right-hand-side.

4.2 Other subroutines and functions

Initialization

ana_grid Sets up an analytic grid.
ana_initial Sets up analytic initial conditions.
blkdat Initializes some variables and parameters stored in common blocks.

checkdefs Reports on which C preprocessor variables have been #defined and
checks their consistency.

get_grid Reads in the curvilinear coordinate arrays as well as f and h from a grid
netCDF file.

get_initial Reads initial fields from disk—either restart or initializing from a cli-
matology.

get_mask Reads in the mask arrays from the grid netCDF file. It also adjusts

pmask as required for the free-slip/no-slip boundary conditions as de-
scribed in §3.2.

inp_par Reads in input model parameters from standard input. It also writes out
these parameters to standard output and calls checkdefs.

26

metrics Computes the metric term combinations which do not depend on the
surface elevation and therefore remain constant in time.

set_scoord Sets and initializes relevant variables associated with the vertical
transformation to nondimensional s-coordinate described in Appendix B.

zero_arrays Initializes (zeroes out) various arrays.
NetCDF I/0

def avg Creates the SCRUM averages NetCDF file and defines its dimensions,
attributes, and variables.

def_his Creates the SCRUM history NetCDF file and defines its dimensions,
attributes, and variables.

def rst Creates the SCRUM restart NetCDF file and defines its dimensions, at-
tributes, and variables.

def_station Creates the SCRUM station NetCDF file and defines its dimensions,
attributes, and variables.

get_date Gets today’s date, day of the week and time called. It uses Sun’s in-
trinsic date routine by default.

lenstr Returns the character position of the last non-blank character in a “string”

after removing the leading blank characters, if any. Should not be called
with a literal string argument.

opencdf Opens an existing NetCDF file, inquires about its contents, and checks
for consistency with model dimensions.

wrt_avg Writes SCRUM time-averaged fields into the averages NetCDF file.

wrt_his Writes requested SCRUM fields at requested levels into the history NetCDF
file.

wrt_rst Writes SCRUM fields into the restart NetCDF file.
wrt_station Writes out data into the stations NetCDF file.

Forcing fields The file analytic.F contains analytical formulations for computing various
forcings and initializations. For more realistic problems these fields are read from
NetCDF files.
ana_bmflux Computes analytic kinematic bottom momentum flux.
ana btflux Computes analytic kinematic bottom flux of tracer type variables.
ana_clima Computes analytic climatology fields.
ana_smflux Computes analytic kinematic surface momentum flux (wind stress).
ana_srflux Computes analytic kinematic surface shortwave radiation.

ana_sst Computes analytic sea surface temperature and dQdSST which are used
in the surface heat flux correction.

ana _stflux Computes analytic kinematic surface flux of tracer type variables.

27

get_bmflux Reads bottom momentum flux (bottom stress) from the forcing NetCDF
file, and then linearly time-interpolates to current model time.

get_btflux Reads bottom flux of tracer type variables from the forcing NetCDF
file, and then linearly time-interpolates to current model time.

get_clima Reads in climatological fields from the climatology NetCDF file, and
then linearly time-interpolates to current model time.

get_cycle Determines relevant parameters for time cycling of data from the forc-
ing NetCDF file. For instance, you may wish to use monthly means for
each year of a multi-year run.

get_smflux Reads surface momentum flux (wind stress) from the forcing NetCDF
file, and then linearly time-interpolates to current model time.

get_srflux Reads shortwave radiation flux from the forcing NetCDF file, and then
linearly time-interpolates to current model time.

get_sst Reads sea surface temperature and surface net heat flux sensitivity to
sea surface temperature from the forcing NetCDF file and then linearly
time-interpolates to current model time.

get_stflux Reads surface flux of tracer type variables from the forcing NetCDF
file, and then linearly time-interpolates to current model time.

Horizontal mixing The horizontal mixing routines have options for doing Laplacian or
biharmonic mixing, along surfaces of constant s, z, or in situ density, as described
in §3.9. The horizontal mixing of 2-D momentum is computed in u2drhs and
v2drhs.

get_rhosxe Computes the isopycnal slopes (nondimensional) used in the mixing
tensor rotation relative to geopotential surfaces.

shapd Applies a 2-D Shapiro filter to array a.
t3dmix Computes horizontal mixing of tracer type variables.

u3dmix Computes horizontal mixing of the 3-D momentum component in the
¢-direction.

v3dmix Computes horizontal mixing of the 3-D momentum component in the
n-direction.

Vertical mixing The model contains a variety of methods for computing the vertical
mixing coefficients Akt and Akv, including an analytic formula.

ana_vmix Computes analytic vertical mixing coefficients for momentum and trac-
ers.

bv_freq Computes the squared Brunt-Viisili frequency at w-points N? = —pio %.

Imd_vmix Computes vertical mixing coefficients for momentum and tracers at
the ocean interior using the Large, McWilliams and Doney [18] mixing
scheme.

28

Imd_bldepth Determines the oceanic planetary boundary layer depth,
hbl, as the shallowest depth where the bulk Richardson number
is equal to the critical value, Ric.

Imd_blmix Sets the vertical mixing coefficients within the boundary layer.

Imd_swfrac Computes the fraction of solar shortwave flux penetrating to
specified depth (times Zscale) due to exponential decay in Jerlov
water type.

Imd_wscale Computes the turbulent velocity scale for momentum and
tracers using a 2-D lookup table as a function of ustar and
zetahat.

my25_vmix Computes vertical mixing coefficients for momentum and tracers us-
ing the Mellor and Yamada [22] mixing level 2.5 scheme with modifica-
tions described in Galperin et al. [10].
my25_q Solves the prognostic equation for turbulent energy variables
used in the Mellor-Yamada level 2.5 turbulent closure.

my2 vmix Computes vertical mixing coefficients for momentum and tracers using
the Mellor and Yamada [22] mixing level 2 scheme which is based on
Richardson number-dependent stability functions.

pp-vmix Computes vertical mixing coefficients for momentum and tracers using
the Pacanowski and Philander [24] mixing scheme which is based on the
Richardson number.

ri_number Computes the gradient Richardson number for the vertical mixing
schemes.

trisolver Solves the PDE A¢(k — 1) + Bo(k) + Co(k + 1) = D for field ¢ using
the tridiagonal solver, also known as Thomas algorithm (Richtmeyer and
Morton [28]).

Bottom boundary-layer model The model has an optional bottom boundary layer based
on Styles and Glenn [34].

ana_bsedim Computes analytic bottom sediment grain size and density.

ana_wwave Computes analytic wind induced wave amplitude, direction and pe-
riod.

get_bsedim Reads initial sediment grain size and density from the forcing Net CDF
file.

get_wwave Reads wind induced wave amplitude, direction and period from the
forcing NetCDF file, and then linearly time-interpolates to current model
time.

sg-bbl96 Computes kinematic bottom momentum stress using Styles and Glenn
[34] bottom boundary layer formulation.

sg_ubab Computes maximum wave bottom velocity and excursion from wind
induced wave amplitude and period by solving the linear wave dispersion
relation for a given wave number.

29

Boundary conditions The files bes2d.F and bes3d.F contain horizontal boundary con-
ditions for the various 2-D and 3-D variables, respectively. The boundary routines
are also called to specify boundary conditions on V2¢ for the horizontal bihar-
monic operator on the field ¢.

Other

ana_t3dbc Computes analytic boundary conditions for tracer type variables.

ana u2dbc Computes analytic boundary conditions for 2-D u-type variables.

ana_u3dbc Computes analytic boundary conditions for 3-D u-type variables.

ana_v2dbc Computes analytic boundary conditions for 2-D v-type variables.

ana_v3dbc Computes analytic boundary conditions for 3-D v-type variables.

ana_w3dbc Computes analytic boundary conditions for 3-D w-type variables.

ana_zetabc Computes analytic boundary conditions for free-surface type vari-

inflow

t3dbc

u2dbc
u3ddbc
v2dbc
v3dbc
w3dbc
xtrbry

zetabc

abratio

ables.

Processes prescribed inflow open boundary conditions from climatology
data.

Boundary conditions for 3-D tracer type variables.
Boundary conditions for 2-D wu-type variables.
Boundary conditions for 3-D wu-type variables.
Boundary conditions for 2-D v-type variables.
Boundary conditions for 3-D v-type variables.
Boundary conditions for 3-D w-type variables.

Extracts and loads data into boundary field arrays. These boundary field
arrays are used in the treatment of the open boundaries via radiation
conditions.

Boundary conditions for free-surface type variables.

Calculates the ratio of the thermodynamic expansion coefficients for po-
tential temperature and salinity, alpha/beta, at horizontal and vertical
w-points from a polynomial expression (Jackett and McDougall [16]).

alfabeta Computes thermal expansion and saline contraction coefficients as a

function of potential temperature, salinity, and pressure from a polyno-
mial expression (Jackett and McDougall [16]).

ana_diag Computes customized diagnostics.

ana_meanRHO Analytical mean density anomaly (rhobar).

crash

Dies in the manner appropriate for your computer (stop or call exit).
It also closes any open NetCDF files.

day_code computes a code for the day of the week, given the date. This code is

good for dates after January 1, 1752 AD, the year the Gregorian calendar
was adopted in Britain and the American colonies.

30

diag Computes various diagnostic fields, such as the volume averaged kinetic
and potential energies.

smol _adv Evaluates horizontal and vertical advection terms for tracers using the
Smolarkiewicz [30] advection scheme. It uses an upstream advection
scheme with a second corrective upstream step to reduce the implicit
diffusion. An anti-diffusion velocity is computed and used in the second
pass through the advection operator.

smol_adiff Computes the “anti-diffusion velocity” used to suppress the
numerical diffusion that is associated with the upstream differ-
encing operator for advection.

smol ups Computes a first-order upstream differencing operator for the
3-D advection of a tracer (scalar) field.

wvelocity Computes vertical velocity (w) from the model vertical velocity (QH, /mn).

4.3 C preprocessor variables

Before it can be compiled, the model must be run through the C preprocessor cpp, as
described in Appendix D. The C preprocessor has its own variables, which may be defined
either with an explicit # define command or with a command line option to cpp. We have
chosen to define these variables in an include file, cppdefs.h, except for some machine-
dependent ones, which are defined in the appropriate Makefiles. These variables allow you
to conditionally compile sections of the code. For instance, if MASKING is not defined
then the masking code will not be seen by the compiler, and the masking variables will not
be declared. These cpp variables can be grouped into several categories:

momentum terms

BODYFORCE Define to apply the surface stresses as a body force.

CURVGRID Define to compute the extra non-linear terms which arise when
using curvilinear coordinates.

UV_ADYV Define to compute the momentum advection terms.
UV_COR Define to compute the Coriolis term.

UV_PRS Define to compute the horizontal pressure gradient term.
UV_VIS2 Define to compute the horizontal Laplacian viscosity.
UV_VIS4 Define to compute the horizontal biharmonic viscosity.

tracers

DIAGNOSTIC Define if it is a diagnostic calculation in which the tracer fields
do not change in time.

NONLIN_EOS Define to use the nonlinear equation of state.

QCORRECTION Define to use the net heat flux correction.

SALINITY Define if salinity is used as one of the tracers.

31

SMOLARKIEWICZ Define to compute Smolarkiewicz advection.
TS_ADV Define to compute the tracer advection terms.

TS_DIF2 Define to compute the horizontal Laplacian diffusion.
TS_DIF4 Define to compute the horizontal biharmonic diffusion.

general model configuration

AVERAGES Define to write out time-averaged model fields.

RMDOCINC Define to remove documentation in include files with the C pre-
processor.

SOLVE2D Define to solve the 2-D primitive equations.
SOLVES3D Define to solve the 3-D primitive equations.

STATIONS Define to write out time-series information at specific points in the
model.

TIME_AVG Define to average over short timesteps as described in §3.5.
analytic fields

ANA _BMFLUX Define for an analytic bottom momentum stress.

ANA BSEDIM Define for an analytic bottom sediment grain size and density.
ANA BSFLUX Define for an analytic bottom salt flux.

ANA _BTFLUX Define for an analytic bottom heat flux.

ANA_CLIMA Define for an analytic climatology.

ANA _DIAG Define for customized diagnostics.

ANA _GRID Define for an analytic model grid set-up.

ANA _INITIAL Define for analytic initial conditions.

ANA_MEANRHO Define for an analytic mean density anomaly.

ANA _SMFLUX Define for an analytic kinematic surface momentum stress.
ANA SRFLUX Define for an analytic kinematic surface shortwave radiation.
ANA _SSFLUX Define for an analytic kinematic surface freshwater flux.
ANA _SST Define for an analytic SST and 0Q/9SST.

ANA _STFLUX Define for an analytic kinematic surface heat flux.

ANA _VMIX Define for analytic vertical mixing coefficients.

ANA _WWAVE Define for an analytic wind induced wave field.

analytic boundary conditions

ANA _T3DBC Define for analytic boundary conditions on tracers.
ANA U2DBC Define for analytic boundary conditions on the 2-D u-momentum.
ANA _U3DBC Define for analytic boundary conditions on the 3-D u-momentum.

32

ANA V2DBC Define for analytic boundary conditions on the 2-D v-momentum.

ANA V3DBC Define for analytic boundary conditions on the 3-D v-momentum.

ANA _W3DBC Define for analytic boundary conditions on the 3-D w-momentum.

ANA _W3DBC Define for analytic boundary conditions on the free surface.

horizontal mixing
CLIMAT TS _MIXH Define for horizontal diffusion of a tracer minus its clima-
tology.

MIX_GP_TS Define for diffusion along constant z (geopotential) surfaces.
MIX_EN_TS Define for diffusion along constant p (epineutral) surfaces.

MIX_GP_UYV Define for viscosity along constant z (geopotential) surfaces.
MIX_EN_UV Define for viscosity along constant p (epineutral) surfaces.

MIX_S_TS Define for diffusion along constant s surfaces.

MIX_S_UV Define for viscosity along constant s surfaces.

vertical mixing

CLIMAT_TS_MIXYV Define for vertical diffusion of a tracer minus its climatol-
ogy.
BVF_MIXING Define to activate Brunt-Vaisila frequency mixing.
LMD _MIXING Define to activate Large/McWilliams/Doney interior closure.
LMD _CONYVEC Define to add convective mixing due to shear instabil-
ities.
LMD _DDMIX Define to add double-diffusive mixing.

LMD KPP Define to add boundary layer mixing from a local K-Profile
Parameterization (KPP).

LMD _RIMIX Define to add diffusivity due to shear instabilities.
MY2_MIXING Define to activate Mellor/Yamada Level-2 closure.
MY25 MIXING Define to activate Mellor/Yamada Level-2.5 closure.

Q_DIF2 Define for horizontal Laplacian diffusion of q.
Q_DIF4 Define for horizontal biharmonic diffusion of q.

PP_MIXING Define to activate Pacanowski/Philander closure.
SG_BBL96 Define to activate Styles/Glenn bottom boundary layer formulation.

boundary conditions

EW_PERIODIC Define for periodic boundaries in the i direction.
NS_PERIODIC Define for periodic boundaries in the j direction.
OBC_EAST Define for an open boundary on the “east” (i = L) edge.
OBC_NORTH Define for an open boundary on the “north” (j = M) edge.

33

OBC_SOUTH Define for an open boundary on the “south” (j = 1) edge.
OBC_WEST Define for an open boundary on the “west” (i = 1) edge.

detailed open boundary conditions

OBC_INFLOW Define to process inflow conditions from climatology data.
OBC _FSGRADIENT Define for a gradient condition on the free surface.
OBC_FSGRAVITY Define for gravity-wave radiation of the free surface.

OBC_FSORLANSKI Define for an Orlanski radiation condition on the free
surface.

OBC_FSMORLANSKI Define for a modified Orlanski radiation condition on
the free surface.

OBC_FSPRESCRIBE Define to prescribe the free surface boundary from data.
OBC_M2GRADIENT Define for a gradient condition on the 2-D momentum.
OBC _M2GRAVITY Define for gravity-wave radiation of the 2-D momentum.

OBC_M20ORLANSKI Define for an Orlanski radiation condition on the 2-D
momentum.

OBC_M2MORLANSKI Define for a modified Orlanski radiation condition on
the 2-D momentum.

OBC_M2PRESCRIBE Define to prescribe the 2-D momentum boundary from
data.

OBC_M2REDUCED Define for reduced physics on 2-D momentum at the bound-
ary.

OBC_M3GRADIENT Define for a gradient condition on the 3-D momentum.

OBC_M3ORLANSKI Define for an Orlanski radiation condition on the 3-D
momentum.

OBC_M3MORLANSKI Define for a modified Orlanski radiation condition on
the 3-D momentum.

OBC_M3PRESCRIBE Define to prescribe the 3-D momentum boundary from
data.

OBC_TCLIMA Define for relaxation to the tracer climatology.
OBC_TORLANSKTI Define for an Orlanski radiation condition on tracers.

OBC_TMORLANSKI Define for a modified Orlanski radiation condition on
tracers.

OBC_TPRESCRIBE Define to prescribe the tracer boundary from data.
OBC_TREDUCED Define for reduced physics on tracers at the boundary.

general

MASKING Define if there is land in the domain to be masked out.

34

CLIMATOLOGY Define to define the climatology arrays.
NUDGING Define for nudging to climatology.

precision These variables were introduced so that one code could be used for Crays and
workstations, all using 64 bit precision.

DBLEPREC For double precision arithmetic.
BIGREAL This is the type of all floating point variables used in the model com-

FLoaT

putations. It must be defined to be something, such as real or real*8.
If this is set to double precision you should also use a compiler option
for extending source lines past 72 characters in width.

This is used so that the correct intrinsic is called, either float, dfloat or
real.

model test problems One of these can be defined to obtain an example test problem.

BASIN Define for the “Big Bad Basin” example.

CANYON_A Define for the Canyon A (homogeneous) example.

CANYON_B Define for the Canyon B (stratified) example.

GRAV _ADJ Define for the gravitational adjustment example.

OVERFLOW Define for the overflow example.

SEAMOUNT Define for the seamount example.

TASMAN_SEA Define for the Tasman Sea example.

UPWELLING Define for the upwelling/downwelling example described in §6.2.

command line These are defined as a command line option in some of the Makefiles
since they are machine dependent.

NO_EXIT This will determine whether your program ends with a stop command

AIX

or by calling exit. I prefer exit on a Sun and stop on an IBM RS/6000.
The RS/6000 will not properly close files when using call exit so it is
possible to lose some of your output unless you use stop.

Note that the exit subroutine on many computers does not require an
argument. The Sun exit subroutine uses the integer argument value as
the return code from SCRUM for use by the shell under which SCRUM
is run.

Most versions of cpp which are supplied by the vendor have some vari-
ables automatically defined. For instance, on a SparcStation, sun, unix,
and sparc will all be defined. However, the RS/6000 cpp does not define
anything useful to check for so I have the RS/6000 Makefile define AIX.
This is used because both the SGI and the IBM RS/6000 will continue
to compute if some variables have become NaN. In order to stop the
calculation, we check for NalN as the error from diag, but the method of
checking varies from one system to another. Another system-dependent
component of SCRUM is in the implementation of get_date.

35

4.4 Important parameters

The following is a list of the important parameters in the model. The rest of the parameters
defined in param.h are derived from L, M, and N.

L Number of grid points in the £-direction.

M Number of grid points in the 7-direction.

N Number of grid points in the vertical.

NS Maximum number of output station points.

NT Number of tracer fields. Often NT = 2 for potential temperature and salinity.

There are a lot of parameters defined in pconst.h to represent literal constants of type
BIGREAL. It is much safer to use the parameters when these values are needed as
subroutine arguments. The names for the constants were chosen based on the following
“rules”:

e Use a prefix of ¢ for whole real numbers (c0 for zero and c1 for 1.0).
e Use a prefix of p for non repeating fractions (p5 for 0.5).

e Use a prefix of r for reciprocals (r3 for 1.0/3.0 and r10 for 0.1 which could also be

pl).
e Combine use of the prefix and e for scientific notation (cle4 for 1.0e + 4 and clem4
for 1.0e — 4).

e Use names when appropriate (pi for 7 = 3.14159265.. .).

4.5 Include files and the variables within them

SCRUM has a fair number of include files which contain common blocks. The common
blocks contain all of the global variables in the model. All dimensional variables are given
in MKS units.

ocean.h The main time-dependent model fields.

time SCRUM time since initialization.

u 3-D velocity component in the ¢-direction.

v 3-D velocity component in the 7-direction.

w H,Q/mmn, scaled velocity component in the o-direction.

t tracer variables (usually potential temperature and salinity).

rho perturbation density p (total density = p, + p).
rhobar horizontal average of density, must be a function of z only (see §3.8).

phix &-component of the baroclinic pressure gradient.

36

phie n-component of the baroclinic pressure gradient.
zeta free surface { at the previous and current short time levels.

ubar 2-D velocity component in the £-direction at the previous and current
short time levels.

vbar 2-D velocity component in the 7-direction at the previous and current
short time levels.

ubaravg 2-D velocity component in the &-direction time-averaged over all short
timesteps, at the previous, current, and future long time levels.

vbaravg 2-D velocity component in the n-direction time-averaged over all short
timesteps, at the previous, current, and future long time levels.

zetaavg free surface ¢ time-averaged over all short timesteps, at the previous,

current, and future long time levels.

This file also contains the time-averaged fields used for the monthly-mean com-
putations:
avgrho average potential density anomaly.
avgt average tracer type variables (usually potential temperature and salinity).
avgtime average SCRUM time since initialization.
avgu2d average 2-D velocity component in the ¢-direction.
avgudd average 3-D velocity component in the &-direction.
avgv2d average 2-D velocity component in the 7-direction.
avgv3d average 3-D velocity component in the 7-direction.
avgw3d average s-coordinate (QQH,/mn) vertical velocity.
avgzeta average free surface elevation.
bblm.h Fields required by the bottom boundary layer of Styles and Glenn [34]. It com-
putes the bottom stress and the hydraulic roughness length z, due to the combined
effects of waves and currents.
Ab wave bottom excursion amplitude.
Awave wind induced wave amplitude at p-points.

Cr non-dimensional function that determines the relative importance of cur-
rents and wind induced waves on the bottom stress at p-points.

Dwave wind induced wave direction (radians) at p-points.
Pwave wind induced wave period at p-points.

Sdens sediment grain density at p-points.

Ssize sediment grain diameter at p-points.

Ub maximum wave bottom horizontal velocity.

UstarC time-averaged near-bottom friction current magnitude at p-points.

37

sg_Kiter maximum number of iterations in the computation of bottom wavenum-

ber.

sg-Keps convergence criterion for the computation of bottom wavenumber via
the Newton-Raphson method.

sg_Siter maximum number of iterations in the computation of stress due to bot-
tom friction velocity.

sg_Seps convergence criterion for the computation of the stress due to bottom
friction velocity via the Newton-Raphson method.

sg_alpha free parameter indicating the constant stress region of the wave bound-
ary layer.

sg_brlmin minimum allowed bottom roughness length.

sg-nu kinematic viscosity of seawater.
climat.h This file contains the climatology arrays.

tclm tracer climatology at the current time-step.
nudgcof time-scale (1/sec) coefficients for nudging towards climatology.

tclima work array containing two time levels of the tracer climatology read from
disk.

ttclm time of the tracer climatology fields read from disk.

forces.h This file contains the surface and bottom forcing arrays. It also contains work
arrays used in time-averaging these fields when they are read from a file. The
non-work arrays in this file are:
srflx kinematic surface shortwave solar radiation flux at p-points.
stflx kinematic surface flux of tracer type variables at p-points.
dqdt kinematic surface net heat flux sensitivity to the sea surface temperature.
sst sea surface temperature used when computing @, called Ti.ef in §2.2.

sustr kinematic surface momentum flux (wind stress) in the ¢-direction at u-
points.

svstr kinematic surface momentum flux (wind stress) in the 7-direction at v-
points.

btflx kinematic bottom flux of tracer type variables at p-points.

bustr kinematic bottom momentum flux (bottom stress) in the ¢-direction at
u-points.

bvstr kinematic bottom momentum flux (bottom stress) in the 7-direction at
v-points.

wwag wind induced wave amplitude gridded data.
wwap wind induced wave amplitude point data.

wwdg wind induced wave direction (radians) gridded data.

38

wwdp wind induced wave direction (radians) point data.
wwpg wind induced wave period gridded data.

wwpp wind induced wave period point data.
grid.h This file contains the arrays for the vertical and horizontal grid information.

Cd_r first derivative of the C(s) curves (0C(s)/0s) at vertical p-points.
Cd_w first derivative of the C(s) curves (0C(s)/0s) at vertical w-points.

Cs_r set of s-curves used to stretch the vertical coordinate lines that follow
the topography at vertical p-points.

Cs_w set of s-curves used to stretch the vertical coordinate lines that follow
the topography at vertical w-points.

D total water column depth at p-points at current and previous short time
levels.
Hz first s-derivative of the z-coordinate (0z/0s) at p-points.

Tcline width of surface or bottom boundary layer in which higher vertical reso-
lution is required during stretching.

angler angle (radians) between ¢-axis and East at p-points.

ds non-dimensional vertical grid spacing (ds=1/N).
el length of domain in the n-direction.

h bottom depth at p-points.

hc s-coordinate parameter, hc=min(hmin, Tcline).

hmax maximum depth of bathymetry.
hmin minimum depth of bathymetry.
latr latitude (degrees North) at p-points.
lonr longitude (degrees East) at p-points.

ods reciprocal of vertical grid spacing (ods=1/ds).
sc_r s-coordinate independent variable, [-1 < s < 0] at vertical p-points
sc_w s-coordinate independent variable, [-1 < s < 0] at vertical w-points.

spherical logical switch indicating spherical grid configuration.
theta_s s-coordinate surface control parameter 6, [0 < 6 < 20].

theta_b s-coordinate bottom control parameter b, [0 < b < 1].

zZ_r actual depths at horizontal p-points and vertical p-points.
Z_W actual depths at horizontal p-points and vertical w-points.
x1 length of domain in the é-direction.

Xp z-coordinates at 1-points.

Xxr z-coordinates at p-points.

ypP y-coordinates at -points.

39

yr y-coordinates at p-points.
iounits.h I/O filenames and flags for writing fields to history files.

Nlev number of levels to write out in history file.
Lev levels to write out in history file.
aparnam input assimilation parameters file name.
assname input assimilation file name.

avgname output averages file name.

clmname input climatology file name.

fltname output floats file name.

fposnam input initial floats positions file name.
frecname input forcing fields file name.

grdname input grid file name.

hisname output history file name.

ininame input initial conditions file name.

ispos i-index for station positions.

jspos j-index for station positions.

nstation number of output stations.

rstname output restart file name.

sposnam input station positions file name.
staname output station data file name.

stdinp unit number for standard input (often 5).
stdout unit number for standard output (often 6).
usrout unit number for generic user output.
usrname user input/output generic file name.

wrt AKS switch to write out vertical diffusion coefficient for salinity.

wrt AKT switch to write out vertical diffusion coefficient for potential tempera-
ture.

wrt AKV switch to write out vertical viscosity coefficient.
wrtHBL switch to write out depth of mixed layer.

wrtO switch to write out 2 vertical velocity.

wrtU switch to write out 3-D u-momentum component.
wrtT switch to write out tracer type variables.
wrtUBAR switch to write out 2-D u-momentum component.
wrtV switch to write out 3-D v-momentum component.

wrtVBAR switch to write out 2-D v-momentum component.

40

wrtW switch to write out w-momentum component.

wrtZ switch to write out free surface elevation.
mask.h The 2-D mask arrays.

rmask mask at p-points (0=Land, 1=Sea).
pmask slipperiness mask at 1-points (0=Land, 1=Sea, 1-gamma2=boundary).
umask mask at u-points (0=Land, 1=Sea).

vmask mask at v-points (0=Land, 1=Sea).
metrics.h Horizontal grid metrics and their combinations.
Dmon_p compound term, Dm/n at ¢-points at current and previous short time

levels.

Dnom _p compound term, Dm/n at -points at current and previous short time
levels.

Duon_u compound term, Du/n at u-points at current and previous short time
levels.

Dvom_v compound term, DT/m at v-points at current and previous short time
levels.

Huon_u compound term, H,u/n at u-points.

Hvom v compound term, H,v/m at v-points.

Hzmon_p compound term, H,m/n at 1-points.

Hznom_p compound term, H,n/m at 1-points.

dmde 7-derivative of inverse metric factor m, a%(%)

dndx ¢-derivative of inverse metric factor n, a%(%)

f Coriolis parameter.

fomn compound term, f/(mn) at p-points.

pm coordinate transformation metric m associated with differential distances
in &.

pmon_p compound term, m/n at y-points.

pmon_r compound term, m/n at p-points.

pmon_u compound term, m/n at u-points.

pn coordinate transformation metric n associated with differential distances
in 7.

pnom_p compound term, n/m at t-points.

pnom_r compound term, n/m at p-points.

pnom_v compound term, n/m at v-points.

mixing.h The horizontal and vertical viscosity/diffusion coefficients. Some of the vertical
mixing schemes have additional variables for their internal use.

41

Akt spatially variable vertical mixing coefficient for tracers.
Akt _bak background vertical mixing coefficient for tracers.

Akv spatially variable vertical mixing coefficient for momentum.
Akv_bak background vertical mixing coefficient for momentum.

atl time weight for current time level vertical mixing coefficients to avoid
instability of the implicit scheme.

at2 time weight for previous time level vertical mixing coefficients to avoid
instability of the implicit scheme.

rinavfl logical switch to activate the spatial averaging of gradient Richardson
number.

tnu2 lateral Laplacian constant mixing coefficient for tracer type variables.
tnu4 lateral biharmonic constant mixing coefficient for tracer type variables.
uvnu2 lateral Laplacian constant mixing coefficient for momentum.

uvnu4 lateral biharmonic constant mixing coefficient for momentum.
ncscrum.h A plethora of variables referring to objects in the various I/O NetCDF files.
obc.h Arrays used in the open boundary conditions.

tebry eastern boundary condition data for tracer type variables.
tnbry northern boundary condition data for tracer type variables.
tsbry southern boundary condition data for tracer type variables.
tsbry western boundary condition data for tracer type variables.

uebry eastern boundary condition data for 3-D velocity component in the &-
direction.

unbry northern boundary condition data for 3-D velocity component in the -
direction.

usbry southern boundary condition data for 3-D velocity component in the &-
direction.

usbry western boundary condition data for 3-D velocity component in the &-
direction.

vebry eastern boundary condition data for 3-D velocity component in the 7-
direction.

vnbry northern boundary condition data for 3-D velocity component in the 7-
direction.

vsbry southern boundary condition data for 3-D velocity component in the 7-
direction.

vsbry western boundary condition data for 3-D velocity component in the 7-
direction.

rhs.h The right-hand-side arrays.

42

rt
rtold
ru
rubar
rufrc

ruold

rustr
rv
rvbar
rvirc

rvold

rvstr

rzeta

right-hand-side of the tracer equations.

right-hand-side of the tracer equations at previous two time levels.
right-hand-side of the 3-D u-momentum equation.

right-hand-side of the 2-D u-momentum equation.

right-hand-side forcing term for the 2-D u-momentum equation.

right-hand-side of the 3-D u-momentum equation at previous two long
time levels.

surface and bottom u-momentum stresses.

right-hand-side of the 3-D v-momentum equation.
right-hand-side of the 2-D v-momentum equation.
right-hand-side forcing term for the 2-D v-momentum equation.

right-hand-side of the 3-D v-momentum equation at previous two long
time levels.

surface and bottom v-momentum stresses.

right-hand-side of the free surface equation.

scalars.h A large number of scalars of all sorts.

RO
Scoef
S0
Tcoef
TO
abcl

abc2

abc3

background constant density anomaly used in linear equation of state.
saline contraction coefficient in linear equation of state.

background salinity value used in analytic fields.

thermal expansion coefficient in linear equation of state.

background potential temperature value used in analytic fields.

constant factor (abc1=23/12) used in the 3rd-order Adams-Bashforth
time stepping.
constant factor (abe2=16/12) used in the 3rd-order Adams-Bashforth
time stepping.

constant factor (abe3=5/12) used in the 3rd-order Adams-Bashforth
time stepping.

adv_ord number of iterations or passes through advection operator in the Smo-

dstart

dt
dtfast
dtods
dtods2
dtsfast

larkiewicz scheme.

time stamp assigned to model initialization (usually a Calendar day, such
as modified Julian Day).

size of 3-D primitive equations timestep.
size of 2-D primitive equations timestep.
timestep factor, dtods=dt/ds.
timestep factor, dtods2=dt/(ds*ds).

size of 2-D primitive equations timestep between consecutive steps.

43

dummy1 scalar dummy variable.

dummy?2 scalar dummy variable.

dummy3 scalar dummy variable.

fracdt timestep factor, fracdt=2/dt.

g acceleration due to gravity.

gorhoO gravity divided by mean density, gorho0=g/p,.

gamma? slipperiness variable, either 1.0 (free slip) or —1.0 (no slip).

ibcLapQ switch associated with boundary conditions for the Laplacian of Mellor-
Yamada turbulent energy variables.

ibcLapT switch associated with boundary conditions for the Laplacian of tracer
type variables.

ibcLapU switch associated with boundary conditions for the Laplacian of the
velocity component in the ¢-direction.

ibcLapV switch associated with boundary conditions for the Laplacian of the
velocity component in the n-direction.

ibcQ switch associated with boundary conditions for the Mellor-Yamada tur-
bulent energy variables.

ibcT switch associated with boundary conditions for the tracer type variables.

ibcTa switch associated with boundary conditions for the tracer type variables
in Smolarkiewicz advection scheme.

ibcU switch associated with boundary conditions for the velocity component
in the &-direction.

ibcUa switch associated with boundary conditions for the anti-diffusion velocity
in the ¢-direction.

ibcUavg switch associated with boundary conditions for the time-averaged ve-
locity component in the ¢-direction.

ibcV switch associated with boundary conditions for the velocity component
in the n-direction.

ibcVa switch associated with boundary conditions for the anti-diffusion velocity
in the n-direction.

ibcVavg switch associated with boundary conditions for the time-averaged veloc-
ity component in the 7-direction.

ibcW switch associated with boundary conditions for the velocity component
in the s-direction.

ibcWa switch associated with boundary conditions for the anti-diffusion velocity
in the s-direction.

ibcZ switch associated with boundary conditions for the free surface elevation.

ibcZavg switch associated with boundary conditions for the time-averaged free
surface elevation.

44

icavg
iic

iif

Jt
knew
kold
krhs
kstp

lambda

Icycle

ldefhis

levbfre
levsfrc

Inew

Inow

lold

Iwrthis

mnew

mold

mrhs

mstp

navg

current number of time-records accumulated in output time-averaged ar-
rays.

timestep counter for 3-D primitive equations.
timestep counter for 2-D primitive equations.

timestep counter component (1 or 2) used in the trapezoidal timestep
correction of the 2-D primitive equations.

pointer to current short time level for variables associated with 2-D prim-
itive equations.

pointer to previous short time level for variables associated with 2-D
primitive equations.

pointer to the time level used to calculate the right-hand term in the 2-D
primitive equations.

pointer to the time level to which the current changes are added in the
2-D primitive equations.

Crank-Nicolson scheme weight for upper and lower time levels (usually,
lambda=0.5).

logical switch used to recycle time records in output restart file. If .true.,
only the latest two restart time records are maintained. If .false., all
restart field are saved every nrst timesteps without recycling.

logical switch used to create the history file. If .true., a new history file
is created. If .false., data is appended to an existing history file.

shallowest level to apply bottom momentum stress as a bodyforce.
deepest level to apply surface momentum stress as a bodyforce.

pointer to future (n + 1) long time level for variables associated with the
time averaging.

pointer to current (n) long time level for variables associated with the
time averaging.

pointer to previous (n — 1) long time level for variables associated with
the time averaging.

logical switch to activate the writing of fields to the SCRUM history file.

pointer to current long time level for variables associated with turbulent
energy equations.

pointer to previous long time level for variables associated with turbulent
energy equations.

pointer to the time level used to calculate the right-hand term in the
turbulent energy equations.

pointer to the time level to which the current changes are added in the
turbulent energy equations.

number of timesteps between storage of time-averaged fields.

45

ndtfast number of timesteps for 2-D equations between each dt.

ninfo number of timesteps between print of single line information to standard
output.

nmix_en number of timesteps between computations of isopycnal slopes used in
the rotated mixing tensor.

nrecavg number of time records written in averages file.
nrechis number of time records written in history file.
nrecrst number of time records written in restart file.
nrecsta number of time records written in stations file.

nrrec number of restart time records to read from disk, the last is used as the
initial conditions.

nrst number of timesteps between storage of restart fields.
nsta number of timesteps between storage of station data.

ntimes ending timesteps in evolving the 3-D primitive equations in the current
run.

ntsavg starting timestep for accumulation of output time-averaged fields.

ntstart starting timestep in evolving the 3-D primitive equations; usually 1, if
not a restart run.

nwrt number of timesteps between writing of fields into output history file.
qdtfac timestep factor for turbulent energy equations.

rdrg linear bottom drag coefficient.

rdrg2 quadratic bottom drag coefficient.

rho0 mean density p,.

rnudg inverse time scale (days) of the nudging towards climatology.

rstflag logical switch which indicates whether or not the model is being restarted.
tdays SCRUM time since initialization (days).

tfacfast time stepping variable for the leap-frog trapezoidal correction of the 2-D
primitive equations.

trapfast logical switch activated during the leap-frog trapezoidal timestep cor-
rection of the 2-D primitive equations.

walll logical switch for side 1 (¢ = 1), .true. if it is a wall, .false. if it is open.
wall2 logical switch for side 2 (j = 1), .true. if it is a wall, .false. if it is open.
wall3 logical switch for side 3 (¢ = L), .true. if it is a wall, .false. if it is open.

walld logical switch for side 4 (j = M), .true. if it is a wall, .false. if it is open.
strings.h

Coptions activated C-preprocessing options.

46

title title of model run.
work.h Work arrays.

a2d — h2d utility 2-D arrays used as temporary storage.
a3d — h3d utility 3-D arrays used as temporary storage.

4.6 Statement functions

We use the following statement functions (inline functions) throughout the code to more
easily keep track of factors of two.

avg.h

av2 average of the two arguments.

av4 average of the four arguments.

47

Chapter 5

Support Programs for Initialization

5.1 Grid generation

On startup, SCRUM either reads a NetCDF file or calls ana_grid to find the location of the
grid points, the grid metrics, the bathymetry, the land/sea mask, and the Coriolis parameter
f. If you won’t be using ana_grid, the grid file must be generated before SCRUM can be
run, either with ezgrid or with the programs in gridpak. The version of ezgrid which
produces a NetCDF file is available in

ftp://ahab.rutgers.edu/pub/gridpak/ezgrid.shar

5.1.1 ezgrid

ezgrid was written to generate a uniform rectangular grid with a simple bathymetry. It
has two modes, one for the upwelling example, and one for rectangular basins; the mode is
determined by the UPWELLING switch in cppdefs.h. If UPWELLING is not defined
then the important parameters are:

xl basin length in the &-direction.
el basin width in the n-direction.
ho bottom depth.

f0, beta Coriolis parameter with the §-plane approximation, f = f, + By.

In either case you will have to also set the name of the gridfile, grdname, near the top of
the ezgrid.F file. Once these parameters are set to your chosen values, compile and run it:

make ezgrid
ezgrid

This should create a binary NetCDF file called grdname.

48

5.1.2 gridpak

SCRUM has been designed to be used with curvilinear orthogonal grids for boundary-
following domains, etc., so there are situations in which you want a more flexible grid-
generation program than ezgrid. We have been working on a suite of programs called
gridpak, including xcoast, an interactive boundary drawing program. See §1.1 for in-
structions on obtaining gridpak and its documentation.

5.2 Masking

5.2.1 The mask program

SCRUM now supports the masking of land areas, for which it requires some new input
arrays. These arrays are read from the grid NetCDF file—there is no current option for
creating an analytic mask. The mask is defined on p-points; see Fig. 5.1 for an example of
a small domain with an isolated island and a promontory adjacent to the boundary. There

J=M
J=1
;=1 1 =L

Figure 5.1: Small grid with masked regions

are also arrays for the mask on wu-points, v-points, and -points which are derived from
the p-point mask. The 1-point mask also depends on the free-slip/no-slip option chosen as
described in §3.2.

The programs in gridpak find the p-point mask based on the bathymetry dataset.
Elevations at or above sea level are assumed to be in the land mask. You may choose to
edit this mask, so Hernan Arango has written a Matlab tool called scrum_mask. It is an
interactive tool which requires Matlab as well as mexcdf for reading and writing NetCDF
files from Matlab. It is available in

49

ftp://ahab.rutgers.edu/pub/scrum/matlab/mask/

ftp://ahab.rutgers.edu/pub/scrum/tars/scrum3_matlab.tar.gz

and includes a README file. An example of its use is shown in Fig. 5.2. This represents
the same mask as in Fig. 5.1, with a circle for each p-point, including the boundary “image”
points. The darker circles are land. Notice that I have made the “image” points have the

same mask value as the points they mirror.

) Flip Mouse: LEFT-select MIDDLE-zoom in RIGHT-zoom out
T T T T T T
(& Land
4500
) Gea
4000 |
3500
O O
3000 F
() Paint
2500} © © ©
L Area
2000¢ (@) o
1500 F 5
Cancel 1000
4| o o
500
o o o
O —
|

! ! ! ! ! !
500 1000 1500 2000 2500 3000 3500

@
ol

Figure 5.2: The scrum_mask program in action

5.3 Objective Analysis

[This section was contributed by Hernan Arango.|

The objective analysis (0a) package described here can be used to prepare initial, clima-
tology, update, and forcing fields for SCRUM. It maps oceanographic and atmospheric data
to a specified application grid. Currently, it processes the following fields: in situ tempera-
ture, potential temperature, in situ density anomaly, salinity, sigma-t, sound speed, dynamic

50

!
4000

!
4500

height, surface net heat flux (Q), surface freshwater flux, precipitation rate, evaporation
rate, incoming solar shortwave radiation, surface momentum (wind) stress components, sea
surface temperature (SST), and surface net heat flux sensitivity to SST (0Q/dSST).

This oa package is derived from an earlier program which Hernan Arango and Carlos
Lozano wrote at Harvard University in 1993. The basic algorithm used by this package is
described in Carter and Robinson [6]. A comprehensive description of this methodology can
also be found in Gadin [9], Bretherton et al. [5], McWilliams et al. [21], Daley [7], Bennett
[4], and others.

Given observations s; = s(x;,t;) at location x;,¢;,72 = 1,... N an estimate ¢g of a scalar
¢ is derived for location x and time ¢. A linear unbiased estimate is given by:

¢E(X’ t) = 5(3(, t) + Z wi(si - S_Z)

for arbitrary w; since ¢ = ¢. The associated variance of error is:

e*(w) = (¢ — ¢p(w))?

with w = (wy,...wy). The overbar denotes an expected or ensamble mean value. The

minimizer wy:

e?(w,) < e*(w)
is
wy=A1p

with minimum error variance (Gauss-Markov):

&=) = 6= - PA

Here, for conveniance, matrix notation has been used. s = [s1,... sy] is a column correlation
vector, p = (¢ — ¢)(s —3), and A is the covariance matrix:

A=(s—35)(s—3)

where the prime denotes a transpose.
Notice that A is symmetric. In what follows, excluding pathological cases, A is assumed
to be positive definite. The best linear estimate ¢, is then:

b (X, t) = ¢(X, t) —I—p’A_l(S - §)

with error e2.

The essential information required is statistical; namely the spatial-temporal mean of the
scalar and observations, the covariance between observations, and the covariance between
the scalar and the observations.

The observations can be of different types, and different from the scalar which you are
trying to find. Their usefulness is measured by the fractional reduction of error:

pPATp

(6 —)

51

In this package it is assumed that the covariance of the scalar is homogeneous in space and
homogeneous and isotropic in time:

C((x1,t1), (x2,t2)) = C (x1 — %2, [t2 — 1)
and errors at two different locations and times are uncorrelated:
E((x1,t1), (x2,t2)) = E(x1,t1)0(x2 — x1)0(t2 — t1).
Currently, an analytical, isotropic, Gaussian correlation function is assumed:

C(x1 — X2, [t2 — t1]) = C(|x1 — x2|, [t2 — t1])

C(r,7) = exp [— (%)2] G(r)

o0 =[=(2)]on[-)]

where 7, is the time decorrelation scale, g is the zero crossing distance, and b is the spatial
decorrelation scale.

This package uses a local solution to the oa equations. That is, only nnce influsential
observations are considered at each mapped grid point. This method is practical because
it avoids inverting large matrices when the number of observations is large. Observations
that are too far apart in space and time from the mapped point contribute very little to
the estimate, as one might expect.

It is available from:

with

ftp://ahab.rutgers.edu/pub/scrum/tars/scrum3_oa.tar.gz
and includes a README file.

5.4 Forcing fields

There are options for calling either ana_smflux or get_smflux to get the surface momen-
tum forcing. If you do not have an analytic formulation for this, you will have to create a
NetCDF forcing file which contains the surface momentum fluxes. It can either contain one
point value or a 2-D field of values. Likewise, the field can be constant in time or contain
values for a series of times. It is even possible to have a limited number of fields which get
cycled over in time. For instance, you can provide 12 monthly mean fields and tell it to
cycle over these in a multi-year run.

The other forcing fields are treated in the same way and are also contained in the
NetCDF forcing file. These include surface and bottom heat and salt fluxes, the 0Q /0T
and Tier terms from §2.2, the incoming shortwave radiation use by the Large et al. mixing
scheme, and the wave information used by the Styles and Glenn bottom boundary layer.

An example program which creates the forcing NetCDF file is provided by the files in

ftp://ahab.rutgers/pub/scrum/forcing
This program reads a file produced by the oa package.

52

5.4.1 Initial and climatology fields

The model will either read its initial fields from a NetCDF file or it will compute them in
analytical.F. If it is not computing them, the routine get_initial will read a history file
or a file produced by the initial program. This program in turn is expecting to read the
output of the oa program. The initial program is in

ftp://ahab.rutgers/pub/scrum/initial

The model has the option of reading in 3-D climatology fields from a climate NetCDF
file. This file contains the 3-D climatologies for the tracers, perhaps at a number of times.
The subroutine get_clima will read this file and do any necessary time interpolations. The
climate file is also produced by the initial program. The climatology could also be used for
the boundary conditions, both for the tracer values on inflow or for prescribed boundary
conditions. In this case it would make more sense to only store the 2-D arrays. We do
not yet have the software for handling these 2-D arrays, but it would be a straightforward
modification to the initial program.

53

Chapter 6

Configuring SCRUM for a Specific
Application

This chapter describes the parts of SCRUM for which the user is responsible when con-
figuring it for a given application. Section 6.1 describes the process in a generic fashion
while §6.2 and §6.3 step through the application of SCRUM to upwelling/downwelling and
wind-driven North Atlantic problems, respectively. As distributed, SCRUM is ready to run
quite a few examples, where the C preprocessor flags determine which is to be executed.
Some of these examples are described as noted and some will be described in Haidvogel and
Beckmann [12]. The examples are:

BASIN This is a rectangular, flat-bottomed basin with double-gyre wind forcing. When
run, it produces a western boundary current flowing into a central “Gulf Stream”
which goes unstable and generates eddies. The goal is to run adiabatically to
study the homogenization of potential vorticity. It takes a long time and caused
difficulties for SPEM 3 so we call it the “Big Bad Basin”.

CANYON_A The canyon is a periodic channel with a steep shelf along one wall, where
the shelf contains a steep canyon. There is a periodic forcing which causes the
water to oscillate along the channel. The rotation and the shelf lead to non-zero
mean flows, especially near the canyon. Version A is homogeneous and can be
executed with a 2-D model. See Haidvogel and Beckmann [11] for a description
of the canyon problems and the gravitational adjustment problem.

CANYON B This is like Canyon A, except that it is stratified.

GRAV_ADJ The gravitational adjustment problem takes place in a long narrow domain
which is initialized with dense water at one end and light water at the other. At
time zero, the water is released and it generates two propagating fronts as the
light water rushes to fill the top and the dense water rushes to fill the bottom.
This configuration was used to test various advection schemes.

OVERFLOW This configuration is similar to the GRAV_ADJ problem, but is initialized
with dense water in the shallow part of a domain with a sloping bottom.

54

SEAMOUNT The seamount test was used to test the pressure gradient errors. It has an
idealized seamount in a periodic channel. See Beckmann and Haidvogel [3] and
McCalpin [20] for more information.

TASMAN SEA This was used to test the masking in SPEM, especially the streamfunc-
tion solve around an island. It is a square, flat-bottomed box with one island
and wind forcing to produce three asymmetric gyres. It was designed for an early
draft of Wilkin et al. [37].

UPWELLING The upwelling/downwelling example was contributed by Anthony Macks
and Jason Middleton [19] and consists of a periodic channel with shelves on each
side. There is along-channel wind forcing and the Coriolis term leads to upwelling
on one side and downwelling on the other side. If you run it for several days, you
end up with dense water over light water.

The input files for the SCRUM examples are included in the file:
ftp://ahab.rutgers.edu/pub/scrum/tars/scrum3_examples.tar.gz

This file also contains sample output NetCDF files and plot files and is quite large.

6.1 Configuring SCRUM

The three main files you need to change in SCRUM are scrum.in, cppdefs.h, and analytical.F.
These provide the input, set the options you want, and provide analytic formulas for various
fields, respectively. If more realistic fields are desired, you will have to provide other input
files as well, for instance for the grid and the wind forcing.

6.1.1 cppdefs.h and checkdefs.F

For each of the cpp variables described in §4.3, decide whether or not you want it to be
defined. Each defined variable should have a line of the form:

#define SOME_VAR

Note that any undefined variable need not be mentioned, but we leave placeholders for them
in cppdefs.h as a reminder that they are meaningful. These placeholders can be in any of
the following forms:

#undef SOME_VARI1
c #define SOME_VAR2
! #define SOME_VAR3

We use the first of these.

When configuring SCRUM for your problem, it is recommended that you add a new
cpp variable for it. New cpp variables can be added to cppdefs.h and then used in the
code with an #ifdef statement. This is a simple way to keep track of pieces that you add
for your application. For instance, my simple ice test is called MMS_BOX:

55

#ifdef MMS_BOX

define EW_PERIODIC
define NS_PERIODIC
define ICE

#endif /* MMS_BOX */

If it becomes necessary to update to a newer version of SCRUM, it is simple to find the
parts of the code which belong to the Arctic version and copy them to the new SCRUM (if
you get behind on the patches).

For each new cpp variable, it is recommended that you also add the appropriate code
to checkdefs.F, such as:

#ifdef ICE
write(stdout,20) ’ICE’,

& ’Coupled sea-ice model.’
is=lenstr(Coptions)+1
Coptions(is:is+4)=’ ICE,’

#endif /* ICE */

Note that the number “4” on the Coptions line must be set according to the length of the
string you are adding. In this case 4 is for “ICE,”, including the comma.
6.1.2 Model domain

One of the first things the user must decide is how many grid points to use, and can be
afforded. There are three parameters in param.h which specify the grid size and one
parameter for the number of tracers:

L Number of finite-difference points in &.
M Number of finite-difference points in 7.
N Number of finite-difference points in the vertical.

NT Number of tracers.

There are no constraints on these except L > 2, M > 2, N > 2 and NT > 1. L and M
should be at least 3 if the domain is periodic in that direction.

6.1.3 =z,y grid

The subroutine get_grid or ana_grid is called by initial to set the grid arrays, the
bathymetry, and the Coriolis parameter. Most of the simple test problems have their grid
information specified in ana_grid in the file analytical.F. More realistic problems require
a NetCDF grid file, produced by the grid generation programs described in Wilkin and
Hedstrom [36]. The variables which are read by get_grid are:

xl, el, spherical, f, h, pm, pn, x_ rho, y_rho, lon_rho, lat_ rho, angle.
If the grid is curved, get_grid will also read:
dndx, dmde.

56

6.1.4 ¢&,n grid

Before providing initial conditions and boundary conditions, the user must understand the
model grid. The fields are laid out on an Arakawa C grid as in Fig. 3.1. The overall grid
is shown in Fig. 6.1. The thick outer line shows the position of the model boundary. The
points inside this boundary are those which are advanced in time using the model physics.
The points on the boundary and those on the outside must be supplied by the boundary
conditions.

The three-dimensional model fields are carried in three-dimensional arrays, except the
tracers where the fourth array index tells which tracer is being referred to. For instance,
itemp = 1 refers to potential temperature while isalt = 2 refers to salinity. The integers ¢,
j, and k are used throughout the model to index the three spatial dimensions:

) Index variable for the £-direction.
J Index variable for the n-direction.
k Index variable for the o-direction. k = 1 refers to the bottom

while k = N refers to the surface.

6.1.5 Initial conditions

The initial values for the model fields are provided by either ana initial or get_initial.
get_initial is also used to read a restart file if the model is being restarted from a previous
run.

Also in initial, rho_eos is called to initialize the density field. rho_eos in turn calls
ana_meanRHO to initialize the rhobar array. rhobar is a function of z only and should
be more or less the horizontal average of the density field. It is subtracted from p, before p
is vertically integrated in prsgrd, to reduce the errors in the pressure gradient terms.

The climatology fields also require appropriate values if they are to be used, and are
provided by ana_clima or get_clima.

6.1.6 Equation of state

The equation of state is defined in the subroutine rho_eos. Two versions are provided in
SCRUM: a nonlinear p = p(T, S, z) from Jackett and McDougall [16] and a linear p(T', S).
The linear form is p = R0 + Tcoef - T + Scoef- S or p = R0 + Tcoef - T, depending on
whether or not SALINITY is defined. Specify which equation of state you would like to use
by setting the NONLIN_EOS C preprocessor flag in cppdefs.h. The linear coefficients
RO, Tcoef and Scoef are set in scrum.in.

6.1.7 Boundary conditions

The horizontal boundary conditions are provided by the subroutines in bes3d and bes2d.
They are called every timestep and provide the boundary values for the fields u,v,w, v, T, S
and (. They are currently configured for a closed basin, a periodic channel, or a doubly
periodic domain. There are also a number of options for open boundaries. You will have to
try them or ask an expert which is the best for your application.

57

M o

M o

Mm o

(0] (@] X (o] X (0] X e} X [e) X

= = = = = =

(o] (o] (o] (o] (o] (o]

(o] (o] (o] (o] (o] (o]

(o] (o] (o] (o] (o] (o]

(o] (o] (o] (o] (o] (o]

& & & & & &

(o] (o] X (o] X (o] X [e) X le) X
3 3 Lm Lm L

Y

X — u points
O — v points

O — p points

Figure 6.1: The whole grid.

58

6.1.8 Model forcing

(a) Winds and thermal fluxes

There are two different ways to apply a wind forcing: as a surface momentum flux in
the vertical viscosity term, or as a body force over the upper water column. In the past, our
vertical resolution was relatively coarse and the vertical viscosity would have to have been
unreasonably large for us to resolve the surface Ekman layer. If that is your situation, define
BODYFORCE in cppdefs.h and provide a value for levsfrc in scrum.in. The forcing
is applied over the levels from levsfrc to N. The above caution about vertical resolution
also applies to the surface fluxes of 7' and S, although BODYFORCE only refers to wind
stress, not the surface tracer fluxes.

More recently, we have been setting the vertical s-coordinate parameters to retain some
resolution near the surface and to apply the fluxes as boundary conditions to the verti-
cal viscosity/diffusivity. In either case, the surface and bottom fluxes are either defined
analytically or read from the forcing file. You must either edit the appropriate parts of
analytical.F or create a NetCDF forcing file in the format expected by get_smflux,
get_stflux and their friends. Note that it is quite common to put the wind stress into
the forcing file while having an analytic bottom stress.

(b) Climatology

One way to force the model is via a nudging to the tracer climatologies. This was is used
in the North Atlantic simulations in sponge layers along the northern and southern bound-
aries. Set the climatologies in ana_clima or in a file read by get_clima, set NUDGING
in cppdefs.h and also set the array nudgcof in initial.F.

6.1.9 scrum.in

SCRUM expects to read a number of variables on standard in. It is easiest to prepare an
input file and then run SCRUM as:

scrum < scrum.in > scrum.out &

The input is organized as pairs of lines, the first with a number and then some text which is
ignored, the second with the values for the set of variables for which the first line provides
the key. The pairs of lines can be in any order but are usually sorted numerically. The
number 99 signals the end of these pairs and the rest of the input file contains comments
for the user. The input pairs are as follows:

1 Time-stepping parameters.

ntimes Number of timesteps to evolve the 3-D equations in the current run.
This is actually the total number, including any previous segments of the
same run. For instance, if you already did a three-month run and wish
to continue for another three months, set ntimes to the number of steps
needed for six months. If you don’t like this and would prefer to have
the behavior of the SPEM variable ntmes, modify main.F so that:

do iic=ntstart,ntimes

59

becomes

do iic=ntstart,ntimes-1+ntstart

dt Timestep in seconds for the 3-D equations.
ndtfast Number of timesteps for the 2-D equations to be executed each dt.

2 Input/Output parameters. SCRUM has several possible output files. The output
files include a restart file, a history file, an averages file, and a station file. The
restart file often contains only two records with the older record being overwritten
during the next write. The history file can contain a subset of the restart fields, for
instance just the surface elevation and the surface temperature. The averages file
contains time-averages of the model fields, for instance montly means, or yearly
means, depending on navg. The station file contains timeseries for specified
points, possibly quite frequently since each record is small.
nrrec Record number of the restart file to read as the initial conditions.
nrst Number of timesteps between writing of restart fields.
nwrt Number of timesteps between writing fields into the history file.

ntsavg Starting timestep for the accumulation of output time-averaged data.
For instance, you might want to average over the last day of a thirty-day
run.

navg Number of timesteps between writing time-averaged data into the aver-
ages file.

nsta Number of timesteps between writing data into stations file.

ninfo Number of timesteps between printing a single line of diagnostic infor-
mation to the standard output.

ldefhis Logical switch used to create the history file. If .true., a new history
file is created. If .false. and nlev > 0, data is appended to an existing
history file.

Icycle Logical flag used to recycle time records in the restart file. If .true., only
the latest two restart time records are retained. If .false., all restart fields
are saved every nrst timesteps without recycling.

3 Laplacian horizontal mixing of tracers.

tnu2 Constant mixing coefficient for the horizontal Laplacian diffusion of each
tracer. A value is expected for each of the NT tracers.

4 Biharmonic horizontal mixing of tracers.

tnu4 Constant mixing coefficient for the horizontal biharmonic diffusion of
each tracer. A value is expected for each of the NT tracers.

5 Horizontal viscosity coefficients.

60

10

11

uvnu2 Constant mixing coefficient for the horizontal Laplacian viscosity.

uvnu4 Constant mixing coeflicient for the horizontal biharmonic viscosity.
Vertical mixing coefficients for tracers.

akt_bak Background vertical mixing coefficient for the tracers. A value is ex-
pected for each of the NT tracers.

Vertical mixing coefficient for momentum.
akv_bak Background vertical mixing coefficient for momentum.
Mellor-Yamada Level 2.5 parameters.

akq_bak Background vertical mixing coefficient for turbulent kinetic energy.

q2nu2 Constant mixing coefficient for the horizontal Laplacian diffusion of tur-
bulent kinetic energy.

q2nu4 Constant mixing coefficient for the horizontal biharmonic diffusion of
turbulent kinetic energy.

Bottom drag coefficients.

rdrg Linear bottom drag coefficient.

rdrg2 Quadratic bottom drag coeflicient.
Various parameters.

nmix_en Number of timesteps between computations of isopycnal slopes used in
the rotated mixing tensor.

adv_ord Order of advection scheme when using Smolarkiewicz advection. A value
of adv_ord = 2 is recommended to suppress the diffusive nature of the
“upwind” scheme. A value of adv_ord = 1 will yield the standard “up-
wind” advection.

levsfre Deepest level to apply surface momentum stresses as a bodyforce. Used
when the C-preprocessor option BODYFORCE is defined.

levbfrec Shallowest level to apply bottom momemtum stresses as a bodyforce.
Used when the C-preprocessor option BODYFORCE is defined.

Vertical s-coordinates parameters.

theta s s-coordinate surface control parameter, [0 < theta_s < 20].

theta b s-coordinate bottom control parameter, [0 < theta_b < 1].

Tcline Width of the surface or bottom boundary layer in which higher vertical
resolution is required during stretching.
WARNING: Users need to experiment with these parameters. We have
found out that the model goes unstable with high values of theta_s.

With steep and very tall topography, it is recommended that you use
theta_s < 3.0.

61

12 Mean Density and time stamp.

rhoO
dstart

rnudg

Mean density used in the Boussinesq approximation.

Time stamp assigned to model initialization (days). Usually a Calendar
linear coordinate, like modified Julian day. For example:

dstart = 10200 corresponds to May 1, 1996

It is called modified Julian day because an offset of 2440000 needs to be
added.

Time scale (days) of nudging towards climatology at the interior and at
the boundaries.

13 Linear equation of state parameters.

RO
TO
SO0
Tcoef

Scoef

Background density value used in the linear equation of state.
Background potential temperature constant used in analytical.F.
Background salinity constant used in analytical.F.

Thermal expansion coefficient in the linear equation of state.

Saline contraction coefficient in the linear equation of state.

14 Slipperiness parameters.

gamma?2 Slipperiness variable, either 1.0 (free slip) or —1.0 (no slip).

walll
wall2
wall3
wall4

Logical switch for side 1 (i = 1), .true. if it is a wall, .false. if it is open.
Logical switch for side 2 (j = 1), .true. if it is a wall, .false. if it is open.
Logical switch for side 3 (i = L), .true. if it is a wall, .false. if it is open.

Logical switch for side 4 (j = M), .true. if it is a wall, .false. if it is
open.

15 Logical switches to activate the writing of fields associated with the momentum
equations into the NetCDF history file:

wrtU
wrtV
wrtW
wrtO

Write out 3-D u-velocity component.
Write out 3-D w-velocity component.
Write out 3-D w-velocity component.

Write out 3-D 2 vertical velocity.

wrtUBAR Write out 2-D wu-velocity component.
wrt VBAR Write out 2-D v-velocity component.

wrtZ

Write out free-surface.

16 Logical switches to activate the writing of fields associated with the tracer equa-
tions into the NetCDF history file. A value is expected for each of the NT tracers.

wrtT

Write out tracer type variables: potential temperature, salinity, etc.

62

17

18

19

20

21

22

23

24

25

26

Logical switches to activate the writing of other fields into the NetCDF history
file:

wrtRHO Write out density anomaly.

wrt AKV Write out vertical viscosity coefficient.

wrt AKT Write out vertical diffusion coefficient for temperature.
wrt AKS Write out vertical diffusion coefficient for salinity.

wrtHBL Write out depth of the planetary boundary layer.
Number and Levels to output:

nlev Number of levels to write out to the history file for each activated 3-D
field. If nlev < 0, all model levels are written out. IF nlev = 0, the
history file will not be created.

lev If nlev > 0, levels to write out to the history file. nlev values are
expected:
1<lev(l:nlev) <N

Enter values in ascending numerical order.
String with a maximum of eighty characters.
title Title of the model run.
String with a maximum of eighty characters.
rstname Output restart file name (NetCDF).
String with a maximum of eighty characters.
hisname Output history file name (NetCDF).
String with a maximum of eighty characters.
avgname Name of the file for the averaged model fields (NetCDF).
String with a maximum of eighty characters.
staname Name of the file for the station output (NetCDF).
String with a maximum of eighty characters.
fitname Name of the file containing the float output (NetCDF).
String with a maximum of eighty characters.
grdname Name of the file containing the grid data (NetCDF).

String with a maximum of eighty characters.

63

ininame Name of the file containing the initial conditions. It can be a SCRUM

restart file (NetCDF).

27 String with a maximum of eighty characters.

frcname Name of the file containing the forcing fields (NetCDF).
28 String with a maximum of eighty characters.

clmname Name of the file containing the climatology fields (NetCDF).
29 String with a maximum of eighty characters.

assname Name of the file containing the assimilation fields (NetCDF).
30 String with a maximum of eighty characters.

aparnam Name of the file containing the assimilation parameters (ASCII).
31 String with a maximum of eighty characters.

sposnam Name of the file containing the stations positions (ASCII).
32 String with a maximum of eighty characters.

fposnam Name of the file containing the initial drifter positions (ASCII).
33 String with a maximum of eighty characters.

usrname User’s generic input file name.

An example input file without the trailing comments is:

1

NTIMES, DT (s), NDTFAST
1800 240.d0 20
NRREC, NRST, NWRT, NTSAVG, NAVG, NSTA, NINFO, LDEFHIS,
0 360 360 1 360 1 1 T
TNU2[1:NT] (m~2/s)
5.d0 5.d0
TNU4[1:NT] (m~4/s)
1.0d+07 1.0d+07
UVNU2 (m~2/s), UVNU4 (m~4/s)
10.d0 0.d0

AKT_BAK[1:NT] (m~2/s)
1.0d-5 1.0d-5
AKV_BAK (m~2/s)

1.04-4

AKQ_BAK (m~2/s) Q2NU2 (m~2/s), Q2NU4 (m~4/s)
1.04-4 20.4d0 1.04+07

RDRG (m/s), RDRG2

4 .5E-04 0.40

64

LCYCLE
T

10 NMIX_EN, ADV_ORD, LEVSFRC, LEVBFRC

1 2 1 1
11 THETA_S, THETA_B, TCLINE (m)
3.40 0.40 50.40
12 RHOO (Kg/m~3), DSTART (days), RNUDG (days)
1025.d0 0.d0 0.40
13 RO (Kg/m~3) TO (deg C), SO (PSU), TCOEF, SCOEF
1026.9524 10.d0 35.40 -1.67e-04 7.62e-04
14 GAMMA2, WALL1, WALL2, WALL3, WALL4
1.d0 T F F F
15 wrtU, wrtV, wrtW, wrt0, wrtUBAR, wrtVBAR, wrtZ
T T T F F F T
16 wrtT(1:NT) (temperature, salinity, etc.)
T T
17 wrtRHO, wrtAKV, wrtAKT, wrtAKS, wrtHBL
F F F F F
18 NLEV, LEV(1:NLEV) in ascending order (if NLEV<O, all levels are saved)
-1 135
19 TITLE (a80)
Scrum 3.0

20 RSTNAME (a80): SCRUM output restart file name, if any.
scrum_rst.nc

21 HISNAME (a80): SCRUM output history file name, if any.
scrum_his.nc

22 AVGNAME (a80): SCRUM output averages file name, if any.
scrum_avg.nc

23 STANAME (a80): SCRUM output stations file name, if any.
scrum_sta.nc

24 FLTNAME (a80): SCRUM output floats file name, if any.
scrum_flt.nc

25 GRDNAME (a80): SCRUM input grid file name, if any.

scrum_grd.nc

26 ININAME (a80): SCRUM input initial conditions file name, if any.
scrum_ini.nc

27 FRCNAME (a80): SCRUM input forcing fields file name, if any.
scrum_frc.nc

28 CLMNAME (a80): SCRUM input climatology fields file name, if any.
scrum_clm.nc

29 ASSNAME (a80): SCRUM input assimilation fields file name, if any.
scrum_ass.nc

30 APARNAM (a80): SCRUM input assimilation parameters file name, if any.
assimilation.dat

31 SPOSNAM (a80): SCRUM input station positions file name, if any.
stations.dat

32 FPOSNAM (a80): SCRUM input initial floats positions file name, if any.

65

floats.dat

33 USRNAME (a80): USER’s input/output generic file name, if any.
/dev/null

99 END of input data

6.1.10 TUser variables and subroutines

It is possible for the user to add new variables and common blocks appropriate to a given
application. It is also possible to add new subroutines, for instance to read in river inflow
data. If you create new source files they will have to be added to the Makefile or the
Imakefile (see §F). Also, any new #include statements will have to be listed in the
Makefile dependencies. The simplest way to add them is to run make depend.

6.2 Upwelling/Downwelling Example

One application for which SCRUM has been configured is a wind-driven upwelling and
downwelling example, described in Macks and Middleton [19]. There is a shelf on each wall
of a periodic channel and an along-channel wind forcing, which drives upwelling at one wall
and downwelling at the other. This problem depends on the Ekman layer, so a surface stress
is used with vertical viscosity. The Ekman depth is estimated to be 9 m if 4, = 0.01m? /s,
so the vertical grid spacing must resolve this. The maximum depth is 150 m and our choice
of the vertical grid parameters leads to a surface Az of 4.0 m.

6.2.1 cppdefs.h

The C preprocessor variable UPWELLING has been introduced to make sure that we
can #define UPWELLING and have a consistent upwelling configuration of the model.
This is done in part within cppdefs.h by

#ifdef UPWELLING
#define UV_ADV
#undef UV_VIS2
#define UV_PRS
#define UV_COR
#define TS_ADV
#undef TS_DIF2

#undef NONLIN_EOS
#undef SALINITY
#undef CURVGRID
#define EW_PERIODIC
#undef NS_PERIODIC

#define TIME_AVG
#undef BODYFORCE
#define ANA_GRID
#define ANA_INITIAL
#define ANA_MEANRHO

66

#define ANA_SMFLUX
#define ANA_STFLUX
#define ANA_SSFLUX
#define ANA_BTFLUX
#define ANA_BSFLUX
#define ANA_VMIX

#endif /* UPWELLING */

Here we have declared that we want a periodic channel but no masking. There is neither
salinity nor climatology. The momentum equations have the Coriolis and pressure gradients,
but no horizontal viscosity. The only term in the tracer equation is the advection.

6.2.2 Model domain

The flow does not vary in z, so L can be small. Set the values for L, M, N and NT in
param.h:

L =142
M =81
N =16
NT = 2.

6.2.3 ana_grid

For this geometry one has a choice of using the grid-generation programs described in Wilkin
and Hedstrom [36], or of using ana grid to create the grid analytically. The ana grid
subroutine in analytical.F was modified to produce a bathymetry with a shelf on both
walls of the channel when UPWELLING is defined. The fluid depth ranges from 27 m on
the shelves to 150 m in the center of the channel. The horizontal grid spacing is uniform at
1 km and the Coriolis parameter f is set to a constant value suitable for Sydney, Australia.

6.2.4 Initial conditions and the equation of state

We would like the initial conditions to be a motionless fluid with an exponential stratifica-
tion. ana_initial is configured accordingly.

The stratification can be provided by either T or S, or by both 7" and S. For simplicity
we will only have an active temperature field and we will use the linear equation of state by
setting NONLIN_EOS to #undef in rhsdefs.h. We want the density to be 26.35 at the
bottom and 24.22 at the top with an e-folding scale of 50 meters. The initial temperature
is set to 14 + 8e?/%0 in ana_initial. The linear equation of state parameters are set in
scrum.in.

Since density does not depend on salinity, we have a choice of how to handle the second
tracer. We can either use it as a passive tracer or not timestep on it at all by setting
NT = 1. We will use it as a passive tracer and initialize it to be a function of y.

We have set ana_meanRHO to the desired initial density field. The climatology fields
are not used and need not be initialized.

67

6.2.5 Boundary conditions

The periodic channel options have already been chosen in cppdefs.h. We do not have to
do anything else.

6.2.6 Model forcing

In this problem we want to resolve the surface Ekman layer and to use a surface wind stress
rather than a body force. We want the amplitude of the wind to ramp up with time so we
modify ana_smflux accordingly. The wind will build to an amplitude of 0.1 Pascals / p,,
or 10~*m?2s2.

We need to edit ana_vmix to make sure that the vertical viscosity Akv is set to the
value we want. This must be large at the surface (10 2m?2s~!) to create a thick Ekman
layer, but has been chosen to decrease with depth. We also need to check that ana_sbflux,

ana stflux, etc. are set correctly.

6.2.7 scrum.in

The model has been set up to run for one day with an internal timestep of 120 s and an
external timestep of 12 s. We will write history and restart records every 1/4 day. The
value of the linear bottom friction coefficient rdrg is set to 4.5 x 10™* and the channel walls
are set to be free-slip.

6.2.8 Output

The model writes some information to standard out, after setting ninfo to 72:

SCRUM input parameters:

720 ntimes Number of timesteps to evolve 3-D equations.
120.00 dt Timestep size (s) for 3-D equations.
10 ndffast Number of timesteps for 2-D equations between each DT.
0 nrrec Number of restart records to read from disk.
180 nrst Number of timesteps between storage of restart fields.
180 nwrt Number of timesteps between writing fields into
history file.
72 ninfo Number of timesteps between print of information
to standard output.
T 1ldefhis Switch to create a new history NetCDF file.
T 1cycle Switch to recycle time-records in restart NetCDF file.
0.000E+00 tnu2(1) Horizontal, Laplacian mixing coefficient (m~2/s)
for tracer 1.
0.000E+00 tnu2(2) Horizontal, Laplacian mixing coefficient (m~2/s)
for tracer 2.
0.000E+00 uvnu?2 Horizontal, Laplacian mixing coefficient (m~2/s)

for momentum.

68

0.000E+00

0.000E+00

1.000E-05

.500E-04
.000E+00
.000E+00
.000E+00

50.0000

O W O

1000.0000
0.0000
0.0000
0.0000

30.3795

-2.800E-01
0.000E+00
1.00

b I e B T I T I I B R I I I ML R I

IS
(e}

Akt_bak(1)
Akt_bak(2)
Akv_back

rdrg
rdrg?2
theta_s
theta_b
Tcline

rhoO
dstart
TO

SO

RO

Tcoef
Scoef
gamma?2

walll
wall2
wall3
wall4d
wrtU
wrtV
wrtW
wrt0
wrtUBAR
wrtVBAR
wrtZ
wrtT (1)
wrtT(2)
wrtRHO
wrtAKV
WwrtAKT
wrtAKS
Nlev
Lev

Background vertical mixing coefficient (m"2/s)

for tracer 1.

Background vertical mixing coefficient (m~2/s)

for tracer 2.

Background vertical mixing coefficient (m~2/s)

for momentum.

Linear bottom drag coefficient (m/s).

Quadratic bottom drag coefficient.

S-coordinate surface control parameter.

S-coordinate bottom control parameter.

S-coordinate surface/bottom layer width (m) used

in vertical coordinate stretching.

Mean density (kg/m~3) used in Boussinesq approximation.

Time stamp assigned to model initialization (days).

Background potential temperature (Celsius) constant.

Background salinity (PSU) constant.

Background density (kg/m~3) used in linear Equation

of State.

Thermal expansion coefficient (1/Celsius).

Saline contraction coefficient (1/PSU).

Slipperiness variable: free-slip (1.0) or
no-slip (-1.0).

Boundary for side 1 (i=1): wall/open (T/F).

Boundary for side 2 (j=1): wall/open (T/F).

Boundary for side 3 (i=L): wall/open (T/F).

Boundary for side 4 (j=M): wall/open (T/F).

Write out 3D U-momentum component (T/F).

Write out 3D V-momentum component (T/F).

Write out W-momentum component (T/F).

Write out omega vertical velocity (T/F).

Write out 2D U-momentum component (T/F).

Write out 2D V-momentum component (T/F).

Write out free-surface (T/F).

Write out tracer 1 (T/F).

Write out tracer 2 (T/F).

Write out density anomaly (T/F).

Write out vertical viscosity coefficient (T/F).

Write out vertical T-diffusion coefficient (T/F).

Write out vertical S-diffusion coefficient (T/F).

Number of levels to write out.

Levels to write out:

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Upwelling/Downwelling Example on a Periodic Double Shelf Channel

69

Output/Input Files:
Output Restart File: scrum_rst.nc
Output History File: scrum_his.nc

Input/Output USER File: /dev/null

Activated C-preprocessing Options:

ANA_BSFLUX Analytical kinematic bottom salt flux.
ANA_BTFLUX Analytical kinematic bottom heat flux.
ANA_GRID Analytical grid set-up.

ANA_INITIAL Analytical initial conditions.

ANA_MEANRHO Analytical mean density anomaly.

ANA_SMFLUX Analytical kinematic surface momentum flux.
ANA_SSFLUX Analytical kinematic freshwater (E-P) flux.
ANA_STFLUX Analytical kinematic surface heat flux.
ANA_VMIX Analytical vertical mixing coefficients.
DBLEPREC Double precision arithmetic.

EW_PERIODIC East-West periodic boundaries.

MIX_GP_TS Mixing of tracers along geopotential surfaces.
MIX_GP_UV Mixing of momentum along geopotential surfaces.
SOLVE2D Solving 2D Primitive Equations.

SOLVE3D Solving 3D Primitive Equations.

TIME_AVG Time averaging over two short timestep cycles.
TS_ADV Advection of tracers.

UPWELLING Upwelling/Downwelling Example.

UV_ADV Advection of momentum.

UV_COR Coriolis term.

UV_PRS Hydrostatic pressure gradient term.

Vertical S-coordinate System:

level S-coord at hmin over slope at hmax
16 0.00 0.00 0.00 0.00
15 -0.06 -1.71 -2.87 -4.02
14 -0.12 -3.43 -5.78 -8.12
13 -0.19 -5.14 -8.77 -12.39
12 -0.25 -6.86 -11.89 -16.92
11 -0.31 -8.57 -15.18 -21.80
10 -0.38 -10.28 -18.71 -27.14
9 -0.44 -12.00 -22.54 -33.08
8 -0.50 -13.71 -26.74 -39.76

7 -0.56 -15.42 -31.40 -47.37
6 -0.62 -17.14 -36.62 -56.09
5 -0.69 -18.85 -42.52 -66.20
4 -0.75 -20.57 -49.27 =77.97
3 -0.81 -22.28 -57.02 -91.76
2 -0.88 -23.99 -66.00 -108.01
1 -0.94 -256.71 -76.46 -127.21
0 -1.00 -27.42 -88.71 -150.00

MAIN - started time-stepping SCRUM:

Day = 0.100000 avgKE = 7.090495E-19 avgPE = 1.697521E-08
Day = 0.200000 avgKE = b5.151371E-18 avgPE = 1.697524E-08
Day = 0.300000 avgKE = 1.904604E-17 avgPE = 1.697527E-08
Day = 0.400000 avgKE = 4.972789E-17 avgPE = 1.697529E-08
Day = 0.500000 avgKE = 1.058779E-16 avgPE = 1.697532E-08
Day = 0.600000 avgKE = 1.973340E-16 avgPE = 1.697534E-08
Day = 0.700000 avgKE = 3.345132E-16 avgPE = 1.697535E-08
Day = 0.800000 avgKE = 5.280177E-16 avgPE = 1.697536E-08
Day = 0.900000 avgKE = 7.890830E-16 avgPE = 1.697537E-08
Day = 1.000000 avgKE = 1.130497E-15 avgPE = 1.697536E-08

Main - number of time records written in history file: 0005
number of time records written in restart file: 0002

Main Done.

NetCDF history and restart files are also created, containing the model fields at the
requested times. We have asked it to save both history and restart records every 1/4 day.
In this case, the restart file has been told to “cycle”, or to write over the second last record.
The restart file at the end of the run contains the fields at 3/4 day and 1 day. The history
file contains records for 0, 1/4, 1/2, 3/4, and 1 day. Plots can be made from either file,
using the plotting software described in §7. Selected frames from such plots are shown in
Fig. 6.2 to 6.5.

6.3 North Atlantic example

The upwelling/downwelling examples is one in which all the start-up fields are defined
analytically. The other extreme is one in which everything is read from files, as in our
North Atlantic simulations.

6.3.1 cppdefs.h

The C preprocessor variable DAMEE_B has been introduced to make sure that we can
#define DAMEE B and have a consistent configuration of the model. This is done in
part within cppdefs.h by

71

SCRUM 3.0

Wind—Driven Upwelling /Downwelling Test over a Periodic Channel
Theta s=3, Theta b=0, Tcline=50; nu(v,t)=(0,0) m2/s
0.00 Day

143.9

119.4

88.7

58.1

33.5

0 km (. | | | \ | | 1]
Min= 2.7421E4+01 Max= 1.5000E+02

Bathymetry (m)

Monday - April 28, 1997 - 5:11:01 PM
scrum_his.nc

Figure 6.2: The upwelling/downwelling bathymetry.

72

SCRUM 3.0

Wind—Driven Upwelling /Downwelling Test over a Periodic Channel
Theta s=3, Theta b=0, Tcline=50; nu(v,t)=(0,0) m2/s
1.00 Day

25

SIS S B S SIS S BTSSP S BTSSP
e S Wt W

A

=4

it

AN\

s

\

AU
AL
T

===z ==2
e e
e
Min= 9.5874E+00 Max= 1.6064E+01

Total Velocity Vectors (cm/s) at Level 16

==
==
==
o —
==

VAL

N
\\
N
\\
AN

0 km

Monday - April 28, 1997 - 4:18:11 PM
scrum_his.nc

Figure 6.3: Surface velocities after one day, showing the flow to the left of the wind (southern
hemisphere).

73

100

100

SCRUM 3.0

Monday - April 28, 1997 - 4:23:27 PM
scrum_his.nc

Wind—Driven Upwelling /Downwelling Test over a Periodic Channel

Theta s=3, Theta b=0, Tcline=50; nu(v,t)=(0,0) m2/s

1.00 Day

1=021 =021
J=001 J=081

0 km 50
Min=-1.6053E+01 Max=—2.5105E+00

Total U—velocity (cm/s)

| | ‘
0 km 50

Min=-2.8519E+03 Max= 7.8099E+02

Vertical Velocity (cm/day)

—-3.2

-2.9

-9.3

—12.7

—-15.4

021 =021

y—

00

100
| | ‘
0 km 50
Min=—4.6253E+00 Max= 3.3806E+00
Total V—velocity (cm/s)
021 =021
00 001 J=081

542.1

—175.

—-1071

100
—196¢

—268¢

| | ‘
0 km 50

Min=-2.8649E+03 Max= 7.2146E+02

Omega Vertical Velocity (cm/day)

Figure 6.4: Constant ¢ slices of the u,v,w and €2 fields at day 1.

SCRUM 3.0

Wind—Driven Upwelling /Downwelling Test over a Periodic Channel
Theta s=3, Theta b=0, Tcline=50; nu(v,t)=(0,0) m2/s
1.00 Day

00

100
| | ‘
0 km 50
Min= 1.4504E+01 Max= 2.1846E+01
Potential Temperature (C)
021 I=
0 001 J=079
100

0 km 50

Min= 3.4121E-07 Max= 1.2784E-05

Kinetic Energy (Watts)

x107°

Monday - April 28, 1997 - 4:23:27 PM
scrum_his.nc

1=021
00 J—OO‘I

100
| | ‘
0 km 50
Min= 8.7490E-02 Max= 7.8562E+00
Salinity (PSU)
00
100

0 km 50 X1079

Min= 2.8973E-10 Max= 4.7607E—09

Ertel Potential Vorticity (1/s/m)

Figure 6.5: Constant ¢ slices of the T', S (tracer), kinetic energy and Ertel potential vorticity

at day 1.

! Select options for horizontal mixing of MOMENTUM:

#undef MIX_S_UV
ifndef MIX_S_UV
#define MIX_GP_UV
#undef MIX_EN_UV

endif /* I'MIX_S_UV x/
!

/*

/*
/*

mixing along constant S-surfaces */

mixing on geopotential (constant Z) surfaces */
mixing on epineutral (constant RHO) surfaces */

! Select options for horizontal mixing of TRACERS:

#undef CLIMAT_TS_MIXH
#undef CLIMAT_TS_MIXV
#undef MIX_S_TS
ifndef MIX_S_TS
##define MIX_GP_TS
#undef MIX_EN_TS

/*
/*
/*

/*
/*

apply horizontal mixing to tracer-climatology */
apply vertical mixing to tracer-climatology */
mixing along constant S-surfaces */

mixing on geopotential (constant Z) surfaces */
mixing on epineutral (constant RHO)

surfaces */ # endif /* IMIX_S_TS */

if defined DAMEE_B || defined DAMEE_S

#define UV_ADV
#define UV_VIS2
#undef UV_VIS4
#define UV_PRS
#define UV_COR
#define TS_ADV
#define TS_DIF2
#undef TS_DIF4
#undef SMOLARKIEWICZ
#define NONLIN_EOS
#define SALINITY
#undef DIAGNOSTIC
#define QCORRECTION
#define CURVGRID
#define AVERAGES
#undef STATIONS
#undef O0BC_EAST
#undef O0BC_WEST
#define OBC_NORTH
#define 0OBC_SOUTH
#undef EW_PERIODIC
#undef NS_PERIODIC
#undef INFLOW
#define OBC_TPRESCRIBE
#define MASKING

76

#define
#define
#undef
#undef
#define
#define
#define
#undef
#define
#define
#define
#define
#undef
#undef
#undef
#undef
#define
#define
#undef
endif

TIME_AVG
BODYFORCE
BVF_MIXING
PP_MIXING
LMD_MIXING
LMD_RIMIX
LMD_CONVEC
LMD_DDMIX
LMD_KPP
CLIMATOLOGY
NUDGING
ANA_MEANRHO
ANA_SMFLUX
ANA_SSFLUX
ANA_STFLUX
ANA_SRFLUX
ANA_BSFLUX
ANA_BTFLUX
ANA_V2DBC

/* DAMEE_B || DAMEE_S */

Here, we have declared that we want a closed basin (not periodic), masking, salinity, and
the non-linear equation of state. We want Laplacian viscosity and diffusion along constant
z-surfaces and the full non-linear, curvilinear momentum equations.

We also added the DAMEE flags to checkdefs.F:

#ifdef DAMEE_B
write(stdout,20) ’DAMEE_B’,

&

’North Atlantic DAMEE Big Domain Application.’

is=lenstr(Coptions)+1
Coptions(is:is+9)=’ DAMEE_B,’
iexample=iexample+1
#endif /* DAMEE_B */
#ifdef DAMEE_S
write(stdout,20) ’DAMEE_S’,

&

’North Atlantic DAMEE Small Domain Application.’

is=lenstr(Coptions)+1
Coptions(is:is+9)=’ DAMEE_S,’
iexample=iexample+1

#endif /* DAMEE_S */

6.3.2 Model domain

A large number of horizontal grid points was chosen to resolve the domain at less than one
degree. Values for L, M, N, and NT are:

L =129

(e

M =129
N =20
NT = 2.

6.3.3 gridpak

The grid has uniform spacing on a Mercator projection so that both Az and Ay get smaller
as you get farther from the equator. The grid was chosen to go from 30° S to 65° N
and was generated with sqgrid. We then found the latitude and longitude values with
tolat and interpolated the etopo5 bathymetry to the grid with bathtub. The grid is
shown in Fig. 6.6 and the unsmoothed bathymetry is shown in Fig. 6.7. It is clear that
the unsmoothed bathymetry contains some incredibly steep regions. We have not pushed
SCRUM to see what its steepness limit is, but we also ran SPEM in this configuration and
its elliptic solver requires substantial smoothing at this resolution. We were adviced by
Bernard Barnier to retain the shallow island arc in the Caribbean. We also had some bad
experiences with shelves that disappeared into the land mask, such as at Cape Hatteras
and the Iberian peninsula. We filled in the Pacific and the Mediterranean and did some
unspeakable hacking to bathsuds to obtain the bathymetry shown in Fig. 6.8. We then
ran sphere to obtain the values of m and n suitable for a spherical Earth and ran Hernan
Arango’s mask editing tool scrum_mask.

6.3.4 Initial conditions

We would like the initial conditions to be a motionless fluid with temperature and salinity
fields from the Levitus 1994 February mean climatology. We prepared a NetCDF file with
zero u, v and ¢ fields. The T and S fields were interpolated from the Levitus fields—
we tried several different interpolation/extrapolation techniques, including the oa program
described in §5.3.

An analytic function for the mean density was added to ana_meanRHO for this prob-
lem:

elif defined DAMEE_B || defined DAMEE_S

do k=1,N
do j=0,M
do i=0,L
rhobar (i, j,k)=30.5-0.004*z_r(i,j,k)-
& c4*exp(z_r(i,j,k)/2000.0)
enddo
enddo
enddo

6.3.5 Boundary conditions

The non-periodic option has already been chosen by not defining EW_PERIODIC or
NS_PERIODIC in cppdefs.h. We have defined OBC_NORTH, OBC SOUTH and
OBC_TREDUCED to prescribe tracers on the northern and southern boundaries.

78

6.3.6 Forcing

The forcing is provided by surface momentum, heat and salt fluxes from the COADS dataset.
We apply the heat flux correction (#define QCORRECTION), which is also provided
in COADS. We use the oa program to put the values onto the model grid for each of the
twelve monthly means.

6.3.7 Climatology

We used the same Levitus temperature and salinity fields for the climatology as for the
initial conditions. The DAMEE problem was specified to have nudging to the climatology
at the northern and southern boundaries, as well as at the Straits of Gibralter. We editted
initial.F to set the nudgcof array accordingly.

6.3.8 scrum.in

We use an internal timestep of 2160 s and an external timestep of 108 s. The horizontal vis-
cosity and diffusion coefficients are 5000 and 1000, respectively. The stretching parameters
are 8 =5, b= .4 and h, = 200m.

6.3.9 Output

The model writes out information to standard out:

SCRUM input parameters:

144000 ntimes Number of timesteps to evolve 3-D equations.
2160.00 dt Timestep size (s) for 3-D equations.
20 ndffast Number of timesteps for 2-D equations between each DT.
0 nrrec Number of restart records to read from disk.
400 nrst Number of timesteps between storage of restart fields.
1200 nwrt Number of timesteps between writing fields into
history file.
1 ntsavg Starting timestep for the accumulation of output
time-averaged data.
1200 navg Number of timesteps between writing of time-averaged
data into averages file.
1 ninfo Number of timesteps between print of information
to standard output.
T 1defhis Switch to create a new history NetCDF file.
T 1lcycle Switch to recycle time-records in restart NetCDF file.
1.000E+03 tnu2(1) Horizontal, Laplacian mixing coefficient (m~2/s)
for tracer 1.
1.000E+03 tnu2(2) Horizontal, Laplacian mixing coefficient (m~2/s)
for tracer 2.
5.000E+03 uvnu?2 Horizontal, Laplacian mixing coefficient (m~2/s)

79

1.000E-05

1.000E-05

1.000E-04

3.000E-04
0.000E+00
18

1
5.000E+00
4.000E-01
200.0000

1000.0000
30.0000
0.0000
0.0000
1.00

e I e e R I I I I I I I R R B I B |

Akt_bak(1)
Akt_bak(2)
Akv_back

rdrg
rdrg?2
levsfrc
levbfrc
theta_s
theta_b
Tcline

rhoO
dstart
TO

SO
gamma2

walll
wall2
wall3
wall4d
wrtU
wrtV
wrtW
wrt0
wrtUBAR
wrtVBAR
wrtZ
wrtT(1)
wrtT(2)
wrtRHO
wrtAKV
WwrtAKT
wrtAKS
wrtHBL

for momentum.
Background vertical mixing coefficient (m"2/s)
for tracer 1.
Background vertical mixing coefficient (m"2/s)
for tracer 2.
Background vertical mixing coefficient (m"2/s)
for momentum.
Linear bottom drag coefficient (m/s).
Quadratic bottom drag coefficient.
Deepest level to apply surface stress as a bodyforce.
Shallowest level to apply bottom stress as a bodyforce.
S-coordinate surface control parameter.
S-coordinate bottom control parameter.
S-coordinate surface/bottom layer width (m) used
in vertical coordinate stretching.
Mean density (kg/m~3) used in Boussinesq approximation.
Time stamp assigned to model initialization (days).
Background potential temperature (Celsius) constant.
Background salinity (PSU) constant.
Slipperiness variable: free-slip (1.0) or
no-slip (-1.0).
Boundary for side 1 (i=1): wall/open (T/F).
Boundary for side 2 (j=1): wall/open (T/F).
Boundary for side 3 (i=L): wall/open (T/F).
Boundary for side 4 (j=M): wall/open (T/F).
Write out 3D U-momentum component (T/F).
Write out 3D V-momentum component (T/F).
Write out W-momentum component (T/F).
Write out omega vertical velocity (T/F).
Write out 2D U-momentum component (T/F).
Write out 2D V-momentum component (T/F).
Write out free-surface (T/F).
Write out tracer 1 (T/F).
Write out tracer 2 (T/F).
Write out density anomaly (T/F).
Write out vertical viscosity coefficient (T/F).
Write out vertical T-diffusion coefficient (T/F).
Write out vertical S-diffusion coefficient (T/F).
Write out depth of mixed layer (T/F).

Scrum 3.0 - North Atlantic Damee 4: Annual Levitus 0.75 resolution

Output/Input Files:

80

Output Restart File:
Output Averages File:
Input Grid File:

Input Initial File:
Input Forcing File:
Input Climatology File:
Input/Output USER File:

scrum_rst.nc
scrum_avg.nc
damee_grid_4.nc
damee_lev_4feb.nc
frc_coads_4.nc
damee_clm_4L.nc
/dev/null

Activated C-preprocessing Options:

ANA_BSFLUX
ANA_BTFLUX
ANA_MEANRHO
AVERAGES
BODYFORCE
CURVGRID
DAMEE_B
DBLEPREC
LMD_CONVEC
LMD_MIXING
LMD_KPP
LMD_RIMIX
MASKING
MIX_GP_TS
MIX_GP_UV
NONLIN_EOS
NUDGING
0BC_NORTH
0BC_SOUTH
OBC_TREDUCED
QCORRECTION
SALINITY
SOLVE2D
SOLVE3D
TCLIMATOLOGY
TIME_AVG
TNUDGING
TS_ADV
TS_DIF2
UV_ADV
UV_COR
UV_PRS
UV_VIS2

Analytical kinematic bottom salt flux.
Analytical kinematic bottom heat flux.
Analytical mean density anomaly.

Writing out time-averaged fields.

Momentum stresses as body-forces.

Orthogonal curvilinear grid.

North Atlantic DAMEE Big Domain Application.
Double precision arithmetic.

LMD convective mixing due to shear instability.
Large/McWilliams/Doney interior mixing.
Large/McWilliams/Doney boundary layer mixing.
LMD diffusivity due to shear instability.
Land/Sea masking.

Mixing of tracers along geopotential surfaces.
Mixing of momentum along geopotential surfaces.
Non-linear Equation of State for seawater.
Nudging toward climatology.

Open North boundary edge.

Open South boundary edge.

Tracers, boundary reduced physics condition.
Surface net heat flux correction.

Using salinity.

Solving 2D Primitive Equations.

Solving 3D Primitive Equations.

Processing tracer climatology data.

Time averaging over two short timestep cycles.
Nudging toward tracer climatology.

Advection of tracers.

Laplacian mixing of tracers.

Advection of momentum.

Coriolis term.

Hydrostatic pressure gradient term.

Laplacian mixing of momentum.

81

Vertical S-coordinate System:

level S—-coord
20 0.00
19 -0.05
18 -0.10
17 -0.15
16 -0.20
15 -0.25
14 -0.30
13 -0.35
12 -0.40
11 -0.45
10 -0.50
9 -0.55
8 -0.60
7 -0.65
6 -0.70
5 -0.75
4 -0.80
3 -0.85
2 -0.90
1 -0.95
0 -1.00

MAIN

Day
Day
Day

GET_INITTAL
GET_SRFLUX
GET_STFLUX
GET_STFLUX
GET_SMFLUX
GET_CLIMA
GET_CLIMA

at hmin

0.00
-10.00
-20.00
-30.00
-40.00
-50.00
-60.00
-70.00
-80.00
-90.00

-100.00
-110.00
-120.00
-130.00
-140.00
-150.00
-160.00
-170.00
-180.00
-190.00
-200.00

over slope

0.
-20.
-43.
-71.

-108.
-158.
-226.
-318.
-439.
-588.
-759.
-938.
-1112.
-1277.
-1433.
.00

-1591

-1761.
-1956.
-2192.
-2483.
-2850.

00
03
30
92
94
64
50
60
47
95
64
48
90
09
59

00
64
17
64
00

at hmax

Processing initial conditions

Read solar shortwave radiation
Read surface flux of tracer 01
Read surface flux of tracer 02
Read surface momentum stresses
Read climatology of tracer 01
Read climatology of tracer 02

- started time-stepping SCRUM:

GET_SRFLUX
GET_STFLUX
GET_STFLUX
GET_SMFLUX

0.025000 avgKE
0.050000 avgKE
0.075000 avgKE

Read solar shortwave radiation
Read surface flux of tracer 01
Read surface flux of tracer 02
Read surface momentum stresses

9.587033E-16 avgPE
9.608381E-16 avgPE =
9.583708E-16 avgPE

82

.00
.05
.60

-113.

-177.

-267.

-393.

-567.

-798.
-1087.
-1419.
-1766.
-2105.
-2424.
-2727.
-3032.
-3361.
-3743.
-4204.
-4777.
-5500.

84
89
27
01
19
94
90
28
95
81
19
18
00
99
28
35
28
00

for
for
for
for
for
for
for

for
for
for
for

time
time

time =
time =
time =

time
time

time
time
time
time

0.0000E+00
345.0
345.0
345.0
345.0

0.0000E+00

0.0000E+00

15.00
15.00
15.00
15.00

7.947536E-07
7.947534E-07
7.947537E-07

It also writes out NetCDF files for restart, history, and monthly averages. Plots can be
made from all three of these files; an example plot is shown in Fig. 6.9.

83

North Atlantic DAMEE #4

[

ek

LR

Y

i o ol

T REEFFER

I 4

PE!

N
I L
[y 1] - [T N = L I - Iy i | O Yy
i 1 =
1 f
! m 1
T 1 \\§ ;\w ESANE T FT T B P] .| © ¥ \\\/ T
i
f iy n =
[i il n
E - - s ge =+ E REE = SEE 4 . EEE=ss FFF
i f "
0 == T = 0
m i Al H =
He = - == AW/\? = E e L == - = PoSSSNERES

==

,,§§;

R

1NN
N

SIS
i

EH]

i

ST H

]

kY

Figure 6.6: The North Atlantic grid.

84

Bottom Topography MIN DEPTH = 200.000

MAX DEPTH = hh00.0
5.00E+03
4.50E+03
4.00E+03

/4 "& 3.50E+03
4D U
=

3.00E+03

2.50E+03

2.00E+03

H 1.50E+03

— 1.00E+03

I 5.00E+02

Figure 6.7: The raw bathymetry from etopo5.

85

Bottom Topography MIN DEPTH = 200.000
MAX DEPTH = h500.0

5.00E+03

4 .50E+03

4 .00E+03

3.50E+03

3.00E+03

2.50E+03

2.00E+03

— 1.50E+03

— 1.00E+03

— 5.00E+02

Figure 6.8: The smoothed North Atlantic bathymetry.

86

60

50

40

30

20

10

10

20

SCRUM 3.0

North Atlantic Damee #4: Annual Levitus, Diagnostic

Large et al. mixing, Tensors, nu(v,t)=(2000,500) m2/s

20.00 Day

0.51

—-0.22

B X"
§ \\ ﬁ}\gg f
o 45
_ y A
jf E .
o

r

30

Min=-1.0337E+00 Max= 5.8659E—-01

Free—Surface (m)

Figure 6.9: The surface elevation for day 20.

87

—-0.63

—0.95

sssssssss

Chapter 7

Plotting Programs for
Postprocessing

Hernan Arango has provided SCRUM with some programs for creating plots from the
NetCDF history and restart files. There are four plotting programs:

cnt creates black-and-white plots of the horizontal fields, including constant depth
plots of the 3-D fields.

ccnt creates color plots of the horizontal fields, including constant depth plots of the
3-D fields.
sec creates black-and-white plots of vertical slices through the 3-D fields. It includes

on option of finding equal-spaced points along a straight line through the curvi-
linear grid.

csec creates color plots of vertical slices through the 3-D fields. It includes on option
of finding equal-spaced points along a straight line through the curvilinear grid.

All of these program come with example input files. For instance, the input file for ent is
called cnt.in and is as follows:

1996 -1 : year and starting year-day (use yearday<0, for no time label)
SCRUM 3.0

Form Streess Test over Steep Shelf/Slope with Across-Shelf Canyon

Canyon A: Homogeneous Case

Vnu=20 m~2/s, Tnu=20 m~2/s

2 NFIELDS: number of fields to plot. Line below, field(s) types:

1,2 field identification: FLDID(1:NFIELDS)

1 NLEVELS: number of levels and/or depths to plot (0 for all levels)
1,2,3,4,5 levels (>0) or depths (<0) to plot: FLDLEV(1:NLEVELS)

0 FRSTD : first day to plot

0 LASTD : last day to plot

0 DSKIP : plot every other DSKIP days (0.0 plot at its own time frequency)
0 VINTRP : vertical interpolation scheme: O=linear, 1l:cubic splines

88

1.2 VLWD : vector line width (1.0 for default)

4.0 VLSCL : vector length scale (1.0 for default)

2 IVINC : vector grid sampling in the X-direction (1 for default)

1 JVINC : vector grid sampling in the Y-direction (1 for default)

0 IREF : secondary or reference field option (see below)

25 IDOVER : overlay field identification (for IREF=1,2 only)

1 LEVOVER: level of the overlay field (set to O if same as current FLDLEV)
0.0 RMIN : overlay field minimum value to consider (0.0 for default)

0.0 RMAX : overlay field maximum value to consider (0.0 for default)

1 LGRID : Desired longitude/latitude grid spacing (degrees)

1 IPROJ : map projection: [1] cyl. equidistant, [2] Mercator, [3] Lambert
2 NPAGE : number of plots per page (currently 1, 2, or 4) (see below).
F READGRD: logical switch to read in positions from grid NetCDF file.

F PLTLOGO: logical switch draw Logo.

T WRTHDR : logical switch to write out the plot header titles.

T WRTBLAB: logical switch to write out the plot bottom title.

T WRTRANG: logical switch to write out data range values and CI.

T WRTFNAM: logical switch to write out input primary filename.

T WRTDATE: logical switch to write out current date.

F CST : logical switch to read and plot coastlines and islands.

0.0 0.0 : bottom and top map latitudes (south values are negative).

0.0 0.0 : left and right map longitudes (west values are negative).

/home/arango/scrum3.0/plot/Data/default.cnt
scrum_his.nc

scrum_his.nc

scrum_grd.nc

/dev/null

Copyright (c) 1996 Rutgers University ===

O 0O 0 00

x Above FILENAMES:

Ind line: input; contour parameters.
2rd line: input; primary NetCDF file.
3th line: input; secondary NetCDF file.
4th line: input; grid NetCDF file.

5th line: input; coastlines file.

*xx TREF: Secondary or reference field option:

-1 Overlay horizontal grid
0 no secondary or reference field to plot

89

plot field overlay from primary file

plot field overlay from secondary file
primary - secondary file (field subtraction)
Day0 - DayN (field subtraction)

B W N -

***% NPAGE: Set this parameter to a negative value (-1, -2, or -4) to
activate preservation of the plot aspect ratio.

Plotting Fields classification: (* derived fields)

[1] 1IDUTOT total velocity component in the XI-direction (cm/s).
[2] IDVIOT total velocity component in the ETA-direction (cm/s).
*[3] IDTVEC total velocity vectors (cm/s).
*[4] IDTMAG total velocity vector magnitude (cm/s).

[120] IDSVSE Wind stress in the ETA-direction, observation error.

As you can see, there are comments which describe what needs to be done. Please see the
comments at the bottom of the input files for the rest of the fields that can be plotted—this
list changes as Hernan adds the code to plot new fields.

90

Appendix A

Model Timestep

Numerical timestepping uses a discrete approximation to:

o9(t) _
=2 = F() (A.1)

where ¢ represents one of u, v, T, S or ¢ and F(t) represents all the right-hand-side terms.
The simplest approximation is the Euler timestep:

Pt + At) — ¢(t)
At

= F(t) (A.2)

where you predict the next ¢ value based only on the current fields. This method is accurate
to first order in At; however, it is unconditionally unstable with respect to advection.
The leapfrog timestep is accurate to O(At?):

bt + AL) — @t — At)
2At

= F(2). (A.3)

This timestep is more accurate, but it is unconditionally unstable with respect to diffu-
sion. Also, the even and odd timesteps tend to diverge in a computational mode. This
computational mode can be damped by taking correction steps. SCRUM’s timestep on
the depth-integrated equations is a leapfrog step with a trapezoidal correction on every
step, which uses a leapfrog step to obtain an initial guess of ¢(t + At). We will call the
right-hand-side terms calculated from this initial guess F*(t + At):

p(t + At) — 4(t)

1
At 2

= —[F(t) + F*(t + At)]. (A.4)
This leapfrog-trapezoidal timestep is stable with respect to diffusion and it strongly damps
the computational mode. However, the right-hand-side terms are computed twice per
timestep.

The timestep on SCRUM’s full 3-D fields is done with a third-order Adams-Bashforth
step. It uses three time-levels of the right-hand-side terms:

ot + At) — ¢(t)
At

= aF(t) + BF(t — At) +7F(t — 2A0) (A.5)

91

where the coefficients a, § and «y are chosen to obtain a third-order estimate of ¢(t + At).

We use a Taylor series expansion:

¢(t+At)_¢(t) ot At " At2 n
A R AR A
where
Fi) = ¢

/ /! At2 1
f(t—At) = qS—At(/) +T¢ + .-
F(t—2At) = ¢ —2Atd" +2A8%¢" + - -

We find that the coefficients are:

23
a = —
12

4

P =3
_ 5
T T 1

(A.6)

(A.10)
(A.11)

(A.12)

The model carries one time level for the physical fields and three time levels of the
right-hand-side information. The initial fields are read in but the right-hand-sides are not

stored; an Euler timestep is used for the first two steps to get things going.

92

Appendix B

The vertical s-coordinate

Following Song and Haidvogel [33], the vertical coordinate has been chosen to be:
z=C(1+38)+hes+ (h—h)C(s), —1<s<0 (B.1)

where h. is either the minimum depth or a shallower depth above which we wish to have
more resolution. C(s) is defined as:

sinh(0s) tanh[f(s + 3)] — tanh(36)

Cls)=(1-0) sinh 6 2 tanh(56)

(B.2)

where 6 and b are surface and bottom control parameters. Their ranges are 0 < 8 < 20 and
0 < b < 1, respectively. Equation (B.1) leads to z = ¢ for s =0 and z = h for s = —1.
Some features of this coordinate system:

e It is a generalization of the o-coordinate system. Letting # go to zero and using
L’Hopital’s rule, we get:
z=(C+h)(1+s)—h (B.3)

which is the o-coordinate.
e It has a linear dependence on ¢ and is infinitely differentiable in s.
e The larger the value of 6, the more resolution is kept above h..
e For b = 0, the resolution all goes to the surface as 6 is increased.

e For b = 1, the resolution goes to both the surface and the bottom equally as 6 is
increased.

e For 6 # 0 there is a subtle mismatch in the discretization of the model equations,
for instance in the horizontal viscosity term. We recommend that you stick with
“reasonable” values of 0, say 0 < 5.

e Some problems turn out to be sensitive to the value of 8 used.

93

Grid (W-points) Section at ETA = 66 Grid (W-points) Section at ETA = 66
T T T

depth (m)
depth (m)

0 20 40 60 80 100 120
XI (grid units) XI (grid units)

Grid (W-points) Section at ETA = 66 Grid (W-points) Section at ETA = 66

depth (m)
depth (m)

0 20 40 60 80 100 120 0 20 40 60 80 100 120
XI (grid units) XI (grid units)

Figure B.1: The s-surfaces for the North Atlantic with (a) # = 0.0001 and b=10, (b) § =8

and b=0, (c) # =8 and b = 1. (d) The actual values used in this domain were § = 5 and
b=0.4.

94

Figure B.1 shows the s-surfaces for several values of § and b for one of our domains. It was
produced by a Matlab tool written by Hernan Arango which is available from our web site

(see §1.1).
We find it convenient to define:
_ 0z _ oC(s)
H, = 95 (C+h)+ (h—he) 95 (B.4)
The derivative of C(s) can be computed analytically:
aC(s) cosh(6s) coth(36)
=(1-b . B.5
0s () sinh @ 2 cosh?[0(s + %)] (B-5)

However, we choose to compute H, discretely as Az/As since this leads to the vertical sum
of H, being exactly the total water depth D.

95

B.1 Horizontal curvilinear coordinates

The requirement for a boundary-following coordinate system and for a laterally variable grid
resolution can both be met (for suitably smooth domains) by introducing an appropriate
orthogonal coordinate transformation in the horizontal. Let the new coordinates be &(z,y)
and 7(z,y) where the relationship of horizontal arc length to the differential distance is
given by:

(@) = () a¢ (B
(@), = (5) dn (B.7)

Here, m(&,n) and n(€,n) are the scale factors which relate the differential distances (A€, An)
to the actual (physical) arc lengths.

It is helpful to write the equations in vector notation and to use the formulas for div,
grad, and curl in curvilinear coordinates (see Batchelor, Appendix 2, [2]):

Ve = émg—? + ﬁng—: (B.8)
e ORO)
V X @=mn 8% ;97’ 2 (B.10)
5 b
woovn-mFE)A(28)] o

where ¢ is a scalar and & is a vector with components a, b, and c.

96

Appendix C

Viscosity and Diffusion

C.1 Horizontal viscosity

The horizontal viscosity and diffusion coefficients are scalars which are read in from scrum.in.
Several factors to consider when choosing these values are:

1
k2vs
and kjlu— for the biharmonic operator. The smallest wavenumber corresponds to

the length 2Az and is k = £, leading to
Az? Azt

At < tdamp = 71_2—’/2 or 71_4—1/4 (C].)

spindown time The spindown time on wavenumber k is for the Laplacian operator

This time should be short enough to damp out the numerical noise which is being
generated but long enough on the larger scales to retain the features you are
interested in. This time should also be resolved by the model timestep.

boundary layer thickness The western boundary layer has a thickness proportional to

Aw < Ly = (g)é and (%f ©2)

for the Laplacian and biharmonic viscosity, respectively. We have found that the
model typically requires the boundary layer to be resolved with at least one grid
cell. This leads to coarse grids requiring large values of v.

C.2 Horizontal Diffusion

We have chosen anything from zero to the value of the horizontal viscosity for the horizontal
diffusion coefficient. One common choice is an order of magnitude smaller than the viscosity.

C.3 Vertical Viscosity and Diffusion
SCRUM stores the vertical mixing coefficients in arrays with three spatial dimensions called

Akv and Akt. Akt also has a fourth dimension specifying which tracer, so that temper-
ature and salt can have differing values. Both Akt and Akv are stored at w-points in the

97

model; horizontal averaging is done to obtain Akv at the horizontal v and v-points. The
values for these coefficients can be set in a number of ways, depending on the flags chosen
in cppdefs.h:

ANA_VMIX An analytic formula must be defined in ana_vmix in analytical.F.

BVF_MIXING This is a simple formula where Akt is proportional to 1/N, where N is
the Brunt-Viisala frequency. This was provided by Bernard Barnier, who used it
in his modeling of the Atlantic Ocean.

PP_MIXING This specifies the Pacanowski and Philander [24] scheme, which depends
on the local Richardson number.

MY2_MIXING This specifies the Mellor and Yamada [22] level 2 closure.

MY25_MIXING This specifies the Mellor and Yamada [22] level 2.5 closure. It requires
the model to track an additional tracer, q.

LMD _MIXING This specifies the Large et al. [18] planetary boundary layer.

98

Appendix D

The C preprocessor

The C preprocessor, cpp, is a standalone program which comes with most C compilers. On
many UNIX systems it is not in the default path, but in /lib or in /usr/lib. If you do not
have a C preprocessor then there are several versions available via anonymous ftp. For in-
stance, ftp.uu.net has two in the /published/oreilly /nutshell /imake directory—I have
built and used the one from Der Mouse on a Cray. I have put this one in pub/util /cpp.tar.gz
on the ahab.rutgers.edu ftp site since it supports the #elif construct. One also comes with
gcc, the gnu C compiler. If you build this compiler, cpp will have a path such as

/usr/local/lib/gcc-1lib/sparc-sun-solaris2.5/2.7.2/cpp

where sparc is the architecture, sun is the manufacturer, solaris2.5 is the operating system
and version, and 2.7.2 is gec’s version number.

This Appendix describes the C preprocessor as used in SCRUM with the Fortran lan-
guage. A more complete description is given by Kernighan and Ritchie [17]. More practical
advice on using cpp is given by Hazard [14].

D.1 File inclusion

Placing common blocks in smaller files, which are then included in each subroutine, is the
easiest way to make sure that the common blocks are declared consistently. Many Fortran
compilers support an include statement where the compiler replaces the line

include °’file.h’

with the contents of file.h; file.h is assumed to be in the current directory. The C prepro-
cessor has an equivalent include statement:

#include "file.h"

We are using the C preprocessor style of include because many of the SCRUM include files
are not pure Fortran and must be processed by cpp.

99

D.2 Macro substitution

A macro definition has the form
#define name replacement text

where name would be replaced with “replacement text” throughout the rest of the file.
This is used in SCRUM as a reasonably portable way to get 64-bit precision:

#define BIGREAL realx*8

It is customary to use uppercase for cpp macros—the C preprocessor is case sensitive.
It is also possible to define macros with arguments, as in

#define av2(al,a2) (.5 x ((al) + (a2)))
although this is riskier than the equivalent statement function
av2(al,a2) = .5 * (al + a2)

The statement function is preferable because it allows the compiler to do type checking and
because you don’t have to be as careful about using enough parentheses.
The third form of macro has no replacement text at all:

##define MASKING

In this case, MASKING will evaluate to true in the conditional tests described below.

D.3 Conditional inclusion

It is possible to control which parts of the code are seen by the Fortran compiler by the use
of cpp’s conditional inclusion. For example, the statements

#ifdef MASKING
include "mask.h"
#endif /% MASKING */

ifdef MASKING

c
¢ Apply Land/Sea mask: slipperiness.
c
do j=1,M
do i=2,Lm
Uflux(i,j)=Uflux(i,j)*pmask(i,j)
enddo
enddo

endif /% MASKING */

will not be in the Fortran source code if MASKING has not been defined. Likewise,
#ifndef tests for a macro being undefined:

100

#ifndef RMDOCINC

¢ rmask Mask at RHO-points (0=Land, 1=Sea).

¢ pmask Slipperiness mask at PSI-points (0O=Land, 1=Sea,

c 1-gamma2=boundary) .
¢ umask Mask at U-points (0O=Land, 1=Sea).

¢ vmask Mask at V-points (O=Land, 1=Sea).

c

c

#endif

There are also #else and #elif (else if) statements, although Z£elif is newer and is not
supported by all versions of cpp. An example using #else and #elif is shown:

#if defined BASIN

parameter (L=181, M=141, N=12, NT=1)
#elif defined CANYON_A

parameter (L=66, M=49, N=10, NT=1)
#elif defined CANYON_B

parameter (L=66, M=49, N=15, NT=1)

#elif defined UPWELLING

parameter (L=42, M=81, N=16, NT=2)
#else

parameter (L=777, M=7?77, N=77, NT=7)
#endif

Actually, #ifdef is a restricted version of the more general test
#if expression

where “expression” is a constant integer value. Zero evaluates to false and everything else
is considered true. Compound expressions may be built using the C logical operators:

&& logical and
I logical or
! logical not

These symbols would be used as in the following example:

#if defined CANYON_A || defined CANYON_B
do j=0,M
do i=0,L
yc=c32000-c16000* (sin(pi*xr(i,j)/x1))**24
h(i,j)=c20+p5*(hmax-c20)*(cl+tanh((yr(i,j)-yc)/c10000))
enddo
enddo
#endif

101

D.4 C comments

The C preprocessor will also delete C language comments starting with /* and ending with
*/ as in:

#endif /* MASKING */

When mixed with Fortran code, it is safer to use a Fortran comment.

D.5 Potential problems

The use of the C preprocessor is not entirely free of problems, but many can be worked
around or avoided by using the Der Mouse version of cpp.

1. Apostrophes in Fortran comments. cpp does not know that it is in a comment and
some versions will complain about unmatched apostrophes in the following;:

¢ Some useful comment about Green’s functions.

The gnu version of ¢cpp (which comes with gee) has a -traditional option which
makes it more appropriate for use with Fortran.

2. C++ comments. Some of the newer versions of cpp will remove C++ comments which
go from ’//’ to the end of the line. Some perfectly reasonable Fortran lines contain
two consecutive slashes, such as:

common // varl, var2
44 format(//)
and the new Fortran 90 string concatenation:
mystring = ’Hello, ’> // ’World!’

3. Macro replacement. One feature of cpp is that you can define macros and have it

perform replacements. The code:
#define REAL double precision
REAL really_long_variable, second_long_variable

becomes

double precision really_long_variable, second_long_variable

102

and you run the risk of creating lines which are longer than 72 characters in length.

Also, make sure that your macros will not be found anywhere else in the code. T used
to use #define DOUBLE for double precision until it was pointed out to me that
DOUBLE PRECISION is perfectly valid Fortran. The macro processor would
turn this into 1 PRECISION since something that is defined has a value of 1.

D.6 Modern Fortran

I started working on these ocean models before 1990, much less before Fortran 90 compilers
were generally available. Fortran 90’s kind feature would be a better way to handle the
BIGREAL type declarations. On the other hand, Fortran 90 does not include conditional
compilation. However, it is deemed useful enough that the Fortran 2000 committee has a
draft document describing how Fortran might support conditional compilation. We might
start using this in about ten years.

103

Appendix E

The patch program

We sometimes discover things in SCRUM which we would like to modify, either to fix bugs,
or to add new features. Hernan Arango keeps track of these changes and periodically sends
patches to the list of known SCRUM users so that they can update their versions. By
sending out these changes rather than the whole updated model, people can acquire bug
fixes and still retain the changes they have made to SCRUM for their own applications.

Larry Wall has written a program to take the output of diff and automatically apply
it to the old version of a file to create the new version. This program is called patch and
is available from all the gnu archive sites. If the output of diff has been saved in the file
scrum.patch.20 then patch would be used as follows:

patch < scrum.patch.20

As patch updates the files, it leaves the original of file in file.orig. If it gets confused
for some reason (if you modified the lines of code patch wants to change) it will create a
file.rej file. I often check to see if any .rej files get created—these can be used to patch
file by hand and can then be deleted.

104

Appendix F

Makefiles

One of the software development tools which comes with the UNIX operating system is
called make. make has many uses, but is most commonly used to keep track of how
a large program should be compiled. You provide it with a list of your source files and
instructions on how to compile them. It will check the relative ages of the source and object
files, only compiling those for which the object file is out of date. It is assumed that make
will be used to compile SCRUM and its related programs. See Oram and Talbott [23] for
a description of make that is easier to read than the man page.

The file in which you provide make with its commands is usually called Makefile.
Several Makefiles are provided with SCRUM, one for each brand of computer to which
I have easy access. These Makefiles have become quite complex, but are organized into
several sections:

suffix rules These are lines of the form .F.o:, followed by a rule telling make how to
make a file called foo.o from foo.F. This particular rule is used extensively and
comes in two forms, depending on whether or not the compiler will invoke the C
preprocessor (cpp) for you. If the compiler does not invoke cpp then make will
do so, creating an intermediate foo.f file.

macros These are lines of the form CFT = {77, which in this case allows you to use one
name ($(CFT)) for the compiler even though each compiler has a different name.
The macros in the Makefiles are defined in two separate sections:

machine dependent These macros give the name of the compiler and sensible
flags for that compiler, etc.

project dependent These macros depend on the project but not the computer,
such as the list of source files used to build the executable.

rules These are lines of the form:

ezgrid: ezgrid.o
<TAB>$(CFT) -o ezgrid ezgrid.o

where ezgrid is the target to be compiled, and ezgrid depends on ezgrid.o.
make will first check to ensure that ezgrid.o is up to date and then execute the
commands on the following lines (which must start with a <TAB> character).

105

dependencies These lines tell make which object files must be rebuilt when an include
file is modified. Also, if the C processor is being invoked specifically by the
suffix rule for .F.o, creating an intermediate .f file, then make must be told
to recreate the .f file after its include files are modified. The dependency lines
are generated automatically by a perl script, which searches the source files for
#include directives (see Appendix G). Note that if you add your own source
files with #include statements, you will need to rerun make depend to update
the dependency list. If your files are not in the list of SCRUM sources, they will
have to be added to the depend: entry in the Makefile/Imakefile first.

F.0.1 imake

Since it is difficult to keep consistent Makefiles for several different computers, it was
suggested that we try imake, which is distributed with the X window system. It helps
you to separate the system dependent parts of a Makefile into configuration files (kept
in a central location) and project dependent parts called Imakefiles. Then, when you
want to make SCRUM on a Cray computer, you combine the SCRUM Imakefile with the
Cray configuration file to create the appropriate Makefile. This is done by the shell script
fmkmf, which takes the computer type as its argument:

fmkmf Cray

This will generate Makefile.Cray. If you provide an unrecognized computer type then
the generic.cf file will be used. The list of recognized computers is growing and currently
includes:

Alpha DEC Alpha running OSF/1.

CM2 Connection Machine.

CF90 Cray with f90 and UNICOS.

Cray Cray with cf77 and UNICOS.

F90 The NAG Fortran 90 compiler in free format style.
HP Hewlett-Packard 9000/700 family.

Gnu Gnu Fortran.

NAG The NAG Fortran 90 compiler in fixed (old) format style.
RS6000 IBM RS/6000 with xIf and AIX.

RS60000ld IBM RS/6000 with an older xIf and AIX.

SGI SGI with IRIX and f77.

Solaris Sun Sparc with Solaris 2.x.

Sun Sun Sparc with SunOS 4.x.

106

$CONFIGDIR/
SCRUM.tmpl
' imake) ' make depend)
SCONFIGDIR/ Y | Makefilewithout | | | Makefile with
machine.cf i dependencies i dependencies
Imakefile

Figure F.1: Creating Makefiles

Titan Kubota Titan 3000 with fe.

It would be possible to have a different configuration file for each Cray you use, or for
different versions of the Sun compiler.

The fmkmf script executes imake followed by make depend, as shown in Fig. F.1.
It requires the §CONFIGDIR variable to be set to where the configuration files are kept.
Also, the make depend phase executes a perl script that requires the perl program. The
configuration files and the fmkmf script are distributed as described in §1.1 and perl is
available from all the gnu archive sites.

We could have chosen to have the fmkmf script try to determine which type of computer
it was being run on, and use the appropriate configuration file. However, it may be that we
decide to run SCRUM on a computer which does not have imake or perl. This way, we
can generate the Makefile on a computer which has the necessary support programs and
then just transfer the Makefile along with the SCRUM code.

F.0.2 Your Makefile

If you are using one of the environments for which Makefiles are supplied, you are set,
although you may want to check the compile flags. Otherwise, you have the choice of copying
and modifying an existing Makefile or using imake and creating your own configuration
file. In either case, you will need to know certain things about your environment such as:

e The name of the Fortran compiler.

e The compiler options you wish to use.

How to link to the NCAR graphics libraries, if they exist and you wish to use them.

Whether or not the Fortran compiler will invoke cpp and how to tell either the
compiler or make to do so.

107

e What file extension the compiler requires.

The biggest changes to the Makefile result from the way cpp is executed. If your compiler
does it for you, start from the Sun files, otherwise start from the old IBM RS/6000 files.
Sometimes it is better to tell make to execute cpp even if the compiler will do it. For
instance, the old Cray debugger became confused about line numbers if it did not have the
intermediate .f files to work with.

You will also have to edit the Makefile or Imakefile if you add source files to SCRUM.
In this case, you will have to add the new files to the OBJS and SRCS macros, and make
sure that the dependencies are listed correctly for the new files.

108

Appendix G

Perl scripts for Fortran

Perl is a computer language, invented by Larry Wall, for manipulating text and other useful
things. It is fully described in Wall et al. [35], while a more tutorial approach is given by
Schwartz [29]. Perl itself is available from your nearest CPAN archive site, for instance:

http://www.perl.com/CPAN/

I have several Perl scripts which I find useful when working with Fortran programs,
and which are available from:

http://marine.rutgers.edu/po/perl.html

It is not necessary to know Perl to use these scripts, but it must be installed on your
system. To use these scripts, simply place them somewhere in your path and make sure
that they are executable:

chmod 755 relabel

(on a UNIX machine).

The following scripts modify your source code and usually work on the style of Fortran
in SCRUM, but have been known to do the wrong thing. Some of the scripts become
confused when part of an if or do statement is inside an #ifdef clause. The following will
parse as two nested do loops, only one of which is terminated:

#ifdef EW_PERIODIC
do i=1,Lm
#else
do i=0,L
#endif

enddo

It is also extremely dangerous to run relabel on an arithmetic if.
Do not delete your original code before checking the new code.

109

G.1 redo

This program reformats do loops and was written to convert

do 10 i=1,20
10 sum = sum+ti

to

do 10 i=1,20
sum = sum+i
10 continue

The -E option tells it to use enddo instead of continue as in

do i=1,20
sum = sum+i
enddo

redo is used as follows:
redo < file.F > file.new

redo was written so that findent would work on SPEM.

.2 findent

findent will indent your Fortran code two spaces for do loops and if statements. It will
not correct lines which extend beyond 72 characters, but will print out a warning for each
one. It assumes that each do loop ends with a continue or enddo. findent is used as
follows:

findent < file.F > file.new

There is an option to change the number of spaces for each level of indenting. To get an
indent of four instead of two, use:

findent -n 4 < file.F > file.new

See the comments at the top of the code for the more obscure options.

G.3 relabel

relabel was written by Sverre Froyen to replace the numbered Fortran labels with new
sequentially ordered labels. It was the first of these scripts and helped me to write the rest.
relabel is used as follows:

relabel < file.F > file.new

It does have some known bugs, however:

110

e No computed goto.

No assigned goto or assign.

No arithmetic if.

e No new-lines inside the parenthesis immediately following a read/write.
e Others not yet discovered.

All the source files in SPEM have been run through redo, findent, and relabel. In
the C shell (csh), a series of files can be processed at once:

ahab), foreach file (*.F)

foreach? redo < $file > $file.red
foreach? findent < $file.red > $file.fin
foreach? relabel < $file.fin > $file.rel
foreach? echo $file done

foreach? end

You can then rename $file.rel to $file.F and get rid of the temporary files after checking
to make sure that all the files still look sensible.

G.4 unenddo

unenddo will turn all do-enddo loops into do-continue loops to comply with the Fortran
77 standard. It is used as follows:

unenddo < file.F > file.new

unenddo replaces enddo statements with labelled continue statements. It starts num-
bering these statements at 2000 assuming that existing labels use only three digits. If
desired, unenddo can be told to start labelling with a different number by modifying the
$label_no_start variable.

G.5 ifspace

When I am feeling particularly contentious I also run ifspace on the code. It will convert
if(i.eq.0.0r.j.eq.0) then

to
if (i .eq. 0 .or. j .eq. 0) then

Use as follows:

ifspace < file.F > file.new

111

G.6 sfmakedepend

The other Perl script I use with Fortran modifies the Makefile to include dependency
information, much like the X11 program makedepend. I originally wrote fmakedepend
which was used with traditional Fortran include statements. I later wrote a variant of it for
use with the C preprocessor, called sfmakedepend. The latest version of sfmakedepend
does the job of both programs and also searches for the dependencies introduced by Fortran
90 modules. It is used by the Makefiles described in §F.

It recursively searches for Fortran style includes, for instance if file.f has the statement:

include ’commons.h’
the line
file.o: commons.h

will be added to the bottom of the Makefile. This tells make that file.o depends on
commons.h as well as file.f, and to recompile file.f whenever commons.h is modified. It
likewise searches source files for C style includes such as

#include "commons.h"

and adds the corresponding dependencies to the Makefile. It has several options, including
-s, required for Fortran compilers which will not invoke the C preprocessor for you. In this
case the above dependency line would become

file.o: commons.h
file.f: commons.h

letting make know that the C preprocessor must be rerun on file.F whenever commons.h
is updated.

When using the C preprocessor, you can ask it to search directories other than the
current directory. Likewise, sfmakedepend can be instructed to search other directories
with -I dir options. Note that it is legal to have more than one -I dir option as in:

sfmakedepend -I /usr/local/include -I /home/me/include *.F

Fortran 90 introduces some interesting dependencies. Two compilers I have access to
(NAG 90 and IBM xIf) produce a private my_module.mod file if you define module
My_Module in file mod.f90. This file is used by the compiler when you use the module
as a consistency check (type-safe programming). If foo.f90 uses that module, you will need
the following dependency information:

foo.o0: my_module.mod
my_module.mod: mod.o

This says that before compiling f00.f90 we need to have the file my module.mod. This
file in turn depends on mod.o, so that mod.f90 must be compiled before foo.f90. The
sgi is similar except that it uses the file MY MODULE.kmo to store the private module
information. Use sfmakedepend -g on the SGI.

112

Rather than creating extra module files, the Cray and Parasoft compilers store the
module information in the object file and then files which use the modules need to be
compiled with extra flags pointing to the module object files. For instance, if foo.f90 uses
My_Module which was defined in mod.f90, then you will need to compile mod.f90 first
and provide the Cray compiler with the extra option -p mod.o when compiling foo.f90.
When using the Cray, use sfmakedepend -c to get the dependency information:

foo.0: mod.o
$(CFT) $(FFLAGS) -c¢ -p mod.o f00.f90

$(CFT) and $(FFLAGS) are assumed to be previously defined as the name of the compiler
and the compiler options, respectively.

Note: These f90 module dependencies can confuse some versions of make, especially of
the System V variety. We use gnu make because it can follow these chained dependencies
and do the right thing.

sfmakedepend assumes that all the files using and defining modules are in the same
directory and are all in the list of files to be searched. It seems that the industry has not
settled on a practical way to deal with a separate modules directory, anyway.

I sometimes include non-existent files as a compile time consistency check:

#ifndef PLOTS
#include "must_define_PLOTS" /* bogus include */
#endif

This program warns about include files it can’t find, but not if there is a “bogus” on the
same line.

See the comments at the top of sfinakedepend for up-to-date information on the
options. I may someday get inspired to use a newer version of the getopt routine and
rename the options to have names like -SGI and -Cray.

113

Bibliography

1]

[10]

[11]

[12]

[13]

A. Arakawa and V. R. Lamb. Methods of computational physics, volume 17, pages
174-265. Academic Press, 1977.

G. K. Batchelor. An introduction to fluid dynamics. Cambridge University Press, 1967.

A. Beckmann and D. B. Haidvogel. Numerical simulation of flow around a tall, iso-
lated seamount. part i: Problem formulation and model accuracy. J. Phys. Oceanogr.,
23:1736-1753, 1993.

A. F. Bennett. Inverse methods in physical oceanography. Cambridge University Press,
1992.

F. P. Bretherton, R. E. Davis, and C. B. Fandry. A technique for objective analysis and
design of oceanographic experiments applied to mode-73. Deep Sea Res., 23:559-582,
1976.

E. F. Carter and A. R. Robinson. Analysis models for the estimation of oceanic fields.
J. Atmos. Ocean. Tech., 4:49-74, 1987.

R. Daley. Atmospheric data analysis, chapter 5. Cambridge University Press, 1991.

N. G. Freeman, A. M. Hale, and M. B. Danard. A modified sigma equations’ approach
to the numerical modeling of great lake hydrodynamics. J. Geophys. Res., 77(6):1050—
1060, 1972.

L. S. Gadin. The objective analysis of meteorological fields. Hydrometeorological Pub-
lishing House, Leningrad, 1963. English translation: Israel Program for Scientific
Translations, Jerusalem, 1965.

B. Galperin, L. H. Kantha, S. Hassid, and A. Rosati. A quasi-equilibrium turbulent
energy model for geophysical flows. J. Atmos. Sci., 45:55—62, 1988.

D. B. Haidvogel and A. Beckmann. Numerical models of the coastal ocean. The Sea,
1997. in press.

D. B. Haidvogel and A. Beckmann. Numerical Ocean Circulation Modeling. Imperial
College Press, 1998. partially written.

R. L. Haney. On the pressure gradient force over steep topography in sigma, coordinate
ocean models. J. Phys. Oceanogr., 21:610-619, 1991.

114

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

W. P. Hazard. Using cpp to aid portability. Computer Language, 8(11):49-54, 1991.

M. Iskandarani, D.B. Haidvogel, and J.P. Boyd. A staggered spectral element model
with applications to the oceanic shallow water equations. Int. J. Num. Meth. FI.,
20:393-414, 1995.

D. R. Jackett and T. J. McDougall. Stabilization of hydrographic data. J. Atmos.
Ocean. Tech., 12:381-389, 1995.

B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall,
Englewood Cliffs, New Jersey 07632, second edition, 1988.

W. G. Large, J. C. McWilliams, and S. C. Doney. Oceanic vertical mixing: a review and
a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32:363—403,
1994.

Anthony Macks and Jason Middleton. Numerical modelling of wind-driven upwelling
and downwelling. University of New South Wales, 1993.

John D. McCalpin. A comparison of second-order and fourth-order pressure gradient
algorithms in a o-coordinate ocean model. Int. J. Num. Meth. Fl., 18:361-383, 1994.

J. C. McWilliams, W. B. Owens, and B. L. Hua. An objective analysis of the polymode
local dynamics experiment. part i: general formalism and statistical model selection.
J. Phys. Oceanogr., 16:483-504, 1986.

G. L. Mellor and T. Yamada. A hierarchy of turbulence closure models for planetary
boundary layers. J. Atmos. Sci., 31:1791-1806, 1974.

A. Oram and S. Talbott. Managing Projects with make. O’Reilly & Associates, Inc.,
Sebastopol, CA, 1991.

R. C. Pacanowski and G. H. Philander. Parameterization of vertical mixing in numer-
ical models of tropical oceans. J. Phys. Oceanogr., 11:1443-1451, 1981.

N. A. Phillips. A coordinate system having some special advantages for numerical
forecasting. J. Meteorology, 14(2):184-185, 1957.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes,
The Art of Scientific Computing. Cambridge University Press, 1986.

R. Rew, G. Davis, S. Emmerson, and H. Davies. NetCDF User’s Guide. Unidata,
University Corporation for Atmospheric Research, Boulder, Colorado, 1996. Version
2.4.

R. D. Richtmeyer and K. W. Morton. Difference Methods for Initial- Value Problems.
Interscience Publishers, J. Wiley and Sons, New York, New York, second edition, 1967.

R. L. Schwartz. Learning perl. O’Reilly & Associates, Inc., Sebastopol, CA, 1993. the
llama book.

115

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

P. K. Smolarkiewicz. A simple positive definite advection scheme with small implicit
diffusion. Mon. Wea. Rev., 111:479-486, 1983.

P. K. Smolarkiewicz and W. W. Grabowski. The multidimensional positive definite
advection transport algorithm: non-oscillatory option. J. Comp. Phys., 86:355-375,
1990.

P. K. Smolarkiewicz and L. G. Margolin. On forward-in-time differencing for fluids:
extension to a curvilinear framework. Mon. Wea. Rev., 121:1847-1859, 1993.

Y. Song and D. B. Haidvogel. A semi-implicit ocean circulation model using a gener-
alized topography-following coordinate system. J. Comp. Phys., 115(1):228-244, 1994.

R. Styles and S. M. Glenn. Observation and modeling of sediment transport events in
the middle atlantic bight. In 8th International conference on Physics of estuaries and
coastal seas, 1996. submitted.

L. Wall, T. Christiansen, and R. L. Schwartz. Programming perl. O'Reilly & Associates,
Inc., Sebastopol, CA, second edition, 1996. the camel book.

J. Wilkin and K. Hedstrom. User’s manual for an orthogonal curvilinear grid-generation
package. Institute for Naval Oceanography, 1991.

J. L. Wilkin, J. Mansbridge, and K. S. Hedstrom. An application of the capacitance
matrix method to accomodate masked land areas and island circulations in a primitive
equation ocean model. Int. J. Num. Meth. Fl., 20:649-662, 1995.

116

