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Abstract
Progress in computer technology has made it possible to make larger calculations

with finer grid-scale resolution, and physical processes that were beyond the reach of
coarse-resolution models are now simulated directly. This focuses scientific interest
toward more turbulent flow regimes and applications toward more realistic modeling
of specific regional configurations.
In this chapter, we examine the numerical design of oceanic modeling codes

specifically suited formodern demands.These are comparedwith traditional “legacy”
oceanic general circulation models and with computational fluid dynamics methods
for modern engineering applications. Our primary subject is how the numerical algo-
rithms for different aspects of the discretized partial differential equation system –
the computational kernel – combine to yield the overall model performance, with
particular focus on avoiding destructive interference among algorithmic components.

1. Introduction: integrated kernel design

Oceanic General Circulation Models (OGCMs) (Bleck and Smith [1990], Blumberg
andMellor [1987], Bryan and Cox [1969], Dukowitz and Smith [1994], Griffies,
Böning, Bryan, Chassignet, Gerdes, Hasumi, Hirst, Treguier and Webb [2000],

Computational Methods for the Atmosphere and the Oceans Copyright © 2009 Elsevier B.V.
Special Volume (Roger M. Temam and Joseph J. Tribbia, Guest Editors) of All rights reserved
HANDBOOK OF NUMERICALANALYSIS, VOL. XIV ISSN 1570-8659
P.G. Ciarlet (Editor) DOI 10.1016/S1570-8659(08)01202-0

121



122 A. F. Shchepetkin and J. C. McWilliams

Marshall, Adcroft, Hill, Perelman and Heisey [1997], McWilliams [1996])
have historically been a separate branch of computational fluid mechanics with sig-
nificantly different choices for numerical methods compared with most engineering
computational fluid dynamics (CFD) applications. The main motivation is the need
to perform very long – even millennial – simulations over hundreds of thousands of
time-steps, which makes it essential to ensure conservation properties for the mean and
variance of model fields (Arakawa and Lamb [1977], Lilly [1965]). This typically
has led to the choice of discrete algorithms as a combination of basic second-order,
centered spatial operators and leapfrog (LF) time-stepping, both because they can
easily be made to assure desired conservation properties and because higher-order
advection schemes usually do not give better solutions for coarse grids that do not ade-
quately resolve the baroclinic deformation radii (i.e., the “non-eddy-resolving” regime
typical for climate studies). Instead, coarse-grid models have to rely on parameteriza-
tions of subgrid mesoscale processes to achieve physically correct results (Gent and
McWilliams [1990], Griffies, Gnanadesikan, Pacanowski, Larichev, Dukowicz
and Smith [1998]). The OGCM codes targeting large-scale circulation were ill-suited
for nearshore phenomena due to inaccurate handling of complex geometry, bottom
topography, free surface, and bottom boundary layer; coastal model developments
took a rather independent route (Casulli and Cheng [1992], Casulli and Cattani
[1994], Casulli and Stelling [1998], Casulli [1999]) with more focus on achiev-
ing accurate dispersion properties for surface gravity waves, wetting and drying
capabilities, etc, with less emphasis on long-term conservation properties and Coriolis-
force effects. These coastal codes are characterized by two-time-level time-stepping,
upstream-biased, semi-Lagrangian, monotonicity-preserving advection schemes, and
sometimes non-hydrostatic effects and unstructured grids (Cheng andCasulli [2001]).
The combination of these features makes them more similar to CFD codes than to
OGCMs.
During the 1990s, all major OGCMs underwent a substantial redesign in order to take

advantage of the rapidly developing computer technology, especially parallel process-
ing. This allowed much larger computational grids, ultimately ones that can close the
resolution gap between coastal and regional-global applications. A somewhat paradoxi-
cal outcome of this evolution is that the use of parallel codes has become widespread in
oceanic modeling, while as yet there has been relatively little overhaul of the numerical
methods in their hydrodynamic kernels. Most of the recent model content developments
have come in physical parameterizations and peripheral modules for biogeochemical
processes. The study of Griffies, Böning, Bryan, Chassignet, Gerdes, Hasumi,
Hirst, Treguier andWebb [2000] is an overview of the modern state of OGCMs in cli-
mate modeling. Some rare exceptions to the widespread use of classical time-stepping
and second-order advection algorithms have been adopted to avoid spurious oscilla-
tions and negative concentrations for material tracers (Willebrand,Barnier,Böning,
Dieterich, Killworth, LeProvost, Jia, Molines and New [2001]), but only rarely
are better advection schemes used for momentum (Dietrich, Lin,Mestas-Nunez and
Ko [1997], Dietrich, Marietta and Roache [1987]). Monotonic advection schemes
are also used in the context of isopycnic layer models to deal with vanishing layer
thickness (Bleck and Smith [1990]).



Computational Kernel Algorithms for Fine-Scale, Multiprocess, Longtime Oceanic Simulations 123

The code organizational structure in the Modular Ocean Model (MOM) became
another de facto standard, adopted by many modelers when their code complexity
matured to OGCM status. This approach is encouraged and often justified by the ease
of incorporating peripheral modules. However, it led to a widespread “modular vision”
of the kernel, and the interaction and, in fact, interference among the algorithmic com-
ponents was often overlooked. For example, allowing a freesurface in a previously
rigid-lid model (Dukowitz and Smith [1994], Killworth, Stainforth, Webb and
Paterson [1991]) may result in the loss of conservation and/or constancy-preservation
properties of control-volume scheme for tracer advection,1 which was noticed, miti-
gated (Griffies, Pacanowski, Schmidt andBalaji [2001]), and eliminated completely
(Campin, Adcroft, Hill and Marshall [2004], Marsaleix, Auclair, Herrmann,
Estournel, Pairaud and Ulses [2008], Shchepetkin andMcWilliams [2005]) only
a decade later. If one wants to implement a non-oscillatory advection scheme for
tracers, the tracer time-step has to be changed from LF to two-time level algorithm,
e.g., predictor-corrector. However, since this change applies to tracers only, it leads to
an underutilization of its potential benefit because the time-step size �t of an OGCM
is usually limited by the gravity-wave speed for the first baroclinic mode. The gravity
wave behavior arises from an interplay between the momentum and the tracer equations
and cannot be improved by refining tracers alone.
There is a common practice of two-stage code development, where a single-processor

prototype code is parallelized later, only after being considered sufficiently mature. This
is another reason for suboptimal algorithmic choices because considerations of compu-
tational efficiency (cost) may be quite different between parallel and non-parallel cases.
For example, the treatment of the Coriolis force for the barotropic (i.e., depth-averaged)
mode on a C-grid with an alternating-direction method (Bleck and Smith [1990]) or a
fixed-point iteration procedure (Higdon [2005]) is straightforward on a single processor,
but due to the staggered placement of u- and v-points on a C-grid and the associated
interpolation, it results in excessive synchronization and message passing in a parallel
implementation. In contrast, for even moderately high spatial and temporal resolution,
the associated stability-limiting Courant number is very small (f�t � 1, where f is
the Coriolis frequency). The Coriolis force can be successfully treated in parallel with
virtually any explicit, conditionally stable time-stepping algorithm. Another interesting
example comes from the experience of parallelization on shared-memory computers:
a very efficient code can be obtained by arranging the mathematical operations in such
a way that intermediate results are stored in cache-sized private arrays that are reused
in as many stages as possible before a global synchronization event takes place. This
experience thus stimulates the use of multistage, high-order accurate, wide-stencil algo-
rithms because they naturally allow a higher computational density (i.e., in this context,
the ratio of mathematical operations to cache-to-main-memory loads and stores). From
this point of view, the recent tendency to develop an abstract Earth-System Modeling
Framework (http://www.esmf.ucar.edu), driven primarily by computer scientists, has the
danger of decoupling physical-modeling from code-infrastructure decisions, as a further
commitment to modular architectures. While this approach may indeed save modelers

1The exact cause of this loss and a remedy are considered later in Section 3.1.
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labor by providing common code components, it also can have the effect of hiding or
even impeding the resolution of the types of algorithmic interferences that are the focus
of this chapter.
In our designs for the computational kernel in the Regional OceanicModeling System

(ROMS) (Shchepetkin and McWilliams [2005]), we adopt an integrated approach
where we try to analyze and take into account all previously known experience, but in
such a way that no component from a legacy code is accepted a priori. Rather, we try
to identify potential algorithmic interferences and conflicts and their possible reconci-
liations. This principle encompasses a full range of considerations, from the theoretical
analysis of a linearized time-stepping scheme all the way to cross- and within-processor
code optimization issues.
The advantage of using higher-order advection schemes for turbulent flows is well

understood (Leonard, Lock and McVean [1996], Orszag [1971], Shchepetkin and
McWilliams [1998]). This approach exposes the primary criterion not as the formal
order of accuracy per se (which is merely a Taylor series estimate of the asymptotic
convergence rate for smooth functions) but rather as the spectral bandwidth (i.e., the
fraction of grid-resolved Fourier components that are correctly represented by the dis-
cretized operator). In practice, this translates into downplaying the goal of achieving
a uniformly high order of accuracy for all terms in the governing equations – a rather
unrealistic hope for a multiscale, multiprocess, nonlinear system anyway – in favor of
isolating and removing specific causes of accuracy loss in particular solution regimes.
Although ROMS has been successfully used for coarse-resolution climate studies
(Haidvogel, Arango, Hedstrom, Beckmann, Rizzoli and Shchepetkin [2000]),
its main intended applications are medium- or high-resolution simulations with a well-
resolved baroclinic deformation radius and strong advective influences. Thus, it is
intended to simulate mesoscale, approximately geostrophically balanced currents and
eddies, together with nonlinear gravity and inertial waves with similar spatial scales.
This downplays the importance of eddy parameterization in comparison with most cli-
mate models. However, the need to avoid erroneous vertical mixing, especially across
isopycnic surfaces in stably stratified regions, is a high priority for long-term simulations.
For this reason, the use of upstream-biased advection schemes in the vertical direction is
discouraged. The �t value is expected to be limited by the phase speeds for barotropic
and baroclinic gravity waves (i.e., external and internal modes, respectively), which
are different from each other by at least an order of magnitude (barotropic is faster).
The first-mode baroclonic speed is usually larger than the advective velocity, although
comparable in its order of magnitude. The baroclinic time-step is expected to be much
smaller than the inertial period so that the Coriolis force does not impose any additional
restriction on�t. Vertical mixing is always treated implicitly since its transport rate can
be much larger than the vertical advective rate.
Taking into account the specifics of this physical regime, we have been developing

the kernel code in ROMS to have the features in the following list (cf., Fig. 1.1) that
foreshadows the algorithms discussed in more detail below.

• Vertical coordinate: Although ROMS nominally belongs to the vertical-
boundary-following model family (i.e., σ(x, y, t)-coordinate), the code stores the
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Fig. 1.1 Schematic representation of main time-stepping procedure of ROMS hydrodynamic kernel using
LeapFrog – third-orderAdams-Moulton (LF–AM3) predictor-corrector step for the baroclinic (3D) mode with
mode coupling during the corrector stage. The arcs (curved arrows) represent “steps,” i.e., updates of either
momenta or tracers that involve computation of right-hand side (r.h.s) terms (shown as circles attached to the
arcs). Straight arrows indicate exchange of data between the modes. Each arrow originates at the time when
the corresponding variable becomes logically available, regardless of its actual temporal placement. Arcs and
arrows are drawn in the sequence that matches the sequence of operations in the actual code: whenever arrows
overlap, the operation occurring later corresponds to the arc or arrow on top. Note that labels Stage 1 . . . Stage 5
correspond to the actual computational stages described inSection 5 ofShchepetkin andMcWilliams [2005].
The four ascending arrows denote the vertically integrated r.h.s. terms for 3D momentum equations; and the
two-way, vertically averaged densities, ρ and ρ∗, which participate in computation of pressure gradient terms
for the barotropic mode (Section 3.2 below). The two descending arrows of smaller size on the left symbolize
r.h.s. terms computed from barotropic variables. The asterisks (* *) where the two pairs of ascending and
descending arrows meet denote the computation of baroclinic-to-barotropic forcing terms, two smaller arrows
ascending diagonally to the right. The five large descending arrows symbolize two-way fast-time-averaged
barotropic variables (enclosed in 〈 . 〉 and 〈〈 . 〉〉, Section 3.1 below) for backward coupling; fwd.-bkw. feed
stands for FB feedback between momentum and tracer equations – the update of tracers is delayed until
the new-time-step velocities u, vn+1 become available so that they can participate in computation of r.h.s.
terms for tracers; M is mode-splitting ratio – number of barotropic time-steps per one baroclinic. Note that
barotropic time-stepping goes slightly beyond (∼ 25% in the case above) the baroclinic step [n+ 1]; γ = 1/12

is associated with LF–AM3 algorithm (this is further explained in Fig. 4.1 in Section 4).

height-coordinate transform z = z(x, y, σ) as a special array, and, in principle, it
can be used as a generalized vertical coordinate.

• Free surface: ROMS is free-surface model with split-explicit time-stepping. The
pressure-gradient force (PGF) for the barotropic mode is defined as a variational
derivative of vertical integral of the hydrostatic PGF with respect to perturbations
in the free-surface elevation ζ(x, y, t). As a result, the barotropic PGF depends not
only on ζ but also on the two differently averaged density fields indicated by two



126 A. F. Shchepetkin and J. C. McWilliams

ascending arrows ρ∗ and ρ in Fig. 1.1 (Section 3.2) that are computed from three
dimensional (3D) fields and held constant during barotropic time-stepping. This
insures an accurate and stable split, even with a large ratio between the �t for the
baroclinic and barotropic modes.

• Barotropic averaging: The barotropic variables are averaged in the fast (barotropic)
time-step to prevent aliasing of frequencies not resolved by the slow (3D baro-
clinic) time-stepping. To avoid undesirable damping of resolved frequencies, the
fast-time averaging is performed using a specially designed S-shaped filter func-
tion (denoted by 〈 . 〉 in Fig. 1.1) that has second-order temporal accuracy for
the averaged barotropic prognostic variables, 〈ζ, u, v〉. (A strictly positive-definite
averaging yields at most first-order accuracy.)

• Tracer conservation and constancy preservation: To assure these properties when
the grid-box control volumes change due to changes in ζ, onemust ensure that slow-
time volume fluxes are exactly consistent with the changes in ζ as computed with
the barotropic mode. Hence, it is not enough to know the final state of 〈 . 〉-averaged
barotropic variables at the new time-step; one also needs to have an integralmeasure
of the entire barotropic evolution between two consecutive baroclinic times. This
is accomplished by fast-time averaging the barotropic volume flux using a second
operator (〈〈 . 〉〉 in Fig. 1.1) that is derived from the primary 〈 . 〉 (Section 3.1).

• Barotropic time-stepping: Since the external mode phase speed imposes the domi-
nant CFL restriction on�t, the generalized forward-backward (FB) step is chosen
for barotropicmode.This algorithm consists of amodifiedAdams-Bashforth update
of free surface followed by update of momentum equations where the newly com-
puted ζ participates in the computation of PGF. Unlike the classical FB step, the
new algorithm naturally combines with advection and Coriolis terms and has a
dissipative leading-order truncation term.

• Baroclinic time-stepping: 3D time-stepping schemes are designed in anticipation of
differentCourant-number limitations corresponding to different physical processes.
The internal gravity-wave speed is expected to be most restrictive although the
other limits – advective and Coriolis CFL – are not as distant as in the barotropic
mode.Amodified predictor-corrector scheme with FB feedback between advection
of ρ (via the tracers T and S) and PGF in momentum equations is chosen. It
generally maintains temporal third-order accuracy for advection and Coriolis terms
to match the accuracy of spatial discretization. The use of FB feedback expands the
CFL stability limit for internal waves. A forward Euler step is used for horizontal
viscosity and diffusion terms, and an implicit backward step is used for vertical
mixing. The overall time-stepping procedure is compatible with both centered and
upstream-biased advection, which is important for ROMS where we commonly
use a third-order, upstream-biased advection scheme in the horizontal directions
for both tracer and momentum, but a centered scheme in the vertical to avoid
spurious diffusion due to “rectification” of dissipative truncation terms.

• Temporal stability limits: The time-stepping algorithms are specifically designed
for use close to their limiting Courant number for computational stability yet still
guarantee a numerically accurate solution. The optimal algorithms are derived by
an inverse stability analysis, by writing them with arbitrary coefficients first, then
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deriving characteristic equations, and choosing coefficients that yield the desirable
characteristic roots. This makes it possible to resolve the phase propagation for both
internal and external modes with an accuracy order higher than for each equation
taken individually.

• Updating: ROMS’s time-stepping utilizes a form where all temporal interpolations
are applied to the primitive variables rather than their right-hand-side (r.h.s.) ten-
dencies. This allows us to combine different time-stepping algorithms for different
physical terms and reduces memory usage for a more efficient code.

• Baroclinic PGF:This term is discretizedwith a high-order, density Jacobian scheme
based onmonotonized cubic polynomial fits for the vertical profiles of ρ and geopo-
tential height z. This scheme preserves most of symmetries of the original Jacobian
ofBlumberg andMellor [1987]while dramatically reducing errors in hydrostatic
balance.

• Compressible equation of state: Because of seawater’s compressibility, most of the
vertical change of in situ ρ is due to pressure change. Monotonicity of in situ ρ

does not guarantee the absence of spurious oscillations in the interpolated stratifi-
cation profile; this degrades the accuracy of the PGF scheme and potentially leads
to numerical instability. Furthermore, the combination of the Boussinesq approxi-
mation and the full equation of state (EOS) is a source of both inaccuracy and
mode-splitting error. Therefore, the EOS (Jackett and McDougall [1995]) is
modified to cancel the bulk compressibilty in in situ ρ to achieve a more consis-
tent Boussinesq approximation (Dukowicz [2001]) and reformulated in terms of
adiabatic ρ derivatives.

• Advection: ROMS commonly uses a third-order upstream-biased advection in the
horizontal direction for both tracer and momentum equations and fourth-order
centered advection in the vertical.

• Coriolis and curvilinear metric terms: These are combined with advection of
momentum and discretized using an energy-conserving scheme.

• Code architecture: The code architecture is distinct from a modular design
(cf., MOM). The architectural design decisions involve optimization in multidi-
mensional space for the model physics, numerical algorithms, and computational
performance. As a rule, this results in significantly larger functional units in the
code than in more traditional oceanic modeling practice. This is typically beneficial
for both exploiting cache locality and minimizing the number of synchronization
events in a parallel code.

• Parallelization: ROMS is a parallel code which has both shared- (via OpenMP,
www.openmp.org) and distributed-memory (viaMPI (Gropp,Lusk, andSkjellum
[1999])) capabilities, including a possibility of allowing multiple threads within
each MPI process. Both OpenMP and MPI options are implemented using two-
dimensional subdomain decomposition in horizontal directions.

A detailed description of the components and algorithmsofROMS is outside the scope
of this chapter. Instead, we present a comprehensive overview of the kernel algorithms,
focusing on algorithm interferences that require special effort to reconcile conflicts so
that multiple desired properties can coexist at the same time. Examples of such conflicts
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are (i) the barotropic-baroclinic time-splitting scheme (as diagnosed by a linear stability
analysis) can interfere with finite-volume mass conservation in slow mode, as well
as cause loss of the tracer constancy-preservation property; (ii) linear stability analy-
sis favors FB time-stepping for momentum and tracers over predictor-corrector by the
stability vs. computational cost criterion for internal waves alone, but most suitable
advection algorithms are two-stage procedures that are more naturally incorporated into
a predictor-corrector scheme; (iii) barotropic-baroclinic mode-splitting makes it impos-
sible to satisfy the finite-volume continuity equation on slow baroclinic time during
a predictor substep, causing loss of the constancy-preservation property for tracers;
(iv) high-order polynomial interpolation requires monotonicity constraints to prevent
spurious oscillations if the interpolated field is not smooth on the grid scale, and for ρ,
this leads to a monotonicity constraint for stratification that further leads to a redesign
of the EOS for seawater; and (v) with modal time splitting, the barotropic time-step
requires knowledge of bottom stress related to bottom velocity that is a sum of both
types of modes, yet it would be unphysical to remove more than the total momentum
within the bottommost grid box per baroclinic time-step while the baroclinic velocity is
held constant.

2. Time-stepping: accuracy and linear stability

Oceanic flows in a regime with high Reynolds number can usefully be viewed from the
perspective of time-stepping algorithms as satisfying hyperbolic partial differential equa-
tions. We consider two simple hyperbolic test systems. One can be called an advection
equation,

∂q

∂t
+ c

∂q

∂x
= 0, (2.1)

and the other a wave system,

∂ζ

∂t
= −c

∂u

∂x
,

∂u

∂t
= −c

∂ζ

∂x
. (2.2)

Table 4 from Griffies, Böning, Bryan, Chassignet, Gerdes, Hasumi, Hirst,
Treguier and Webb [2000] provides a comprehensive summary of time-stepping
algorithms used in different oceanic models. These can be subdivided into two major
classes. The first class is synchronous schemes where the r.h.s. tendencies for all
prognostic variables are computed at the same time and simultaneously used to advance
the variables to the next time-step; examples are LF with an Asselin Filter to suppress
temporal oscillations, second-order Runge-Kutta (RK2), predictor-corrector (LF with a
trapezoidal rule (LF–TR), LFwith third-orderAdams-Moulton (LF–AM3), second-order
Adams-Bashforth with TR predictor-corrector (AB2–TR)), and third-order Adams-
Bashforth (AB3) (Durran [1991]). The second class is FB schemes where one variable
is advanced then immediately used to advance the other(s),

ζn+1 = ζn − c�t · ∂un

∂x
, un+1 = un − c�t · ∂ζn+1

∂x
, (2.3)
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where n is a time index. A FB scheme obviously is applicable only to multivariate
systems. Almost all OGCMs currently use a synchronous method.
One can easily verify that synchronous time-stepping has identical accuracy and

stability limits for the advection equation and wave system (Canuto, Hussaini,
Quarteroni and Zang [1988], Shchepetkin and McWilliams [2005]). This typi-
cally occurs for αmax < 0.8 (where α ≡ ω�t is the Courant number, and ω = ck is the
frequency for a solution component with wavenumber k) per r.h.s. computation for the
most efficient algorithms within this class. This is only half as efficient (as measured
by the ratio of stability limit to the number of r.h.s. computations) as a FB scheme with
αmax = 2. Thus, the commonly used synchronous time-stepping is less than optimal
for oceanic modeling because the fastest process, gravity waves, occur as an interplay
between momentum and mass as in the wave system. Therefore, we define our pri-
mary design goals as (i) to generalize the most used synchronous algorithms (i.e., RK2,
LF–TR, LF–AM3, andAB3) by introducing a FB-like feedback and (ii) to generalize FB
to higher orders of accuracy. In both cases, the time-stepping algorithmmust be accurate
and robust even if used close to the α limit for numerical stability.
The methodology employed here is a von Neumann linear stability analysis (Durran

[1998]) applied in an “inverse” manner to design the algorithm rather than to assess one
chosen a priori. We insert adjustable parameters into a time-stepping algorithm, then
derive the characteristic equation for the eigenvalues of the step-multiplier matrix, and
then solve it as an optimization problem to find parameters that achieve the desired
properties. These properties include the order of accuracy and related bandwidth of
the resolved frequency spectrum that is accurately represented, the maximum stability
limit, the nature of the dominant truncation error term (note that dissipation of fastest,
poorly resolved frequencies is preferred over dispersion), and sufficient damping for any
computational modes. Themethod is applied to the spatial Fourier transform of Eq. (2.3),

∂ζ

∂t
= −iω · u,

∂u

∂t
= −iω · ζ, (2.4)

with ω = ck. Although it is implicit here that the primitive system is nonlinear, the
stability analysis is linear. For example, consider the evolution of a small perturbation
to a nonlinear flow described by

∂ζ

∂t
+ V

∂ζ

∂x
= −c

∂u

∂x
; ∂u

∂t
+ V

∂u

∂x
= −c

∂ζ

∂x
, (2.5)

where V is velocity of background flow. An instability of an algorithm applied to
Eq. (2.5) would automatically imply an instability of the fully nonlinear system using
the same algorithm. Thus, a practical time-stepping algorithm for Eq. (2.5) is always a
combination of both a generalized FB step for terms involving the ζ-u interplay and a syn-
chronous algorithm for other termswhere a FB step is either not applicable or impractical.
Although less critical in its CFL limitation, the synchronous step must be at least con-
ditionally stable. A similar requirement comes from the need for stable treatment of
advection and Coriolis force, and the latter is the more restrictive since robustly stable,
dissipative, upstream-biased, advection schemes can be used.
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2.1. A two-time-level scheme: RK2 with FB feedback

Consider a discrete time-stepping algorithm for Eq. (2.4) with a predictor substep,

ζn+1,∗ = ζn − iα · un,

un+1,∗ = un − iα · [βζn+1,∗ + (1− β)ζn
]
,

(2.6)

followed by a corrector substep,

ζn+1 = ζn − iα

2
·
(
un+1,∗ + un

)
,

un+1 = un − iα

2
·
[
εζn+1 + (1− ε)ζn+1,∗ + ζn

]
.

(2.7)

Setting β = ε = 0 in the above reverts it to the standard RK2 time-stepping that is
unstable for a non-dissipative system (purely real-valued α) since the eigenvalue mag-
nitude is |λ| = √1+ α4/4 ≈ 1+ α4/8 > 1, implying amplitude growth in time for
any α. But, because in the limit α→ 0 its growth rate asymptotes to unity faster than
1+O(α2), it is sufficient to add hyperdiffusivity rather than normal diffusivity to sta-
bilize a forward-in-time, centered-in-space scheme. This behavior is called weak or
asymptotic instability.
The presence of terms with β and ε brings FB feedback into the algorithm Eqs. (2.6)

and (2.7), and both accuracy and stability can be improved by having them present. Using
the r.h.s. of the predictor equations, we eliminate ζn+1,∗ and un+1,∗ from the corrector
and transform the algorithm into a single step written in matrix form as⎛⎝ ζ

u

⎞⎠n+1
=
⎛⎜⎝ 1− α2

2 −iα
(
1− α2β

2

)
−iα

(
1− α2ε

4

)
1− α2

2 + α4βε
4

⎞⎟⎠
⎛⎝ ζ

u

⎞⎠n

. (2.8)

This yields the characteristic equation for λ(α),

λ2 −
(
2− α2 + α4βε

4

)
λ+ 1+ α4

4
(1− 2β − ε+ βε) = 0. (2.9)

Since the exact solution of Eq. (2.4) has λ = e±iα, corresponding to right- and left-
traveling waves in Eq. (2.2), we substitute the desired solution into Eq. (2.9) and expand
it in a Taylor series for small α, seeking to approximate the ideal step-multiplier as
accurately as possible by suppressing mismatch terms with successive powers of α:

α4
(
1

3
− β

2
− ε

4

)
± iα5

(
1

12
− βε

4

)
+O(α6) = 0. (2.10)

Choosing ε = 4/3− 2β eliminates the O(α4) term, reducing the above to
± iα5

[
1

36
+ 1
2

(
β − 1

3

)2]
+O(α6) = 0. (2.11)
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Fig. 2.1 Characteristic roots for the modified RK2 scheme (Eqs. (2.6) and (2.7)) with β = 1/3 and ε = 2/3
relative to the unit circle. Tickmarks on the outer side of the unit circle point to the locations of “ideal”
amplification factors e−iα for α ∈ {−π/16, −π/8, −3π/16, . . . }. Tickmarks on the inner side of bold solid
curve indicate the actual roots corresponding to these values of α. The ideal and the actual root locations are
connected by a thin straight line whose length and orientation show the magnitude and the nature (disper-
sive/dissipative) of numerical error. This algorithm has a third-order accurate step-multiplier λ = λ(α) and a

stability limit αmax =
√
6(3−√5) = 2.14093.

No real-valued β can eliminate the O(α5) term, one can only minimize the residual
by setting β = 1/3, and correspondingly, ε = 2/3. The position of characteristic roots
relative to the unit circle (i.e., the exact solution) is shown in Fig. 2.1.
The stability range of this algorithm is limited by one of the modes leaving the unit

circle through λ = −1. Substituting λ = −1 and ε = 4/3− 2β into Eq. (2.9) yields

4− α2 +
[
1

36
−
(

β − 1
3

)2]
α4 = 0, (2.12)

which is to be solved for α = α(β) with β playing the role of an independent parameter.
A simple analysis leads to the conclusion that β = 1/3 yields the maximum
α (= 2.14093), hence the largest possible stability limit, and as shown in Eq. (2.11) and
in the next paragraph, the same β value corresponds to the minimum possible truncation
error among the whole subset of third-order schemes.
Overall, this modified RK2 algorithm is in line with two-time-level schemes of

Hallberg [1997] and Higdon [2002], except that they do not contain any counterpart
for the free parameter ε in Eq. (2.7) by always selecting ε = 1 (hence their algorithms
cannot be reverted back to classical RK2). Setting β = 0 and ε = 1 in Eqs. (2.6) and (2.7)
yields a non-dissipative scheme that makes Eq. (2.9) identical to the characteristic equa-
tion for classical FB.This leads to second-order accuracy andαmax = 2. In the absence of
Coriolis force, the algorithm in Eqs. (4)–(6) of Higdon [2002] has an identical charact-
eristic equation, eigenvalues, accuracy, and stability limit. Setting β = 1/2 and ε = 1
yields another second-order algorithm which is similar to Eq. (16) of Higdon [2002]
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Fig. 2.2 Same as Fig. 2.1, but for β = 1/2 and ε = 1. This setting is similar to Hallberg [1997].

(cf., Eqs. (3.9), (3.10), (3.13), and (3.14) of Hallberg [1997]). Again the stability limit
is αmax = 2, but the scheme is highly dissipative (Fig. 2.2).2

Rueda, Sanmiguel-Rojas and Hodges [2007] considered a family of RK2-type
algorithms for the baroclinic mode of the tidal, residual, intertidal mudflat (TRIM)
model.3 They combine the predictor step (Eq. (2.6)) with4

ζn+1 = ζn − iα · [γun+1,∗ + (1− γ)un
]
,

un+1 = un − iα · [θζn+1 + (1− θ)ζn
]
,

(2.13)

where again there is no ε-mixing between predicted and corrected ζ, but an extra degree
of freedom is introduced by allowing γ and θ deviate from γ = θ = 1/2. To be second-
order accurate requires γ + θ = 1. Once this is satisfied, an additional constraint, βγ =
1/12,makes this algorithm third-order accurate.Rueda,Sanmiguel-Rojas andHodges
[2007] restricted their analysis to a set of discrete values with θ = 1/2 or 1, and β and
γ are various permutations of 0, 1/2, and 1, all of which result in either second- or first-
order accuracy. They also showed that the choice of γ = θ = 1/2 and β = 1/6 results
in a third-order accurate algorithm. By making an analysis similar to Eq. (2.12), one
can also show that this choice yields the largest possible stability limit, αmax = 2: any
deviation of γ and θ from 1/2 while maintaining γ + θ = 1 and βγ = 1/12 reduces
αmax relative to this value. Overall, it is comparable though slightly more dissipative
than Eqs. (2.6) and (2.7) with β = 1/3 and ε = 2/3 (Fig. 2.3).

2The algorithms of Higdon [2002] and Hallberg [1997] can be viewed as the two extreme members of
the β-family of second-order schemes (Eqs. (2.6) and (2.7)) with ε = 1 and β ∈ [0, 1/2]. All of them have a
stability limit αmax = 2 independently of β, and they differ only by the dissipation rate that increases with β.
3TRIM is an ocean model, whose emphasis is on fine-scale coastal dynamics and coastal engineering

(Casulli and Cheng [1992]).
4Equations (2.6)–(2.13) can be remapped into Rueda’s Eqs. (50), (51), (52), and (25) using the following

our → their substitute of variables: ζ → u; u→ ρ, p; β → θp; γ → θb; θ → θ.
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Fig. 2.3 Rueda, Sanmiguel-Rojas and Hodges [2007] algorithm with their θp = 1/6 and θb = θ = 1/2.
This is equivalent to our Eqs. (2.6) and (2.13) with γ = θ = 1/2 and β = 1/6.

Despite the fact that two-time-level algorithms for shallow-water equations5 are per-
haps the most studied (Hallberg [1997], Higdon [2002, 2005], Rueda, Sanmiguel-
Rojas and Hodges [2007], Shchepetkin and McWilliams [2005]) and have an
extensive history, none of the previous work has produced a scheme which is com-
petitive with the classical FB step in terms of its stability limit relative to computational
cost (αmax = 2 with the r.h.s. computed only once per time-step for each equation).
An examination of the characteristic equations resulting from the two versions of a
predictor-corrector algorithm–Eq. (2.6) in combinationwith eitherEq. (2.7) orEq. (2.13)
– reveals that neither has sufficient degrees of freedom, despite the presence of three free
coefficients in each. This can be remedied by combining ε- and θ-weightings for the
corrector step, so it becomes

ζn+1 = ζn − iα · [(1− θ)un+1,∗ + θun
]
,

un+1 = un − iα · [θ (εζn+1 + (1− ε)ζn+1,∗)+ (1− θ)ζn
]
,

(2.14)

where we already replaced γ by 1− θ in Eq. (2.13) to make it second-order accurate.
As expected, the characteristic equation for (2.6) and (2.14) is

λ2 − λ
[
2− α2 + α4A

]
+ 1− α4B = 0, where

{
A = βεθ(1− θ)

B = (1− θ)(β − βεθ + εθ − θ)
,

(2.15)

5In its classical sense, the term shallow-water equations refers to a single-layer of shallow, hydrostatically
balanced homogeneous fluid. After Casulli and Cheng [1992] and Casulli and Cattani [1994], it is fre-
quently applied to hydrostatically balanced, stratified fluids, including ones admitting internal waves. Loosely,
it is also applicable to governing equations for stratified, multilayer modeling in isopycnic coordinates.
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and it reverts back to Eq. (2.9) if θ = 1/2.6 Substitution of λ = e±iα and Taylor-series
expansion leads to

α4
(
1

12
− A− B

)
± iα5B + α6

(
B

2
− 1

360

)
+O(α7) = 0, (2.16)

where the absence of a α3-term guarantees second-order accuracy for any combination of
β, θ, and ε. Obviously, one cannot eliminate bothO(α5) andO(α6) terms simultaneously.
To achieve third-order accuracy, one needs to satisfy A+ B = 1/12, which leads to the
condition

ε = 1+ 1

12θ(1− θ)
− β

θ
, (2.17)

and turns A and B in Eq. (2.15) into

A = (1− θ)
(
C2 − (β − C)2

)
B = (1− θ)

(
(β − C)2 − C2 + 1

12(1− θ)

)
⎫⎪⎬⎪⎭ where C = θ

2
+ 1

24(1− θ)
.

(2.18)

The expression for B can be made equal to zero to eliminate O(α5) term in Eq. (2.16)
only when θ > 0.945,7 resulting in a non-dissipative fourth-order algorithm; however, it
has unattractive properties: a significant portion of theα-rangewithin the limit of stability
yields a wrong phase speed without providing any damping at all, and the coefficients
in Eq. (2.14) are no longer non-negative because values of (θ, β) which make B = 0
also result in ε > 1 as follows from Eq. (2.17); e.g., θ > 0.945 yields β = 1.230 and
ε = 1.302. For 0 ≤ ε ≤ 1, it is only possible to minimize the dissipation by selecting

β = θ

2
+ 1

24(1− θ)
(2.19)

for any θ, which is still treated as a free parameter.
Algorithms of this kind become unstable when the two modes meet at some point on

the real axis, after which one of them leaves the unit circle through either λ = −1 or
λ = +1, whichever occurs earlier in α. Substituting λ = ±1 into Eq. (2.15) yields

λ = −1: 4− α2 + α4(A− B) = 0,
λ = +1: α2

[
1− α2(A+ B)

] = 0. (2.20)

6After setting ε = 1 in Eq. (2.15), this also coincides with Eq. (53) from Rueda, Sanmiguel-Rojas and
Hodges [2007] if θb is replaced with 1− θ there.
7The minimum possible value of θ which makesB = 0 in Eq. (2.18) occurs when β = C (hence eliminating

the first quartic term in the expression forB) andC2 = 1/[24(1− θ)], which after substitution of the expression
for C yields a quartic equation for θ alone. Its only solution within the range of interest, 0 < θ < 1, is θ =
0.9452697779. Any change in β relative to β = C results in a larger value of θ.
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The first line results in α2max =
(
1±√1+ 16(A− B)

)/[2(A− B)] where the sign ±
must be chosen to be the same as the sign of (A− B). The solution exists only if
A− B < 1/16. AsA− B → 1/16, then αmax →

√
8, which is the largest stability limit

when this limitation applies. (Note that αmax = 2 in the case of A− B = 0 and changes
continuously when A− B changes sign.) The second line in Eq. (2.20) yields α2max =
1/(A+ B), which with Eq. (2.17) leads to a less restrictive αmax =

√
12 for the entire

subset of third-order algorithms. Figure 2.4 summarizes this for the space of parameters
θ, β, and ε within the domain to avoid negative coefficients in Eq. (2.14), 0 ≤ θ and
ε ≤ 1. In contrast, β > 0 can, in principle, exceed 1 because no coefficient like 1− β

is present in Eq. (2.6). This figure reveals the existence of an area where the stability is
limited only by the lower line in Eq. (2.20); i.e., none of the modes ever leaves the unit
circle through λ = −1.We are therefore interested in (β, θ)-pairs from the portion of the
shaded area in Fig. 2.4 just below the upper solid bold line that corresponds to ε = 1.
Furthermore, to minimize the O(α5) truncation term, we are interested in algorithms
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Fig. 2.4 Stability map for the two-parameter (β, θ)-family of third-order RK2 algorithms (Eqs. (2.6) and
(2.14)) with ε set to satisfy Eq. (2.17). Thin contours show the difference ofA− B fromEq. (2.18) as a function
of (β, θ), which controls the stability limit due to one of themodes leaving the unit circle at λ = −1. The shaded
area corresponds to A− B > 1/16, where this no longer happens; hence, the stability range is limited only by
the mode leaving through λ = +1 resulting in αmax =

√
12≈ 3.4641 for all settings within the shaded area.

Superimposed bold solid curves correspond to ε = 0 (lower) and ε = 1 (upper); the values of (β, θ) must be
chosen between these two curves in order for the algorithm to have all non-negative coefficients in Eq. (2.17).
The bold-dashed curve corresponds to a minimal dissipation subset with β = β(θ) from Eq. (2.19). Specific
settings shown on this map are R (Rueda, Sanmiguel-Rojas and Hodges [2007]) and ∗ (Shchepetkin and

McWilliams [2005], also Fig. 2.1). The points +, x, and o refer to Fig. 2.5.
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with β and θ related by Eq. (2.19) as represented by the bold-dashed line in Fig. 2.4.
Remarkably, this line follows the maximum of A− B for any given θ so that settings
which minimize the truncation error are also optimal for stability.
Characteristic roots for three algorithms from the shaded area are shown in Fig. 2.5.

The one with θ = 0.734 corresponds to just after entrance into the shaded area along

� 5 0.734, � 5 0.523641604, 	 5 0.71340818 � 5 5/6, � 5 2/3, 	 5 4/5

� 5 � 5     1  » 0.9082482, 	 5 1
1
2

1
6!ß

Fig. 2.5 Characteristic roots for the RK2 algorithm (Eqs. (2.6) and (2.14)) with coefficients chosen to yield
third-order accuracy and minimal dissipation (i.e., both conditions (Eqs. (2.17) and (2.19)) are met) for three
different values of θ. In the case of θ = 0.734, the two arms meet each other at λ ≈ −0.7 after which one
of them proceeds along the real axis toward λ = −1 but stops when nearly reaching this point and reverses
direction, continuing toward the center. (Note that roots corresponding to α = 7π/8 and α = 15π/16 are very
close to each other, which indicates the existence of a stagnation point for λ = λ(α) in the vicinity (smaller
values of θ result in one of the arms exiting the circle at λ = −1, as it occurs in Fig. 2.1, while larger θs
move the reversal point closer to the center). Stability is limited by the other arm reaching λ = +1 at α =

αmax =
√
12, which is also the stability limit for the other two panels in this figure.
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the dashed line8 (denoted as “+” in Fig. 2.4). The overall behavior of the algorithm
is similar to that in Fig. 2.1 except that it has slightly lower dissipation. More impor-
tantly, after the two arms meet each other at λ ≈ −0.7, one of them continues toward
the negative real axis, but instead of exiting at λ = −1, it stops there, reverses direc-
tion, and continues toward the center. Note the existence of the stagnation point
discussed in the caption. Setting θ slightly smaller than 0.734 causes this mode to exit
at λ = −1.
Increasing θ beyond 0.734 while following the dashed line in Fig. 2.4 moves the

stagnation point toward the center of the unit circle, and subsequently it changes the
behavior of the algorithm in the vicinity of the point where the two arms meet each
other. For θ = 5/6 (denoted as x in Fig. 2.4), they no longer approach the real axis at a
90-degree angle, but rather they bend inward and touch the real axis. The portion of the
α-spectrum for which the roots λ are located on the real axis to the left of the merg-
ing point disappears when θ increases beyond 5/6. This is beneficial for the algorithm
because phase increments ofα beyondπ arewithin the aliasing range: wavenumber com-
ponents corresponding to them cannot be propagated along the grid, so if the algorithm
is used in this regime, these signals must be damped. Further increase of θ changes this
behavior again. Instead of approaching the real axis, the arms bend inward, resulting in a
highly dissipative algorithm for the upper portion of the spectrum, 13π/16 ≤ α <

√
12.

Figure 2.5, lower left, shows the characteristic roots for an algorithm with maximum
possible β and θ along the minimal dissipation curve with all-non-negative coefficients
in Eqs. (2.6) and (2.14) (this is the point o in Fig. 2.4, located at intersection of the bold
dashed and solid ε = 1 lines).9 Variation of θ within the range 0.734 ≤ θ ≤ 0.91 causes
onlyminor effects on the behavior of this algorithmwithin the lower, physically accurate,
portion of its spectrum, |α| < π/2. All three examples on Fig. 2.5 demonstrate
very small numerical dispersion and a dissipation-dominant truncation error outside
this range.
This class of time-stepping algorithms is an attractive choice for isopycnic and

high-resolution coastal engineering models because it is a two-time-level scheme that
combines nicely with positive-definite advection algorithms as well as with wetting-
and-drying schemes that also require the use of limiters. Having all non-negative
coefficients in front of the r.h.s. terms in a time-stepping scheme is crucial (Stelling
andDuinmeijer [2003]). Its accuracy, stability, and efficiency are superior tomost of the
known algorithms. It is somewhat less attractive for z- or σ-coordinatemodels in the con-
text of long-term, large-scale simulation because it is incompatible with centered vertical
advection needed to avoid long-term drift: although this requirement is mitigated relative
to forward-in-time stepping, some degree of upstream-biasing of advection schemes is

8The exact value of θ for the point of entry into the shaded area in Fig. 2.4 comes from the equation,(
θ2 − 1

6

)
(1− θ)2 − 1− θ

8
+ 1

144
= 0, derived by substituting expressions forA, B, andC from Eq. (2.18)

along with the condition β = C from Eq. (2.19) into A− B = 1/16. This yields θ = 0.7332939955221.
9Since this choice belongs to ε = 1 – family, it can be used without modification in the TRIM code

(Rueda,Sanmiguel-Rojas andHodges [2007]), except for setting coefficients θ, θp = 1/2+√1/6 and θb =
1/2−√1/6 in their Eqs. (51), (52), and (25).
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required for stability if RK2-type time-stepping is used.10 The existence of two-time-
level, predictor-corrector algorithms with a stability limit αmax beyond 3 has been long
overlooked, and, in fact, this makes it competitive with the FB-type algorithms consid-
ered later in this section in terms of computational efficiency (i.e., the ratio of the stability
limit to the number of r.h.s. computations for each equation).

2.2. LF–TR or LF–AM3 with FB feedback

Another possibility is an algorithm comprised of a LF predictor substep followed by
either a two-time TR or a three-time AM3 corrector:

ζn+1,∗ = ζn−1 − 2iα · un,

un+1,∗ = un−1 − 2iα · [(1− 2β) ζn + β
(
ζn+1,∗ + ζn−1)], (2.21)

and

ζn+1 = ζn− iα ·
{(
1

2
− γ

)
un+1,∗ +

(
1

2
+ 2γ

)
un − γun−1

}
,

un+1 = un− iα ·
{(
1

2
− γ

)[
εζn+1+ (1− ε)ζn+1,∗]+(1

2
+ 2γ

)
ζn − γζn−1

}
,

(2.22)

where the parameters β and ε introduce FB-feedback during both stages while γ controls
the type of corrector scheme. Without FB-feedback, the standard algorithm is

β = ε = 0 ⇒

⎧⎪⎪⎨⎪⎪⎩
γ = 0 ⇒ LF–TR αmax =

√
2

γ = 1/12 ⇒ LF–AM3 αmax = 1.5874
γ = 0.0804 ⇒ max stability αmax = 1.5876 ,

which is one of the most efficient and attractive synchronous algorithms (cf., Fig. 20 in
Shchepetkin andMcWilliams [2005]).
Following exactly the same path as for RK2 above, we derive a set of constraints for

coefficients β, γ , and ε to achieve the specified orders of accuracy (Shchepetkin and
McWilliams [2005]):

third-order: γ = 1

12
∀ β, ε, (2.23)

fourth-order: above and β = 7

30
− ε

6
∀ ε, (2.24)

fifth-order: both above and − 5
6

(
ε− 11

20

)2
− 1603
2400

= 0 . (2.25)

10For example, quick advection is asymptotically unstable in combination with forward-in-time stepping.
(In contrast, quickest which explicitly contains the second-order, time-dependent terms is stable.) However, as
discussed in Rueda, Sanmiguel-Rojas and Hodges [2007], quick is stable in combination with RK2 while
centered scheme is asymptotically unstable.
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No set of coefficients can satisfy the condition for fifth-order accuracy, so we can only
minimize the leading-order truncation term by choosing ε = 11/20, hence β = 17/120
and γ = 1/12. This yields a fourth-order schemewith extremely small numerical disper-
sion and dissipation within the whole range of its numerical stability, αmax = 1.851640
(Fig. 2.6 lower-left panel).
Since a primary goal is to extend the stability range, we progressively give up one

order of accuracy at a time, which frees one or two parameters, ε, or (ε, β) be available
for tuning. Figure 2.6 (upper-left) shows a map of the stability range αmax in an ε,
β-plane, for all third-order accurate schemes (hence γ = 1/12 is always respected). The
subset of fourth-order schemes is represented by the diagonal line, β = 7/30− ε/6,
that is nearly parallel to the edge of stability. Overall, there are two stability maxima in
the ε, β-plane, and remarkably, the choices corresponding to maximum stability are not
far away from the minimal truncation error within the fourth-order subset. As a result,
ε = 0.83, β = 0.126 corresponds to the largest possible αmax = 1.958537, and it is also
very accurate within the whole stability range (Fig. 2.6, upper-right). It has a 25% larger
stability limit than the 1.5874 of the original LF–AM3 scheme with β = ε = 0. The
secondary maximum (lower-left) is less attractive and, in fact, produces similar leading-
order numerical dissipation and dispersion errors as does β = ε = 0 LF–AM3, albeit
with a wider stability range.
Searching for the maximum stability range in γ, β, ε-space while maintaining second-

order accuracy (hence γ �= 1/12 but is otherwise an adjustable parameter) requires
essentially the same kind of analysis as in Figure 2.6 (upper-left) but repeated for differ-
ent values of γ . This is summarized in Fig. 2.7 (upper-right), with the upper-left panel
showing a particular example of αmax = αmax(ε, β) for γ = 0. It turns out that the sta-
bility range can be expanded significantly with a decrease of γ , however, at the expense
of accuracy degradation. Given that these schemes are dissipative, this is acceptable
and in fact desirable for the barotropic mode (since fast motions are fast-time-averaged
anyway) and for applications where the wave propagation is not of primary interest.
Thus, the introduction of FB-feedback into a LF–TR (γ = 0) scheme can achieve up to
70% gain in stability range relative to β = ε = 0 (Fig. 2.7, lower-left). Going beyond
γ < 0 is not desirable due to loss of accuracy. Still, none of these schemes can achieve
an efficiency comparable to the classical FB scheme in terms of the ratio of αmax and
the number of r.h.s. computations.

2.3. Generalized FB with AB2–AM3

To approach the problem from the opposite direction – starting with a FB scheme and
attempting to construct an algorithm compatible with both advection and wave propa-
gation – we consider an explicit algorithm comprised of anAB2-like step for ζ followed
by an AM3-like step for u:

ζn+1 = ζn − iα
[
(1+ β)un − βun−1],

un+1 = un − iα
[
(1− γ − ε)ζn+1 + γζn + εζn−1]. (2.26)
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Fig. 2.6 Upper left: stability limit αmax as a function of ε and β with γ = 1/12 (i.e., among all third-order
accurate schemeswithin the generalizedLF-AM3 family).The empty area in the upper-right corner corresponds
to schemes with an asymptotic instability for the physical modes. The straight dashed line β = 7/30− ε/6
approximately parallel to the edge corresponds to zero O(α5) truncation term (i.e., a fourth-order accurate
subset). The asterisk (*) and cross (+) on this line denote locations of the minimal possible truncation error
and maximum stability limit among the fourth-order algorithms, which are not far away from each other. Note
the stability maxima at (ε, β) = (0.83, 0.126), just on the edge of asymptotic instability and (0.39, 0.044).
The three remaining panels show the characteristic roots for the β and ε choices yielding the indicated

specific properties.

Obviously, it reverts to the classical FB scheme if β = γ = ε = 0. Its characteristic
equation is

λ2− [2− α2 (1− γ − ε) (1+ β)
]
λ+ 1− α2 (β − γ − 2βγ − βε)

+ α2 (ε+ βε− βγ) λ−1 − α2βελ−2 = 0 .
(2.27)
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Fig. 2.7 Upper left: map of αmax = αmax(ε, β) for γ = 0. Upper right: αmax and the corresponding ε and β

as functions of γ . Lower panels show examples of β and ε choices that give the maximum stability range for
a given γ .

After substitution of λ = e±iα and Taylor-series expansion in α, a set of constraints arise
for achieving progressive orders of accuracy,

second-order: γ = β − 2ε ∀β , ε, (2.28)

third-order: γ = β − 2β2 − 1
6

and ε = β2 + 1

12
∀β, (2.29)

fourth-order: γ, ε as above and
1

12
− β

12
− β3 = 0 ⇒ β = 0.3737076.

(2.30)
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The second-order accuracy condition can be interpreted as a time-centering balance
rule: once the r.h.s. for ζ is placed at tn + (1/2− δ) �t, the r.h.s. for u is centered at
tn + (1/2+ δ) �t with the same offset δ ≡ 1/2− β from the midway time tn +�t/2.
The classical FB scheme obeys this rule, and it is also respected by the third- and
fourth-order constraints. The third-order condition introduces a single-parameter family
of schemes with a useful range of 0 < β ≤ 1/2 (Fig. 2.8).
The leading-order truncation term has a dissipative character, and it decreases with

increasing β. It vanishes at β = 0.3737076 when the scheme becomes fourth-order, and
it changes sign thereafter; this means that the physical modes become asymptotically

� 5 0, � 5 21/6, 	 51/12  
max 5 3!ß

� 51/2, � 5 21/6, 	 51/3 
*
max 5 3/2!ß

� 5 0.3737076 (fourth-order),  
max 5 2!ß

Fig. 2.8 Characteristic roots for the AB2–AM3 algorithm (Eq. (2.26)) with three different choices for β.
In all three cases, the remaining parameters γ and ε satisfy the third-order accuracy condition. The leading
third-order, dissipative truncation term changes sign at β = 0.3737076, resulting in fourth-order accuracy.
The scheme becomes weakly unstable beyond this point (note that physical modes on the left-lower panel are
slightly outside the unit circle, reaching |λ| ≈ 1.01 for α ≈ π/3). The stability range decreases with increasing
β, and for β =< 1/2, the AB2-type time-step is unconditionally unstable for an advection equation with

centered spatial discretization.
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unstable beyond this β value. Leaving the weak asymptotic instability aside, the overall
stability range is limited by one of the computational modes that leaves the unit circle
at λ = −1, hence

αmax =
√
3

/√
1+ β

2
+ 6β3, (2.31)

which decreases with β. Although potentially attractive and simple, this algorithm does
not combine naturallywith the other hyperbolic terms (advection, Coriolis) because there
is no overlap in its β range: the AB2-like time-step is asymptotically unstable for the
advection equation when β ≤ 1/2 while the algorithm (Eq. (2.26)) for the wave system
needs β ≤ 0.3737076, and in fact, β = 0 is desirable to achieve the widest possible
stability range.

2.4. Generalized FB with an AB3–AM4 step

To overcome the limitation of Eq. (2.26), we explore the possibility of using a three-time,
AB3-like step for ζ-equation followed by a four-time AM4-like step for u,

ζn+1 = ζn − iα

[(
3

2
+ β

)
un −

(
1

2
+ 2β

)
un−1 + βun−2

]
(2.32)

un+1 = un − iα

[(
1

2
+ γ + 2ε

)
ζn+1 +

(
1

2
− 2γ − 3ε

)
ζn + γζn−1 + εζn−2

]
,

where the r.h.s. for both equations are already time-centered at tn +�t/2 regardless of
the values forβ, γ , and ε (i.e., the r.h.s. time-centering rule (Eq. (2.28)) for theAB2–AM3
scheme is already respected). As a result, second-order accuracy is always guaranteed.
Overall, the AB3-type (β-family) time-step for the advection equation is stable as long
as β > 1/6 (otherwise, it is subject to an asymptotic instability of an AB2-type), and
it is third-order accurate if β = 5/12 while a smaller value of β = 0.281105 yields the
largest stability range. This time-step naturally combines with the Coriolis and advection
terms (both centered and upstream-biased).
A viable choice would be a straightforward combination of third-order accurate AB3

(hence β = 5/12) with either a TR or a third-order accurate Adams-Moulton scheme
(γ = −1/12, ε = 0), resulting respectively in second- and third-order accuracy with a
stability range αmax slightly exceeding unity (Fig. 2.9). This is about 50% more effi-
cient than a synchronous third-order AB3 scheme for both equations (αmax = 0.71) but
has only half the efficiency of the classical FB scheme. In the remaining part of this
section, we will show that the stability range of algorithm (Eq. (2.32)) can be signifi-
cantly expanded by relaxing the condition β = 5/12, which is in fact the key to utilizing
its full potential.
The analysis of the algorithm (Eq. (2.32)) follows the same path as for AB2–

AM3 above. It again leads to a collection of conditions to achieve progressive
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AB3–TR: � 5 5/12, � 5 	 5 0

max 5 1.1441551

AB3–AM3: � 5 5/12, � 5 21/12, 	 5 0

max 51.003859

Fig. 2.9 The algorithm (Eq. (3.1)) with a third-order accurateAB3 (hence β = 5/12) first step. These “naive”
settings result in a stability limit of order of unity. The algorithm on the left was the original version for the

main time-step in the ROMS family of codes, and it is still widely used.

orders of accuracy,

third-order: γ = 1

3
− β − 3ε ∀β, ε, (2.33)

fourth-order: β = 1

12
− ε and γ = 1

4
− 2ε ∀ε, (2.34)

fifth-order:
7

120
+ 2
3
ε+ ε2 = 0 ⇒ ε = −1

3
±
√
190

60
; β, γ from above.

(2.35)

The fifth-order algorithm is asymptotically unstable and has αmax = 1.0145 limited by
one of the computational modes leaving the unit circle at λ = −1 (Fig. 2.10, left).
Overall, this is not an attractive choice due to both its modest stability range and the
asymptotically instability of its physical modes.
Giving up, one order of accuracy allows us to treat ε as an adjustable parameter that

can be tuned to achieve the maximum stability range. This search yields ε = 1/12 and
a stability limit of αmax =

√
3 (Fig. 2.10, right). (Here, one can substitute β = 0 and

γ = ε = 1/12 into the characteristic equation for Eq. (3.1) and verify that λ = −1 is
a double root if α2 = 3.) An obvious drawback for this algorithm is that β = 0 means
the time-stepping for the ζ-equation is only AB2, which is asymptotically unstable for
advection and Coriolis force.
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fifth-order accuracy with 
max 51.0145 � 5 0 � 5 	 51/12: 
max 5 3!ß

Fig. 2.10 Characteristic roots for the AB3–AM4 algorithm (Eq. (3.1)) with β, γ , and ε set to achieve either
fifth-order accuracy (left panel) or the maximum possible stability limit while maintaining fourth-order accu-
racy (right panel). Note that at the optimum ε, two computational modes meet at λ = −1, after which one of
them continues out of the unit circle along the negative real axis. If ε > 1/12, the meeting occurs outside the
circle (i.e., the computational modes leave the circle before they meet), while a smaller ε moves the meeting
point inside, resulting in an earlier escape of one of the modes along the negative imaginary axis. Either way,

αmax ends up being smaller than
√
3 if ε �= 1/12.

The third-order, two-parameter (β,ε) family can reach up to αmax = 1.939 (Fig. 2.11,
upper-left) that is now very close to that of the classical FB scheme. Its β value lies
within the desirable range of 1/6 < β < 5/12 (i.e., the range of stable choices for the
advection equation with spatially centered schemes, as well as for Coriolis force). The
only undesirable property of this algorithm is its nearly purely dispersive truncation
error, resulting in weak damping of frequency components that are not accurately rep-
resented. This issue can be addressed by a slight bias of β away from the maximum
stability (Fig. 2.11, upper-right), which leads to an insignificant decrease in αmax. Since
this is achieved with a smaller value of β, the stability range for advection and Coriolis
force is also decreased.
From a practical point of view, it is attractive to chose β = 0.281105, corresponding

to the largest possible stability range for advection and Coriolis force within the β-family
forAB3-like schemes, accompanied by γ = 0.088 and ε = 0.013 that yield a sufficiently
large stability range for waves (Fig. 2.11, lower-left) and a dissipation-dominant trunca-
tion error. This compromise gives second-order accuracy, and our experience is that it
is robust even applied to the full nonlinear system (Section 4). Thus, it is the method of
choice for the barotropic mode.
To summarize Eq. (3.1), we note that the crucial step to obtain an algorithm with a

stability limit comparable to that of FB (αmax = 2) is to reduce the curvature parameter
of the AB3-like step for ζ by setting β < 5/12. This brings a tension between the need
to keep β relatively large to avoid an asymptotic instability for centered advection and
Coriolis force, and the desire to expand themaximum stability range for the wave system
that favors bringingβ closer to zero.Asimultaneous optimization of both stability ranges
yields a useful range of 0.21 < β < 0.281105. Remarkably, in this range, the AM4-like



146 A. F. Shchepetkin and J. C. McWilliams

� 5 0.232, 	 5 0.00525: maximum possible
amax��, 	 (
max 5 1.939)

� 5 0.21, 	 50.0115: monotonic
dissipation (
max 5 1.874)

� 5 0.281105, 	 5 0.013, � 5 0.0880:

max 5 1.7802

Fig. 2.11 Upper left: AB3–AM4 scheme (Eq. (3.1)) with the maximum possible stability range and third-
order accuracy for λ = λ(α). The physical modes touch the unit circle at α ≈ ±2π/3. Larger values of β

result in the physical modes going outside the circle near these α values (as in Fig. 2.9). Smaller β values
cause an earlier escape of one of the computational modes along the negative real axis. Upper right: a third-
order scheme with parameters slightly deviating from optimum stability to ensure that numerical dissipation
increases monotonically with α. Lower left: a multipurpose compromise with β set to maximize the stability
range for the advection equation, while ε and γ are set to yield a good stability range for the wave system

while maintaining monotonically increasing dissipation.

coefficients in the second equation in (3.1) end up quite different from that in the classical
AM4 weights, and one can verify that terms with ζn+1, ζn, ζn−1, and ζn−2 in the r.h.s.
all have positive coefficients for all of the cases shown in Fig. 2.11.

2.5. Summary for time-stepping algorithms

We have analyzed four different classes of algorithms for a wave system that use a
degree of FB feedback to achieve better accuracy for modeling the phase speed for wave



Computational Kernel Algorithms for Fine-Scale, Multiprocess, Longtime Oceanic Simulations 147

motions and/or extend the stability limit αmax over their previously known prototypes.
Although in most oceanic applications external and internal waves are not of major inter-
est, the wave properties of the discretized system are always a primary concern from
a numerical viewpoint because they are likely to impose the most restrictive limit on
the time-step size in flows with small Froude number. Unlike for a simple advection
equation, where one can construct a stable algorithm using a simple forward-in-time
stepping and upstream-biased, semi-Lagrangian discretization in space, the stability of a
wave system cannot rely entirely on a specially designed spatial operator.11 Thus, stabil-
ity of an algorithm with respect to wave motions is always in consideration, even though
the final selection of the time-stepping scheme among the ones described above depends
on the choice of algorithms for spatial discretization that, in turn, depends on the physical
application. The algorithms in Section 2.2 are fully compatible with centered advection
for the tracer and momentum equations, and they naturally incorporate the treatment of
Coriolis force using a synchronous LF–AM3 predictor-corrector step. The same remark
applies to the algorithms in Section 2.4; however, compatibility with centered advection
imposes some restriction on the choice of coefficients (formally β > 1/6 in Eq. (3.1)
but in practice we use a greater value of β), which lead to a compromise in the stability
limit αmax for wave motions. In contrast, algorithms in Section 2.3 are incompatible
with centered advection because of weak instability of second-order Adams-Bashforth
step (one needs at least small viscosity to mitigate this, or introduce “a forward bias”
into AB2 extrapolation coefficients, Campin, Adcroft, Hill and Marshall [2004],
which is in essence setting β > 1/2 in Eq. (2.26) in it would be a single advection equa-
tion). Similarly, the RK2-type algorithms in Section 2.1 always require some degree
of upstream bias in the advection scheme for stability because RK2 is asymptotically
unstable in combination with centered advection. Monotonicity-preserving advection
schemes typically require two-level time-stepping and have built-in compatibility with
forward-in-time stepping but are incompatible with algorithms that have negative coef-
ficients in their temporal interpolation. This makes RK2 preferable if monotonicity is
desired (e.g., in modeling estuaries characterized by sharp fronts in temperature and
salinity). The time-stepping algorithms described here are just linearizations of more
general algorithms for the full nonlinear system (Section 4) which involve other conside-
rations in their design (e.g., conservation properties), resulting in additional selection
criteria.

3. Vertical mode-splitting

Although vertical mode-splitting has been used in oceanic modeling since the very
beginning (Berntsen, Kowalik, Sælid and Sørli [1981], Bleck and Smith [1990],
Blumberg and Mellor [1987], Bryan and Cox [1969], Killworth, Stainforth,

11In principle, one can separate signals propagating in different directions and construct an approximate
Riemann solver (Roe [1981]), which essentially relies on upstream-biased algorithms for stability. However,
this is not a viable option for oceanic modeling because of complexity (due to implied normal mode decom-
position in vertical direction in the case of 3D mode (Shulman, Lewis and Mayer [1999]), computational
cost, large numerical dissipation, and the implied directional splitting that is not desirable.
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Webb and Paterson [1991]), a mature theoretical understanding of its stability and
accuracy is relatively recent (Hallberg [1997],Higdon andBennett [1996],Higdon
and de Szoeke [1997], Higdon [1999, 2002], Nadiga, Hecht, Margolin and
Smolarkiewicz [1997], Shchepetkin and McWilliams [2005], Skamarock and
Klemp [1992]). The major issues to be resolved in this approach are (i) an inaccu-
rate separation of fast- and slow-time (i.e., barotropic and baroclinic) components in the
PGF that may cause “leakage” of fast-time signals into the slow evolution and numerical
instability even for linearized systems (Higdon andBennett [1996]); (ii) the time delay
in calculating the vertically integrated r.h.s. terms of the slow component can, in effect,
be a forward-in-time treatment of the barotropic mode, with associated loss of accuracy
and numerical instability; (iii) an aliasing of fast barotropic signals due to sub-sampling
in the baroclinic time-stepping; (iv) a loss of conservation and constancy preser-
vation properties for tracers in both split-explicit (Griffies, Pacanowski, Schmidt
and Balaji [2001]) and implicit free-surface models (Adcroft and Cadmin [2004]);
(v) the compressibility effect in EOS complicates the definition of the barotropic PGF
with the Boussinesq approximation; and (vi) the bottom stress must be known before
the barotropic mode starts at every baroclinic time-step.

3.1. Tracer conservation and constancy preservation

In an incompressible fluid, the equation formaterial tracers q can bewritten in two forms,
respectively, emphasizing the Lagrangian-parcel and volume-integral conservation
properties:

advection form:
∂q

∂t
+ (u · ∇)q = 0, (3.1)

conservation form:
∂q

∂t
+ ∇ · (uq) = 0. (3.2)

The continuity (nondivergence) equation ∇ · u = 0 plays the role of a compatibility
condition making these two forms equivalent. If q is initially uniform in space, parcel
conservation implies that it remains so: the property of constancy preservation.
Oceanic models always use the conservation form as the prototype for discrete

equations,

�V n+1
i,j,k qn+1

i,j,k = �V n
i,j,kq

n
i,j,k −�t

[̃
q
i+ 12 ,j,kUi+ 12 ,j,k − q̃

i− 12 ,j,kUi− 12 ,j,k + q̃
i,j+ 12 ,kVi,j+ 12 ,k

− q̃
i,j− 12 ,kVi,j− 12 ,k + q̃

i,j,k+ 12Wi,j,k+ 12 − q̃
i,j,k− 12Wi,j,k− 12

]
, (3.3)

where discrete concentration values qi,j,k are understood as averages over the local

control-volumes �Vi,j,k; i.e., qi,j,k = 1

�Vi,j,k

∫
�V n

i,j,k

q(x, y, z) d3V . The tilde operator

q̃
i+ 12 ,j,k denotes an appropriate translation algorithm from grid-box averages to interface
values, either as a simple spatial interpolation or as one involving both space and time in
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a semi-Lagrangian approach. U
i+ 12 ,j,k, Vi,j+ 12 ,k, and W

i,j,k+ 12 are volume fluxes across
grid-box interfaces. The discretized continuity equation,

�V n+1
i,j,k =�V n

i,j,k −�t ·
[
U

i+ 12 ,j,k −U
i− 12 ,j,k +V

i,j+ 12 ,k −V
i,j− 12 ,k +W

i,j,k+ 12 −W
i,j,k− 12

]
,

(3.4)

is formally consistent with Eq. (3.3) for qi,j,k ≡ 1; therefore, as long as Eq. (3.4) holds,
this time-stepping scheme has both conservation and constancy preservation.
The control volumes�Vi,j,k = Hi,j,k�Ai,j in Eqs. (3.3) and (3.4) are time-dependent

because grid-box heights Hi,j,k depend on ζ(x, y, t),

Hi,j,k = z
i,j,k+ 12 − z

i,j,k− 12 where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z
i,j,k+ 12 = z

(0)
i,j,k+ 12

+ ζi,j

⎛⎝1+ z
(0)
i,j,k+ 12
hi,j

⎞⎠
z
(0)
i,j,k+ 12

≡ z(0)
(
ξi,j, ηi,j, sk+ 12

)
, k = 0, 1, . . . , N.

(3.5)

The z(0) comprises a set of unperturbed (i.e., corresponding to ζ ≡ 0) isosurfaces of
a terrain-following vertical coordinate, s

k+ 12 ∈ [−1, 0]. The lowest surface, z
i,j, 12

≡
z
(0)
i,j, 12

≡ −hi,j , follows the bottom topography. Since z
(0)
i,j,N+ 12

≡ 0, the highest surface
z
i,j,N+ 12 ≡ ζi,j follows the oceanic top. Otherwise, the vertical coordinate transformation

is a general one. In Eq. (3.5), the grid-box heights are proportionally stretched relative
to their unperturbed values, H(0)

i,j,k; i.e.,

Hi,j,k = H
(0)
i,j,k ·

(
1+ ζi,j

hi,j

)
. (3.6)

The loss of constancy preservation in Eq. (3.3) can occur if �V n+1
i,j,k does not come

from Eq. (3.4), but rather is computed with a barotropic mode that uses a different time-
step and time-stepping algorithm and, furthermore, is averaged in fast-time, replacing

ζ → 〈ζ〉n+1 =
M∗∑
m=1

amζm, to prevent aliasing of the barotropic frequencies unresolved

by the baroclinic time-stepping. A vertical summation of Eq. (3.4) yields

ζn+1
i,j = ζn

i,j −
�t

�Ai,j

·
N∑

k=1

[
U

i+ 12 ,j,k − U
i− 12 ,j,k + V

i,j+ 12 ,k − V
i,j− 12 ,k

]
. (3.7)

This is not necessarily consistent with the fast-time-averaged free surface computed by
the barotropic mode, implying that

〈ζ〉n+1 �= 〈ζ〉n −�t · div〈U〉, (3.8)
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where indices n and n+ 1 correspond to the slow (baroclinic) time-step, and the overbar
in U means a vertically integrated volume flux.
Conversely, Eq. (3.4) is used for the computation of vertical velocity: start with

W
i,j, 12

= 0 at the bottom and recursively proceed with

W
i,j,k+ 12 = −

k∑
k′=1

{
�V n+1

i,j,k′ −�V n
i,j,k′

�t
+ U

i+ 12 ,j,k′ − U
i− 12 ,j,k′ + V

i,j+ 12 ,k′ − V
i,j− 12 ,k′

}
(3.9)

for all k = 1, 2, . . . , N.

This essentially defines W
i,j,k+ 12 as the finite-volume, finite-time-interval volume flux

across themoving interface between vertically adjacent grid boxes,�Vi,j,k and�Vi,j,k+1.
This procedure does not automatically guarantee that the surface kinematic boundary
condition,

W
i,j,N+ 12 = 0, (3.10)

is satisfied if �V n+1
i,j,k comes from the barotropic mode with a different time-stepping.

To ensure that slow-time continuity equation (Eq. (3.4)) is consistent with the
barotropic mode, we must impose a constraint on the vertical integrals of the volume
fluxes, U

i+ 12 ,j,k and V
i,j+ 12 ,k,

N∑
k=1

U
i+ 12 ,j,k =

〈〈
U
〉〉n+ 12
i+ 12 ,j

and
N∑

k=1
V

i,j+ 12 ,k =
〈〈
V
〉〉n+ 12
i,j+ 12

, (3.11)

so that

〈ζ〉n+1i,j = 〈ζ〉ni,j −
�t

�Ai,j

[〈〈
U
〉〉n+ 12
i+ 12 ,j

− 〈〈U 〉〉n+ 12
i− 12 ,j

+ 〈〈V 〉〉n+ 12
i,j+ 12

− 〈〈V 〉〉n+ 12
i,j− 12

]
(3.12)

is consistent with the change in 〈ζ〉 between two consecutive baroclinic time-steps. To
define the second averaging operator 〈〈...〉〉, we note that a summation of consecutive
barotropic time-steps yields

ζm+1 = ζm − �t

M
· divU

m+ 12 , hence ζm = ζ0 − �t

M

m−1∑
m′=0

divU
m′+ 12 , (3.13)

where m is the fast-time index and M is the integer mode-splitting ratio (i.e., ratio of
commensurate baroclinic and barotropic time-step sizes). The m = 0 starting field ζ0

corresponds to the baroclinic step n, and the barotropic mode restarts at the end of every
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baroclinic time-step, 〈ζ, U, V 〉n+1→ ζ0, U
0
, V

0
. After applying fast-time averaging

〈...〉 to both sides of Eq. (3.13),

〈ζ〉n+1 ≡
M∗∑
m=1

amζm = ζ0 − �t

M
· div

M∗∑
m=1

[
am

m∑
m′=1

U
m′− 12

]
. (3.14)

This translates into

〈ζ〉n+1 = 〈ζ〉n −�t · div
M∗∑

m′=1
bm′U

m
′− 12

, where bm′ = 1

M

M∗∑
m=m′

am (3.15)

∀m′ = 1, . . . , M∗. The coefficients {am, m = 1, . . . , M∗} are the primary averaging
weights (Fig. 3.1) that satisfy normalization and centroid conditions,

M∗∑
m=1

am ≡ 1 and
M∗∑
m=1

m

M
am ≡ 1, (3.16)

but they are otherwise arbitrary thus far. M∗ ≥ M is the fast-time index of the last
non-zero am. We define

〈〈
U
〉〉n+ 12 ≡ M∗∑

m=1
bmU

m− 12 . (3.17)

am    p 5 2,    q 5 4
    r 5 0.28462

n 1 1n

n 1 1
m 5M

n
m 5 0 M*

bm kk kk

k k

Fig. 3.1 Relationship between the primary, {am}, and secondary, {bm}, fast-time-averaging weights. By
definition, 〈ζ〉n+1 ≡

M∗∑
m=1

amζm and
〈〈

U
〉〉n+ 12 ≡ M∗∑

m=1
bmU

m
. In order to satisfy normalization and centroid

conditions (Eq. (3.16)), the integration of the barotropicmodemust go beyond then+ 1th baroclinic step, hence
M∗ > M. In this example, the am are negative at the beginning of their sequence (i.e., they have a S-shape).
The value of this negative lobe and the meaning of parameters p, q, and r are explained in Section 3.3.



152 A. F. Shchepetkin and J. C. McWilliams

Using this in the integral constraint, Eq. (3.11) with Eq. (3.15) guarantees that Eq. (3.4)
holds exactly between baroclinic steps n and n+ 1 and, therefore, guarantees both con-
servation and constancy-preservation properties inEq. (3.3). In practice, after completion
of the barotropic time-stepping at every baroclinic time-step, five fields (〈ζ〉n+1, 〈U〉n+1,
〈V 〉n+1, 〈〈U 〉〉n+ 12 , and 〈〈V 〉〉n+ 12 ) must be available for the baroclinic integration since
〈...〉 fields cannot be expressed directly in terms of 〈...〉 fields.

3.2. Mode-splitting error in the PGF

Vertical mode-splitting separates the vertically integrated, hydrostatic, horizontal PGF,

F ≡ F [∇xζ, ζ, ∇xρ(z), ρ(z)] = − 1
ρ0

ζ∫
−h

∇xP dz = − g

ρ0

ζ∫
−h

⎡⎣ ζ∫
z

∇xρ
(
z′
)
dz′
⎤⎦ dz,
(3.18)

into a “fast” term,−gD∇xζ, and the remaining “slow”
{
....
}
terms (these are also known

as “coupling” or baroclinic-to-barotropic forcing terms),

∂ (Du)

∂t
+ · · · = −gD∇xζ +

{
gD∇xζ +F

}
. (3.19)

The fast terms are recomputed at every barotropic step, while the slow terms are held
constant since they change only once per baroclinic time-step. D = h+ ζ is total depth
of a vertical column. If the functional F contains nonlinear combinations of ζ and ρ

(i.e., ∂2F/∂ζ ∂ρ �= 0), freezing the slow terms can cause a mode-splitting error,

−gD∇xζ
′ +
{
gD∇xζ +F [∇xζ, ζ, ∇xρ(z), ρ(z)]

}
�= F

[∇xζ
′, ζ′, ∇xρ(z), ρ(z)

];
(3.20)

i.e., at the end of barotropic time-stepping when ζ → ζ′, the PGF seen by the barotropic
mode no longer matches the vertical integral of the total PGF from the same ρ and
the new ζ. Consequently, at the beginning of the new time-step when the full PGF is
recomputed, its vertical integral is no longer in equilibriumwith the state of the barotropic
mode PGF even in the case when there is no change of the σ-level ρ values between
consecutive baroclinic steps. The mismatch between the two contaminates the forcing
terms computed and the new time-step and subsequently affects the state of barotropic
mode one step later, thereby closing the feedback loop.
In isopycnic coordinates, Hallberg [1997], Higdon and Bennett [1996], Higdon

and de Szoeke [1997] found an instability of the linearized mode-split systemwith non-
dissipative time-stepping schemes (FB,LF).Their diagnosis and proposed remedieswere
that (i) mode-splitting can cause artificial mode-coupling; (ii) for some time-stepping
schemes, the mode-coupling may cause a phase lag that induces a numerical instabil-
ity similar to that of a forward time-step for a hyperbolic system; (iii) a perturbation
analysis of weakly coupled linear system shows that the instability is a resonance of an
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aliased barotropic mode subsampled at the baroclinic steps; (iv) the remedy is to redefine
barotropic mode PGF to make it be equal to the vertical integral of the 3D PGF; and
(v) a dissipative time-stepping scheme that filters the barotropic mode to prevent aliasing
or a dissipative predictor-corrector scheme (Hallberg [1997]) can be a useful way to
achieve stability.
The common justification for Eq. (3.19) is ζ � D and ρ′ ≡ ρ − ρ0 � ρ0, hence the

magnitude of the mismatch in Eq. (3.20) is O(max {(ρ′/ρ0)∇xζ , ζ∇xρ
′/ρ0

} )
relative

to O(∇xζ
)
. Among other restrictions, this implies that ρ0 must be chosen sufficiently

close to the actual density ρ to avoid a “leakage” of barotropic signals into the baroclinic
mode (Higdon [2002]). Suppose that both modes are time-stepped within but close to
their CFL limits of stability taken individually. This implies a choice ofM in Eq. (3.13)
as the ratio of the barotropic and first-baroclinic gravity-wave phase speeds adjusted by
the ratio of the stability limits of their respective time-stepping algorithms. The coupled
system may still be unstable if M > O(ρ0/ |ρ − ρ0|

)
. This is because in a Boussinesq

model using splitting (Eq. (3.19)), the barotropic pressure gradient term arising from
free surface gradient ∇xζ creates an acceleration equal to −g∇xζ independently of the
choice of ρ0. On the other hand, the net vertically integrated PGF computed by full
(baroclinic + barotropic) 3D scheme from a given density field and given state of free
surface has slightly different sensitivity to ∇xζ; it creates acceleration more similar to
−g∇x

[(
1+ ρ∗′/ρ0

)
ζ
]
where ρ∗′ depends on the deviation of local density from ρ0 in

a manner quantified later in this section. This leads to the fact that phase speed of sur-
face gravity waves as seen by the 3D part of the code is different from that seen by
the barotropic mode. To avoid numerical instability, the difference in phase increment
per one baroclinic time-step �t between the two must be smaller that allowed by CFL
criterion for the time-stepping scheme for the baroclinic mode. Since the density varia-
tion due to baroclinic effects can be estimated as large as 3% (i.e., comparable, and in
some situations larger that the ratio phase speeds of barotropic and the first baroclinic
modes) this potentially may force to chose a smaller�t than required for stability of the
baroclinic mode taken alone.
Furthermore, even if the mismatch in Eq. (3.20) is small in most cases, the primary

concern here is that it still may cause a numerical instability even if ρ variations are
small and ρ0 is chosen so that the preceding M-criterion is respected. This is due to
phase delays in computing the mismatch term associated with the organization of the
coupled time-stepping algorithm. Another remedy to mitigate the consequences of this
type of error is the use of a dissipative time filter for the barotropic mode (Section 3.3):
however, this unavoidably degrades the numerical accuracy. Either way, it is always
desirable to remove or minimize the mismatch.
Equation (3.20) suggests a general guideline for eliminating the mode-splitting

PGF error by replacing −gD∇xζ in Eq. (3.19) with the variational derivative of
F = F [∇xζ, ζ, . . .],

δF = ∂F

∂ (∇xζ)
δ(∇xζ)+ ∂F

∂ζ
δζ. (3.21)

ζ and ∇xζ are treated as independent variables for the functional partial differentiation.
In the discretized version, this corresponds to having ζi and ζi+1 as independent degrees
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of freedom that are alternatively expressible as their difference ζi+1 − ζi and average
(ζi+1 + ζi)/2. Substitution of Eq. (3.21) into Eq. (3.20) makes it into a Taylor-series
expansion,

F [∇xζ, ζ, . . .]+ ∂F

∂ (∇xζ)
∇x

(
ζ′ − ζ

)+ ∂F

∂ζ

(
ζ′ − ζ

) ≈ F
[∇xζ

′, ζ′, . . .
]
, (3.22)

resulting in a cancellation of the dominant part of the mode-splitting error: recall that the
mismatch between l.h.s. and r.h.s. of Eq. (3.22) can be estimated asO((∇x(ζ

′ − ζ))2)+
O((ζ′ − ζ)2).
Note that the net horizontal force applied to fluid element in Fig. 3.2 can be calcu-

lated as

F
i+ 12 =

ζi∫
−hi

P(xi, z) dz−
ζi+1∫

−hi+1

P(xi+1, z) dz+
xi+1∫
xi

P
(
x,−h(x)

)∂h(x)

∂x
dx

= Ii − Ii+1 + I
i+ 12 , (3.23)

z 5 2hi

z 5 2hi 1 1

z 5 0

�k � 1

�k 1 1

�k

�*

Ii 1 1/2

Ii

Ii 1 1

zi zi 1 1

�–

Fig. 3.2 Left:A segment of the vertical grid used in derivation of total vertically integrated PGF (Eq. (3.23)).
Dashed lines correspond to the unperturbed (ζ = 0) vertical coordinate and solid lines to the coordinate
perturbed according to Eq. (3.6). Right: Computation of two-way vertically averaged densities (Eq. (3.25))
for a stratified water column. The ρk is interpreted as control-volume averages, hence the area of hatched
rectangle is equal to the shaded area left from the continuous profile. Note that for a stably stratified profile,

ρ∗ is systematically smaller than ρ as illustrated here.
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where Pi(z) is hydrostatic pressure calculated separately in each vertical column,

Pi(z) = g

ζi∫
z′i

ρi(z
′) dz′. (3.24)

By introducing

ρ(x) = 1

Di

ζi∫
−hi

ρi(z
′)dz′ and ρ∗i =

1
1
2D

2
i

ζi∫
−hi

⎧⎨⎩
ζi∫

zi

ρi(z
′)dz′

⎫⎬⎭ dz, (3.25)

where Di = ζi + hi, the net force (Eq. (3.23)) can be expressed as

F
i+ 12 = g

⎡⎣ρ∗i D2
i

2
− ρ∗i+1D2

i+1
2

+
xi+1∫
xi

ρD
∂h

∂x
dx

⎤⎦. (3.26)

This corresponds to the continuous form,

∂

∂t
(Du)+ . . . = − g

ρ0

[
∇x

(
ρ∗D2

2

)
− ρD∇xh

]
= − g

ρ0

[
h2

2
∇xρ

∗ + (ρ∗ − ρ
)∇x

h2

2︸ ︷︷ ︸
F (0) (ζ=0 part)

+ h∇x

(
ρ∗ζ
)+ ∇x

(
ρ∗ζ2

2

)
+ (ρ∗ − ρ

)
ζ∇xh︸ ︷︷ ︸

F ′ (perturbation due to ζ �=0)

]
, (3.27)

where we have separatedF (0) which is independent of ζ and the remainder, (F ′). Since
the mode-coupling algorithm already performs a vertical integration of the momentum
r.h.s. terms, including the full PGF,F (0) is not further required. However,F ′ satisfies
Eq. (3.21) and is therefore a valid replacement for −gD∇xζ in Eq. (3.19) (as expected,
one can easily verify thatF ′ reverts back to −gD∇xζ if ρ is uniform, ρ∗ = ρ = ρ0).
The accuracy of mode-splitting using the decomposition of F = F (0) +F ′ fun-

damentally comes from the fact that changes in ζ from one time-step to the next do
not modify the grid-box values of density ρi,j,k. In a purely barotropic motion, fluid
parcels move up and down following changing free surface, and the grid-box locations
move together with the parcels (Eq. (3.5)), resulting in no change in ρi,k. Hence, ρ∗
and ρ in Eq. (3.25) are also nearly independent of ζ, which justifies keeping them con-
stant during the fast time-stepping of barotropic mode. To ensure numerical stability
and at least second-order accuracy, ρi,k, ρ∗, and ρ must be time-centered at n+ 1/2 in
baroclinic time.



156 A. F. Shchepetkin and J. C. McWilliams

An analogous discrete derivation (Shchepetkin andMcWilliams [2005]) yields

F ′
i+ 12

= − g

ρ0

{
hi+1 + hi

2

(
ρ∗i+1ζi+1 − ρ∗i ζi

)+ ρ∗i+1ζ2i+1
2

− ρ∗i ζ2i
2

+ (hi+1 − hi)

[(
ρ∗i+1 − ρi+1

)
ζi+1 +

(
ρ∗i − ρi

)
ζi

2
+
(
ρi+1 − ρi

)
(ζi+1 − ζi)

6

]}
.

(3.28)

The particular formof Eq. (3.28) depends on the discrete scheme for 3DPGF (Section 5).
In principle, the splitting error can be eliminated entirely rather than just the leading-
order term cancellation in Eq. (3.22). However, doing so imposes severe restrictions
on the discretization choice for the 3D PGF that basically would then be limited to
pressure Jacobian schemes (Shchepetkin andMcWilliams [2003]).This is undesirable
because it raises the overall error in the PGF. For example, the scheme in Lin [1997]
results in Eq. (3.28) without the last term inside [. . .] on the second line. Although this
term is formally O(�x3

)
-small (i.e., two orders higher than the preceding term), it is

desirable to keep it since it makes Eq. (3.28) exact if ρ is a linear function of depth
and horizontal coordinate, unlike the scheme in Lin [1997]. A density Jacobian scheme
(as in Blumberg and Mellor [1987]) does not allow separating ρ values belonging
to different horizontal indices so that the vertical integral of F cannot be expressed in
terms of ρ∗ and ρ computed independently within each vertical column. The standard
PGF scheme in ROMS (Shchepetkin and McWilliams [2003]) uses a 4-point stencil
in the horizontal and nonlinear interpolation of density to avoid spurious oscillations;
both attributes make it impractical to derive an exactly consistent PGF scheme for the
barotropic mode. Nevertheless, practical experience with Eq. (3.28) indicates that it is
sufficiently accurate and stable.
For flat topography,ρ∗ is the only relevant density for the barotropicmode.This choice

is similar to Eq. (3.2) in Higdon [1999], but it differs from Bleck and Smith [1990]
which uses the vertically averaged density (analogous here to ρ) and from Griffies,
Pacanowski, Schmidt andBalaji [2001] that uses the local density at the topmost grid
cell instead of ρ∗. All other split-explicit models just use ρ0. The terms proportional to
∇xh in Eqs. (3.27) and (3.28) reflect the dynamical coupling between barotropic and
baroclinic motions; it depends on the density difference, ρ∗ − ρ, and thus, it is part of
what is sometimes referred to as the JEBAR effect (Holland [1973]).

3.3. Design of the fast-time averaging filter

Averaging of the barotropicmode in a split-explicit model (i.e., choosing am in Eq. (3.14)
distinct from a delta-function δmM = {1, m = M; 0, m �= M} is sometimes viewed
as a “necessary evil” (Griffies, Pacanowski, Schmidt and Balaji [2001], Hallberg
[1997], Higdon [1999]): while it yields a stable and robust numerical code, it unde-
sirably degrades the temporal accuracy of the resolved barotropic motions and often
introduces a numerical dissipation comparable to that of implicit backward-Euler time-
stepping. We identify three reasons for averaging. First, although the effort is made to
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remove mode-splitting error in PGF (Section 3.2), the split is never perfect in prac-
tice. If both the barotropic and baroclinic time-stepping algorithms are non-dissipative,
barotropic aliasing may introduce numerical instability, Higdon and Bennett [1996],
whereas fast-time averaging excludes the possibility of a coincidence of characteris-
tic roots λ by placing the barotropic roots from the aliased range deep inside the unit
circle (Section 3.2). Second, depending on the stage when the time-stepping algorithm
computes the vertically integrated momentum advection terms that are kept constant
during the barotropic time-stepping, they may incur a delay effectively like a forward
time step for these terms. This leads to numerical instability of the same type as for a
forward-in-time, centered-in-space advection equation. Fast-time averaging provides a
mechanism to control this instability. This aspect puts an emphasis on damping at the
low-frequency end, which is a very different requirement for the filter design compared
with its anti-aliasing role. Third, depending on the algorithm for taking the first time-step
(typically forward-in-time), the recurrent restart of the barotropic mode at each baro-
clinic time-step may introduce yet another numerical instability. Net dissipation in the
barotropic time-stepping scheme and fast-time averaging can suppress this instability.
We now examine the design principles for the barotropic time filters. For simplicity

of analysis, we assume M � 1, neglect the truncation error in the barotropic time-
stepping, and replace the discrete summation over fast-time indices with a continuous
time integration. A(τ) is defined as the continuous analog of {am|m = 1, . . . , M∗} with
τ ∼ m/M and τ∗ ∼ M∗/M. A barotropic Fourier component ωk gets a phase increment
α = ωk�t in one baroclinic time-step �t. After fast-time averaging, its step-multiplier
becomes

λ(α) =
τ∗∫
0

e−iα·τA(τ) dτ = R(α)e−iα , (3.29)

where R(α) is the response function. Ideally, R(α) ≈ 1 for α ≤ α0 ∼ 1 and R(α)→
0 rapidly in α once α > α0. In the vicinity of α = 0, 1−R(α) = O(αn

)
, where

n is the temporal order of accuracy. Substitution of a Taylor-series expansion

e−iατ = 1− iατ − α2τ2

2
+ iα3τ3

6
+ . . . for |α| � 1 in Eq. (3.29) leads to

λ(α) = 1− iα− α2

2
I2 + iα3

6
I3 + α4

24
I4 + . . . where In =

τ∗∫
0

τnA(τ) dτ,

(3.30)

with I0 ≡ I1 ≡ 1 due to the normalization and consistency conditions analogous to
Eq. (3.16). Using the identity, τ2 ≡ (τ − 1)2 + 2τ − 1, and the relation, 2I1 − I0 ≡ 1,
we find that

I2 ≡
τ∗∫
0

τ2A(τ) dτ = 1+
τ∗∫
0

(τ − 1)2A(τ) dτ ≡ 1+ ε. (3.31)
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If A(τ) is non-negative, the integrands are non-negative too; hence, ε ≥ 0 with equality
reached only ifA(τ) is a delta-function, δ(τ − 1). Substitution of I2 into Eq. (3.30) leads
to the appearance of ε as a coefficient in the leading-order truncation term at second order.
ε > 0 corresponds to numerical dissipation. Therefore, any choice of a positive-definite
A(τ) results in at most first-order accuracy for the fast-time-averaged barotropic mode
(i.e., λ(α) agrees with e−iα only up to O(α2)).
To achieve second-order accuracy, we introduce a shape function that allows some

of the primary weights to be negative,

A(τ) = A0

{(
τ

τ0

)p [
1−

(
τ

τ0

)q]
− r

τ

τ0

}
, (3.32)

where p and q are independent parameters. A0, τ0, and r are then chosen to satisfy
normalization, centroid, and second-order accuracy conditions in Eq. (3.30), viz., In = 1
for n = 0, 1, 2. In practice, we initially specify

r = 0 and τ0 = (p+ 2) (p+ q+ 2)
(p+ 1) (p+ q+ 1) , (3.33)

(this choice of τ0 centers A(τ) at τ = 1; i.e., I1/I0 = 1), and then compute A0 from
the normalization condition. Using this initial A(τ), we adjust r, A0, and τ0 with an
iterative procedure–adjust r to minimize ε = I2 − 1; recompute A0 and τ0 to restore
I0 = I1 = 1; and repeat until ε→ 0 – to satisfy the In conditions. This yields a family
r = r(p, q) of second-order filters such as the following tabulated p, q, r-triplets.

p = 2 q = 1 r = 0.1696907
2 2 0.2346283
2 3 0.2664452

p = 2 q = 4 r = 0.2846158
2 6 0.2961888
3 8 0.1369941

The alternative choices, p, q = 2, 4 or 2, 2, are the settings in ROMS for most
applications; Fig. 3.1 is one of the corresponding shape functions.
Fig. 3.3 compares the step-multipliers for some fast-time-averaging algorithms with

an S-shaped filter designed as described in this section. Ideally, λ(α) ≈ 1 for α ≤ 2
(the baroclinic time-stepping stability range), and λ(α)� 1 thereafter. As expected,
a flat averaging over 2�t (left panel) results in very strong damping of the resolved
frequencies (Griffies,Pacanowski,Schmidt andBalaji [2001]).AHammingwindow
(Oppenheim, Schafer and Buck [1999]) (middle panel) has much smaller dissipation
for resolved frequencies and provides an efficient damping for the aliasing range. The
p, q = 2, 4 filter (right panel) has virtually no damping for |α| ≤ π/4, and it is as efficient
as the Hammingwindow in its anti-aliasing role.Another effect of having a negative lobe
is that A(τ) makes the model more efficient by reducing the duration of the barotropic
integration beyond tn+1 (i.e.,M∗ −M): the p, q = 2, 4 filter takes only 30% of the extra
�t step, while the Hamming window needs 50% and flat averaging needs 100%.
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p � 2, q � 4, r � 0.28461

Fig. 3.3 Step-multiplier λ(α) for three different choices of the fast-time-averaging weights. Left: flat aver-
aging over 2�t; middle: Hamming window; right: S-shaped weights from Fig. 3.1. The bold solid line on the

diagrams turns dashed when entering the aliasing range.

3.4. Comparison with an implicit free-surface model

An implicit free-surfacemodel entirely eliminates aliasing by simply restricting the phase
increment of the barotropic mode. A particular scheme from the CFD community, the
theta-method (Casulli and Cattani [1994]), is

ζn+1 + iαθun+1 = ζn − iα(1− θ)un

un+1 + iαθζn+1 = un − iα(1− θ)ζn

}
⇒ λ(α) = 1− α2θ(1− θ)± iα

1+ α2θ2
.

(3.34)

It is unconditionally stable if 1/2 ≤ θ ≤ 1 and is second-order accurate for θ = 1/2.
However, if used with α > 1, the θ = 1/2-scheme is prone to 2�t oscillations, usually
addressed by slightly biasing θ above 1/2, which makes it first-order accurate and dissi-
pative. Setting θ = 2/3 (Fig. 3.4, left) has a dissipation comparable to flat averaging over
2�t (Fig. 3.3, left).Astandard CFD practice is to use θ = 0.55 (Fig. 3.4, right). Its damp-
ing is comparable (about twice as much) to the Hamming window. Since no third- or
higher-order, unconditionally stable, implicit algorithm exists (note that an implicitAM3
scheme is asymptotically unstable for a purely hyperbolic problem), the theta-method is
the only possibility for an implicit free-surface model, which constrains its accuracy to
asymptotically approach second order when θ → 1/2. Therefore, a split-explicit model
can be made inherently more accurate in representing even the relatively slow barotropic
motions resolved by the baroclinic time-step (e.g., tides and topographic Rossby waves)
than by an implicit model.
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� 5 2/3 � 5 0.55

Fig. 3.4 λ(α) for the theta-method with two different θ values in the same format as Fig. 3.3. Comparing
left and right panels shows that, while the dissipation increases with θ − 1/2|, the phase error changes little

with θ. The phase of λ(α) asymptotes to −π when α→∞, so λ(α) never enters the aliasing range.

4. Time-stepping the nonlinear system

4.1. Implementation of LF–AM3

The time-stepping algorithms in Section 2 are multi-time-level methods, relying on
temporal interpolation or extrapolation of the r.h.s. terms computed at several consecutive
steps to achieve the desired accuracy. This in principle can be applied to nonlinear
systems as well (Canuto, Hussaini, Quarteroni and Zang [1988]): compute and
store the entire nonlinear r.h.s. at discrete time levels and interpolate it using these fields.
On the other hand, mode-splitting in Section 3 restricts the choice of time-stepping
algorithms to logically forward-in-time, two-time-levelmethodswhere the only available
degree of freedom is the time placement of the tracer flux variables in Eq. (3.3) and
similar quantities in momentum equations. Since tracer fluxes are products of volume
fluxes and tracer values and volume fluxes are constrained by Eq. (3.11) to satisfy the
finite-volume continuity equation (Eq. (3.4)), it is no longer possible to compute the
complete tracer r.h.s. tendency terms at several consecutive time-steps and interpolate
the result. Therefore, the algorithms from Section 2 must be adjusted for compatibility
with mode-splitting.
The LF–AM3 scheme (Eqs. (2.21) and (2.22)) is rewritten as

ζn+ 1
2 =

(
1

2
− 2γ

)
ζn−1 +

(
1

2
+ 2γ

)
ζn − iα (1− 2γ) un,

un+ 1
2 =

(
1

2
− 2γ

)
un−1 +

(
1

2
+ 2γ

)
un − iα

[
(1− 2γ) ζn + β

(
2ζn+ 1

2 − 3ζn + ζn−1)],
(4.1)
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n 21 n 11nn 21/2 n 11/2

2�
r.h.s.

r.h.s.

Fig. 4.1 Schematic diagram explaining the alternative LF–AM3 step: at first, (n− 1)th and nth-step variables
are interpolated linearly to n− 1/2+ 2γ , which is used as the initial condition. It is advanced to n+ 1/2 using
r.h.s. terms computed at nth step (predictor; γ = 1/12). Subsequently, the nth field is advanced to n+ 1 using

the r.h.s. at n+ 1/2 (corrector).

followed by

ζn+1 = ζn − iα · un+ 12 ,
un+1 = un − iα ·

{
(1− ε) ζn+ 12 + ε

[(
1

2
− γ

)
ζn+1 +

(
1

2
+ 2γ

)
ζn − γζn−1

]}
,

(4.2)

after which the provisional values ζn+ 12 and un+ 12 are discarded. This alternative algo-
rithm has a simple geometrical interpretation as a combination of interpolation and two
consecutive LF-like steps (Fig. 4.1). It eliminates the need to store the full r.h.s. terms
fromone time-step to another, making the codemore efficient. It is completely equivalent
to the original algorithm if applied to a linear system (note that for the actual problem
the symbolic operator iα[. . .] here translates into a r.h.s. computation), while for a non-
linear system it differs by computing r.h.s. terms from the time-interpolated prognostic
variables rather than an interpolation of the complete r.h.s. fields.
A comparison with LF-TR stepping, i.e., Eqs. (4.2) and (4.2) with γ = 0, offers

another interpretation of Fig. 4.1: the 2γ bias relatively to n−1/2 in setting the initial
condition introduces a pre-distortion that cancels the second-order truncation errors of
the subsequent “logically LF” corrector stage, yielding an overall third-order accuracy
of the algorithm as a whole.
Another difficulty with LF–AM3 is that the fluxes satisfying the discrete continuity

equation (Eq. (3.4)) are available only during the corrector time-step not predictor step.
Hence, it is impossible to achieve simultaneous conservation and constancy preservation
for tracers during a predictor substep. Since the predicted values of the prognostic var-
iables are used only to compute advective fluxes during the subsequent corrector step,
the predictor substep does not necessarily have to be a conservative algorithm for the
complete step to be conservative. A non-conservative, pseudo-compressible, predictor
substep for tracers is

q
n+ 12
i,j,k =

1

�V +
i,j,k

{
�V −

i,j,k

[(
1

2
+ 2γ

)
qn
i,j,k +

(
1

2
− 2γ

)
qn−1
i,j,k

]
− (1− 2γ) �t

[̃
qn

i+ 12 ,j,k
Un

i+ 12 ,j,k
− q̃n

i− 12 ,j,k
Un

i− 12 ,j,k
+ q̃n

i,j+ 12 ,k
V n

i,j+ 12 ,k

− q̃n

i,j− 12 ,k
V n

i,j− 12 ,k
+ q̃n

i,j,k+ 12
Wn

i,j,k+ 12
− q̃n

i,j,k− 12
Wn

i,j,k− 12

]}
, (4.3)
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where �V ±
i,j,k is obtained from an artificial continuity equation,

�V ±
i,j,k = �V n

i,j,k ∓
(
1
2 − γ

)
�t

[
Un

i+ 12 ,j,k
− Un

i− 12 ,j,k
+ Vn

i,j+ 12 ,k
− Vn

i,j− 12 ,k

+Wn

i,j,k+ 12
−Wn

i,j,k− 12

]
.

(4.4)

The latter “absorbs” incompressibility errors in Un

i+ 12 ,j,k
, Vn

i,j+ 12 ,k
, and Wn

i,j,k+ 12
. The

result is a conservative, constancy-preserving algorithm for q
n+ 12
i,j,k . Once the compu-

tation for q
n+ 12
i,j,k is completed, �V ±

i,j,k is discarded and recomputed during the next

time-step. Because there is no guarantee that�V +
i,j,k is the same as�V −

i,j,k during the next

time-step, Eq. (4.3) does not maintain the volume,
∑
i,j,k

�Vi,j,kq
n+ 12
i,j,k . However, the

complete algorithm – Eq. (4.3) in combination with corrector step via Eq. (3.3) – does.

4.2. Implementation of AB3–AM4

The AB3–AM4 FB scheme (Eq. (3.1)) is the method of choice for the barotropic mode
because the time-step restriction imposed by the phase speed of barotropic waves dom-
inates all other limitations (i.e., advection velocity andCoriolis frequency) by such a large
degree that the other terms receive no consideration except for avoiding unconditionally
unstable schemes. Its practical version consists of an AB3-extrapolation of prognostic
variables,(

ζ

u

)m+ 12
=
(
3

2
+ β

)(
ζ

u

)m

−
(
1

2
+ 2β

)(
ζ

u

)m−1
+ β

(
ζ

u

)m−2
; (4.5)

computation of finite-volume fluxes,

Dm+ 12 = h+ ζm+ 12 , U
m+ 12 = Dm+ 12�η um+ 12 , V

m+ 12 = Dm+ 12�ξ vm+ 12 ;
(4.6)

free-surface update,

ζm+1 = ζm −�t∗ · divU
m+ 12 ; (4.7)

computation of provisional ζ for the PGF,

ζ′ =
(
1

2
+ γ + 2ε

)
ζm+1 +

(
1

2
− 2γ − 3ε

)
ζm + γζm−1 + εζm−2; (4.8)
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and the momentum step,

um+1 = 1

Dm+1
{
Dmum +�t∗ ·

[
F
(
ζ′
)−Dm+ 12 fk × um+ 12 + . . .

]}
. (4.9)

In the last step, the PGFF
(
ζ′
)
is fromEq. (3.28), and the dots denote the other r.h.s. terms

(advection, viscous diffusion, etc.,). This algorithm naturally accommodates advection
(centered or upstream-biased) and the Coriolis force; it is stable without the need for
viscosity or upstream-bias for the U terms in the ζ equation; and it eliminates the need
to store r.h.s. terms from one time-step to another.
A similar algorithm is applied for 3D mode in Kanarska, Shchepetkin and

McWilliams [2007], except that unlike Eqs. (4.5)–(4.9), it starts with the update of
momentum equation followed by the update of tracers. In that approach, the tracer fields
were actually extrapolated toward (n+ 1/2)th step twice using two different sets of
AB3-like coefficients: the first time to compute density and then baroclinic pressure
gradient (using coefficients optimized for stability of FB step), and the second time to
compute advection terms for tracer equations (using coefficients chosenmore close to the
conventional AB3 set). This dual extrapolation removes the competitive requirements
in setting of β in Eq. (2.32) as discussed in Section 2.4.

5. PGF

The discrete PGF error for a hydrostatic model in generalized vertical coordinates
(including the σ family, e.g., ROMS) is widely recognized as a significant algorith-
mic problem (Arakawa and Suarez [1983], Blumberg and Mellor [1987], Chu
and Fan [2003], Haney [1991], Kliem and Pietrzak [1999], Lin [1997], Mellor,
Ezer and Oey [1994],Mesinger [1982],Mesinger and Janjic [1985], Shchepetkin
and McWilliams [2003], Slordal [1997], Song [1998], Song and Wright [1998],
Stelling and van Kester [1994]). It is often attributed to so-called hydrostatic
inconsistency, i.e., a failure of the discretized PGF to vanish when isopycnic sur-
faces are horizontal. Because of deviation of quasi-horizontal coordinates from either
geopotential-height (z) or isopycnic (ρ) surfaces, the PGF in the horizontal momentum
equations appears in the form of two large terms that tend to cancel each other,

− 1
ρ0

∂P

∂x

∣∣∣∣
z

= − 1
ρ0

[
∂P

∂x

∣∣∣∣
s

− ∂P

∂z
· ∂z

∂x

∣∣∣∣
s

]
. (5.1)

In the usual way, the partial-derivative subscript zmeans that it is computed with respect
to a constant z surface, and the subscript s means that the differentiation is performed
along the isosurface of the transformed vertical coordinate, s = const.
Themost common focus has been on achieving accurate cancellation of the two terms

in Eq. (5.1) in the special case of a horizontally uniform (i.e., flat) stratification, ρ = ρ(z),
where the correct answer is zero velocity (a state of rest). In this contextMellor,Oey and
Ezer [1998] point out a Sigma-coordinate error of the second kind, which is the growth
in time of a mainly barotropic flow with no mechanism of advective self-compensation
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(in contrast to a baroclinic tendency to redistribute horizontal ρ surfaces by a flow
generated by the PGF error to partially cancel the artificial flow). A small initial error
does not guarantee that the error remain small at a later time. This experience brought
attention to the integral properties such as material conservation and consistent conver-
sion between potential and kinetic energy. Despite the vast published experience, there is
not yet a consensus approach nor resolution of the problem. The approaches tend to fall
into four major categories: (i) increase the order of accuracy in all coordinate directions
(Beckmann and Haidvogel [1993], Chu and Fan [2003]); while this can be quite
successful in idealized test cases, it has earned a reputation of being useless for realistic
oceanic modeling (Kliem and Pietrzak [1999]); (ii) compute the PGF in z-coordinate
space (Kliem and Pietrzak [1999] and its references); (iii) use a finite-volume, flux-
form, pressure Jacobian formulation Chu and Fan [2003] and Lin [1997]; or (iv) use
a density Jacobian discretization of an alternative form for PGF that computes the hor-
izontal ρ gradient first then integrates it vertically (Blumberg and Mellor [1987],
Song [1998]). The last two approaches rely on symmetric discretizations, mimicking
the symmetries of the Jacobian operator, to reduce PGF error.
We found a successful technique to reduce PGF error. It is a generalization of the

density Jacobian approach going to higher-order accuracy while retaining most of the
symmetries of its original schemes (Shchepetkin and McWilliams [2003]). It can
also be viewed as a polynomial reconstruction of the ρ field with subsequent analytical
contour integration. A similar approach was applied to construct a high-order analog of
the pressure Jacobian in Lin [1997]; however, the generalized density Jacobian is more
attractive because of smaller truncation error and, more importantly, slower error growth
in time for the flat stratification test cases. In this method, the PGF is formulated (similar
to Blumberg andMellor [1987]) as

− 1

ρ0

∂P

∂x

∣∣∣∣
z

= − 1

ρ0

∂P

∂x

∣∣∣∣
z=ζ

− g

ρ0

ζ∫
z

∂ρ

∂x

∣∣∣∣
z

dz′ =− g

ρ0
ρ

∣∣∣∣
z=ζ

∂ζ

∂x
− g

ρ0

ζ∫
z

[
∂ρ

∂x

∣∣∣∣
s

− ∂ρ

∂z′
∂z′
∂x

∣∣∣∣
s

]
dz′,

where the last term can be rewritten as

− g

ρ0

0∫
s

[
∂ρ

∂x

∣∣∣∣
s

∂z

∂s
− ∂ρ

∂s

∂z

∂x

∣∣∣∣
s

]
ds′ = − g

ρ0

0∫
s

Jx,s(ρ, z) ds′, (5.2)

to justify the classification of the scheme as a density Jacobian type. The transformed
vertical coordinate s ∈ [−1, 0] is assumed in Eq. (3.5) to be neither isopycnic nor geo-
potential so that both terms inside the left-side integral in Eq. (5.2) are nontrivial. To
discretize this, we introduce a control elementAi+1/2,k+1/2 (the shaded area in Fig. 5.1)
and apply Green’s theorem,

−�x �z ·Jx,s(ρ, z)

∣∣∣
i+ 12 ,k+ 12

≈
∫
A

∫
Jx,s(ρ, z) dz dx=

∮
∂A

ρ fdz

= FXi,k − FXi+1,k + FC
i+ 12 ,k+1 − FC

i+ 12 ,k. (5.3)
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Fig. 5.1 Stencil in the x-z plane for computing the baroclinic PGF in the density Jacobian scheme.
The Jacobian is approximated as a contour integral around the shaded area Ai+1/2,k+1/2,−�x �z·
Jx,s(ρ, z) =

∮
ρ(x, z) dz. The contour integral is approximated using one-dimensional cubic polynomial

fits for both ρ(x, z) and z as functions of the coordinates x and s along each of the four curvilin-
ear facets bounding Ai+1/2,k+1/2. Since a cubic fit requires a 4-point one-dimensional stencil, the
whole Jacobian is evaluated using 12-points: a 4× 4 grid without corners. Each of the line integrals
FX and FC (Eq. (5.4)) participates in the computation of the density Jacobians for the two cell adja-
cent in either horizontally or vertically. The Jacobians are then integrated (via a simple summation) to

compute PGF.

FX and FC are the line integrals along the vertical and quasi-horizontal curvilinear
segments bounding Ai+1/2,k+1/2,

FX
i,k+ 12 =

zi,k+1∫
zi,k

ρ dz, FC
i+ 12 ,k =

(x,s)i+1,k∫
(x,s)i,k

ρ
∂z

∂x

∣∣∣∣
s

dx. (5.4)

The problem thus reduces to interpolations for ρ = ρ(x, s) and z = z(x, s) along the
integration contours. If linear interpolation is used for both ρ and z, the resultant scheme
is equivalent to Blumberg andMellor [1987]. The natural extension is to use a cubic
polynomial interpolation,

ρ(ξ) =ρj + ρj+1
2

− dj+1 − dj

8
+
[
3

2

(
ρj+1 − ρj

)− dj + dj+1
4

]
ξ

+ dj+1 − dj

8
ξ2 + [dj + dj+1 − 2

(
ρj+1 − ρj

)]
ξ3, (5.5)
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where ξ defined for− 12 ≤ ξ ≤ + 12 is either x or s; the index j is either i or k (see Fig. 5.1),
and by construction,

ρ (ξ)

∣∣∣∣
ξ=− 12

≡ ρj ρ (ξ)

∣∣∣∣
ξ=+ 12

≡ ρj+1
∂ρ

∂ξ

∣∣∣∣
ξ=− 12

≡ dj

∂ρ

∂ξ

∣∣∣∣
ξ=+ 12

≡ dj+1,

(5.6)

yields ρ values and derivatives at the side boundary of Ai+1/2,k+1/2. Once Eq. (5.5)
interpolates both ρ and z, the segment integrals (Eq. (5.4)) are evaluated analytically in
terms of zi,k,ρi,k, and their first spatial derivatives at the same location (seeShchepetkin
andMcWilliams [2003] for full formulas).
The most important issue is the estimator for the derivative dj , especially if ρ is not

smooth on the grid. Using an algebraically averaged slope, the formula,

dj =
�ρ

j+ 12 +�ρ
j− 12

2
where �ρ

j+ 12 ≡ ρj+1 − ρj ∀j, (5.7)

is sufficient to achieve the desired order of accuracy with a smooth ρ field and nearly
uniform grid spacing. However, if ρ is not smooth, it admits spurious oscillations of
the interpolant (Eq. (5.5)) that contaminate the PGF scheme as negative stratification
patches, even when grid-point stratification values are positive everywhere, and this
may result in numerical instability. In addition, Eq. (5.7) loses second-order accuracy if
the grid spacing is not uniform. In contrast, a harmonic average,

dj =

⎧⎪⎨⎪⎩
2�ρ

j+ 12�ρ
j− 12

�ρ
j+ 12 +�ρ

j− 12
if �ρ

j+ 12�ρ
j− 12 > 0

0 otherwise ,

(5.8)

has the property that if�ρ
j+ 12 and�ρ

j− 12 have the same sign, dj is no greater than twice

the smaller of the two in magnitude; i.e.,

∣∣dj

∣∣ < 2
∣∣∣minmod (�ρ

j+ 12 , �ρ
j− 12
)∣∣∣. (5.9)

This guarantees that ρ(ξ) in Eq. (5.5) is a monotonic, continuous function over the whole
area of its definition.
Harmonic averaging (Eq. (5.8)) also escapes the loss of accuracy associated with

non-uniformity of the vertical grid. This is extremely valuable for oceanic modeling
since it is a common practice to choose only a moderate number of vertical levels with
a grid spacing �z that may change by as much as two orders of magnitude over the
vertical column. Suppose that discretized values ρk are defined at locations zk, such that
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�z
k+ 12 ≡ zk+1 − zk �= �z

k− 12 ≡ zk − zk−1. A Taylor series expansion around zk gives

ρk±1 = ρk ± ρ′�z
k± 12 +

1

2
ρ′′�z2

k± 12
± 1
6
ρ′′′�z3

k± 12
+ . . . , (5.10)

⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ρ

k+ 12 ≡
ρk+1 − ρk

�z
k+ 12

= ρ′ + 1
2
ρ′′�z

k+ 12 +
1

6
ρ′′′�z2

k+ 12
+ . . .

∂ρ
k− 12 ≡

ρk − ρk−1
�z

k− 12
= ρ′ − 1

2
ρ′′�z

k− 12 +
1

6
ρ′′′�z2

k− 12
+ . . .

.

(5.11)

This leads to a second-order accurate approximation for ∂ρ/∂z at the location zk,

∂ρ

∂z

∣∣∣∣
z= zk

=
�z

k− 12 ∂ρk+ 12 +�z
k+ 12 ∂ρk− 12

�z
k+ 12 +�z

k− 12
= ρ′ + 1

6
ρ′′′�z

k+ 12�z
k− 12 +O(�z3

)
,

(5.12)

which is just a linear interpolation of ∂ρ on a non-uniform grid. On the other hand, since

∂ρ

∂z

∣∣∣∣
z= zk

= ∂ρ/∂s|s= sk

∂z/∂s|s= sk

, (5.13)

the use of Eq. (5.7) makes the estimator into

∂ρ

∂z

∣∣∣∣
z= zk

=
�ρ

k+ 12 +�ρ
k− 12

�z
k+ 12 +�z

k− 12
= ρ′ + 1

2
ρ′′
(
�z

k+ 12 −�z
k− 12
)
+O(�z2

)
.

(5.14)

This is only first-order accurate. It evaluates the derivative at the location
(zk+1 + zk−1)/2 rather than the desired zk. In contrast, Eqs. (5.13) and (5.8) applied
to the elementary differences �ρ and �z lead to

∂ρ

∂z

∣∣∣∣
z= zk

=
�ρ

k+ 12�ρ
k− 12

(
�z

k+ 12 +�z
k− 12
)

(
�ρ

k+ 12 +�ρ
k− 12
)

�z
k+ 12�z

k− 12
=

∂ρ
k+ 12 ∂ρk− 12

(
�z

k+ 12 +�z
k− 12
)

∂ρ
k+ 12�z

k+ 12 + ∂ρ
k− 12�z

k− 12
.

(5.15)

We assume that�ρ
k+ 12 and�ρ

k− 12 have the same sign and that ρ = ρ(z) is sufficiently

smooth on the grid scale to be accurately represented by a Taylor series. This essentially
translates into the assumptions that∣∣ρ′′ ·�z

∣∣� |ρ′| and
∣∣∣ρ′′′ ·�z2

∣∣∣� |ρ′| (5.16)
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since the high-order derivatives in theTaylor series are presumed to be finite. Substitution
of Eq. (5.11) into Eq. (5.15) yields

∂ρ

∂z
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2
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1

6
ρ′′′ − 1

4

(
ρ′′
)2
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)
�z
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2
�z

k− 1
2
+O(�z3

)
, (5.17)

indicating second-order accuracy of the estimator for ∂ρ/∂z|z=zk
. The leading order

truncation term of Eq. (5.17) consists of two parts: the first one proportional to ρ′′′ is
exactly the same as in Eq. (5.12), and the second is a nonlinear term,

−1
4

(
ρ′′
)2

ρ′
�z

k+ 12�z
k− 12 ≈ −ρ′

(
�ρ

k+ 12 −�ρ
k− 12

�ρ
k+ 12 +�ρ

k− 12

)2
.

The second formula always tends to reduce the estimated derivative and acts as a slope
limiter if consecutive differences change abruptly on the grid scale. Because the same
interpolation algorithm is applied to ρ and z, the discrete Jacobian guarantees the sym-
metry, Jx,s(ρ, z) = −Jx,s(z, ρ). Although PGF cannot be eliminated entirely, it can
be verified that for flat stratification, the cancellation of terms in Eq. (5.1) is fourth-order
accurate, and the new scheme is robustly tolerant of “hydrostatically inconsistent” grids
with (�x/�z) · ∂z/∂x|s > 1 (Haney [1991]).

6. Impact of compressibility

The compressibility of seawater in the EOS raises two important design issues for
oceanic models. The first is that the monotonicity constraint for ρ(z) interpolation in
Eqs. (5.5) and (5.8) no longer guarantees positive stratification for the interpolated pro-
file if the constraint is applied to the in situ ρ, even if the point-wise stratification is
strictly positive. This is because the grid-scale smoothness of ρ is judged by the ratio
of consecutive differences, �ρ

k+ 12 and �ρ
k− 12 , both containing a component associ-

ated with bulk compressibility (i.e., a vertical change of in situ density that occurs
even when potential temperature � and salinity S are spatially uniform). As a result,
�ρ ≈ −�z · gρ0/c2s −�z · ρ0N2/g (cs is speed of sound and N is Brunt-Väisäla fre-
quency), and thefirst termdominates undermost oceanic conditions (Dukowicz [2001]).
This obscures the detection of abrupt changes in stratification. The second issue is a con-
sequence of the mode-splitting algorithm (Eqs. (3.21)–(3.28)) where ρ and ρ∗ do not
change in fast time, being kept constant at a time centered at n+ 1

2 to achieve second-
order temporal accuracy during the barotropic time-stepping.When ρ is compressible, it
depends on ζ though hydrostatic effects on pressure P . These changes are unaccounted
for in the barotropic integration and thus are an additional source of mode-splitting error.
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6.1. Compressibility and baroclinic PGF

The EOS for seawater expresses in situ ρ in terms of �, S, and P ,

ρ = ρ (�, S, P). (6.1)

For oceanic modeling in situ, ρ is very interesting by itself, but it plays intermediate
roles in several r.h.s. terms for prognostic variables, viz., horizontal PGF, stratification
in vertical mixing parameterizations, and inclination of neutral surfaces along which
lateral mixing occurs. The Boussinesq approximation replaces in situ ρ by a representa-
tive constant ρ0 everywhere except in the gravitational force gravity; i.e., it retains the
“gravitational” ρ in the gravitational force, but it approximates the “inertial” ρ in the
Lagrangian acceleration by a constant ρ0 that can be absorbed into PGF and otherwise
disappear from the model. This approximation limits the EOS exclusively to the three
purposes stated above, and themodel is only sensitive to adiabatic gradients of ρ (defined
in Eq. (6.6) below) but not to ρ itself. A consequence of the Boussinesq approximation
is the replacement of mass conservation with an equivalent volume conservation based
on a constant inertial ρ0.
A common OGCM approximation is the replacement of in situ P in Eq. (6.1) with its

bulk background value P0 = −gρ0z, viz.,

ρ = ρ (�, S, |z|), (6.2)

justified by ρ − ρ0 � ρ0. Free-surface, σ-coordinate models (Mellor [1991],
Robinson, Padman and Levine [2001], Shchepetkin andMcWilliams [2003]) often
use an EOS in the form

ρ = ρ (�, S, ζ − z), (6.3)

that selectively includes the barotropic contribution to the P used in the EOS but dis-
regards the baroclinic part. The motivation for this choice comes not entirely from a
physical consideration (i.e., gρ0ζ is often small compared with P) but more from a cod-
ing convenience where the vertical coordinate system is regenerated at every time-step
from ζ and then used in the EOS routine. The use of standard EOS schemes, either as
Eq. (6.1) or (6.2), implies a nonlinear dependence of ρ on z even if� and S are spatially
uniform. For σ-coordinate models with coarse vertical resolution (often with a grid size
as large as 500 m in the abyss), compressibility can cause significant PGF errors through
hydrostatic non-cancellation in Eq. (5.1) (Shchepetkin andMcWilliams [2003]). This
type of error also exists in isopycnic models due to the non-equivalence of isopycnic
and neutral surfaces caused by compressibility (Hallberg [2005]).
Consider for simplicity an EOS form within the approximation class of Eq. (6.2),

ρ (�, S, z) = ρ(0) + ρ′1 (�, S)+
∞∑

m=1

(
q(0)
m + q′m (�, S)

)
· zm. (6.4)

ρ(0) and q
(0)
m , m = 1, 2, . . . , are constant background values chosen so that ρ(0) � ρ′,

q
(0)
1 � q′1, etc. In practice, these are chosen by specifying representative constant values
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for� and S and treating Eq. (6.4) as a series expansion around them. q(0)
1 is the same as

gρ(0)/c20 (with c0 a background value for cs). With this EOS form, the density Jacobian
(Eq. (5.2)) is

Jx,s(ρ, z) =Jx,s(ρ
′, z)+

∞∑
m=1

Jx,s(q
′
mz) · zm. (6.5)

Note that ρ(0) and q
(0)
m contribute nothing.

Jackett andMcDougall [1995] defined in situ adiabatic derivatives of ρ as diffe-
rences of potential density with a local reference pressure (note that it is impossible to
define potential density with any global reference pressure as a meaningful basis for
determining stratification, unlike with the EOS for an ideal gas). In terms of Eq. (6.4),
the adiabatic derivative with respect to the s coordinate is

∂ρ (�, S, z)

∂s

∣∣∣∣
ad
= ∂ρ′1 (�, S)

∂s
+

∞∑
m=1

zm ∂q′m (�, S)

∂s
. (6.6)

A similar expression applies to the horizontal (along s = const) derivative ∂ρ

(�, S, z) /∂ξ|ad. The baroclinic PGF (Eq. (6.5)) can be expressed entirely in terms of
in situ adiabatic derivatives ofρ. For comparison, substituting theEOS (6.2) intoEq. (5.2)
yields

Jx,s(ρ, z) = −α̂Jx,s(�, z)+ β̂Jx,s(S, z) . (6.7)

Here, α̂ = − ∂ρ
/
∂�|S,z and β̂ = ∂ρ

/
∂S|�,z are adiabatic thermal expansion and saline

contraction factors (note that these differ from the conventional α and β coefficients by
an added ρ multiplier). On the other hand, if the exact EOS Eq. (6.1) is used instead of
Eq. (6.2), then the r.h.s. of Eq. (6.7) has an additional term,−(1/c2s )Jx,s(P, z) (i.e.,∝ κ

in Eq. (6.17) below). This shows that the ability to express the baroclinic PGF entirely
in terms of adiabatic ρ derivatives inherently relies on the EOS approximation P → z in
Eq. (6.2). If the approximation in Eq. (6.2) is assumed valid (this aspect will be addressed
in more detail in Section 6.3), then Eq. (6.7) indicates that the only requirement for
accurately relating the gradients of � and S to the PGF is the correct computation of α̂
and β̂, including their dependence on P or z (i.e., thermobaric effect). The in situ ρ by
itself is irrelevant. This is also seen by the independence of Eq. (6.5) from the background
terms ρ(0) and q

(0)
m .

Most of vertical change of ρ and much of the horizontal (along s = constant) change
occur due to the bulk compressibility terms, i.e., ∂ρin situ/∂z �= 0 in Eq. (6.5). Conse-
quently, a non-oscillatory profile of ρin situ does not necessarily correspond to monotonic
stratification. Therefore, it is meaningless to apply harmonic averaging (Eq. (5.8)) to
consecutive differences of in situ ρ and to expect that monotonic positive stratification
is guaranteed, even if the grid-box values of ρ are positively stratified. To achieve a
monotonic stratification profile, we introduce elementary adiabatic differences, similar
to Eq. (6.6) above; e.g., for m = 1,

�ρ
(ad)
i,k+ 12

= ρ′1i,k+1 − ρ′1i,k +
(
q′1i,k+1 − q′1i,k

) zi,k+1 + zi,k

2
. (6.8)
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The averaged gradient (Eq. (5.8)) translates into

di,k ≡ ∂ρ

∂s

∣∣∣∣
i,k

=
2�ρ

(ad)
i,k+ 12

·�ρ
(ad)
i,k− 12

�ρ
(ad)
i,k+ 12

+�ρ
(ad)
i,k− 12

+ q′1i,k
∂z

∂s

∣∣∣∣
i,k

, (6.9)

where the adiabatic and compressible parts are separated at first, interpolated separately,
and recombined at the end. This guarantees monotonicity of stratification for the inter-
polated profile. Because of the nonlinearity in Eq. (6.9), the resulting PGF scheme is
incompatible with the common practice of subtracting a horizontally uniform back-
ground profile ρbak = ρbak(z) in an attempt to reduce σ-coordinate PGF error. Similarly,
the use of Eq. (6.7) as a basis for the PGF scheme is not desirable because separate
computations of the Jacobians for � and S cannot ensure monotonicity of stratification
if the � and S profiles are interpolated separately. For example, if there is a “spice”
anomaly with large, smooth � and S gradients largely canceling each other to yield a ρ

gradient that is small but non-smooth on the grid scale, then the monotonicity algorithm
separately applied to � and S will fail to detect the sudden change in the ρ gradient.

6.2. Compressibility and barotropic mode-splitting

The mode-splitting algorithm described in Section 3.2 is derived using the assumption
that ρ does not depend on ζ. This is no longer the case if the exact P dependence is
included in the EOS (6.1) or even in its simplified version (Eq. (6.3)). Although the
magnitude of the change is always small, a danger comes from the sensitivity of the
EOS to ζ that implies a PGF contribution when ζ is computed at the previous time-
step and kept constant during the barotropic time-stepping (i.e., effectively receiving a
forward-in-time treatment). Consider a purely barotropic case with ρ changes due only
to compressibility,

ρ = ρ(P) = ρ
(0)
1 +

∑
m

q(0)
m Pm, (6.10)

where ρ
(0)
1 and q

(0)
m are spatially uniform.Without loss of generality, this can be replaced

with

ρ = ρ
(0)
1 +

∑
m

q(0)
m (ζ − z)m, (6.11)

because the hydrostatic balance, ∂P/∂z = −gρ, makes it possible to remap Eq. (6.10)
into Eq. (6.11) with an alternative set of coefficients qm (e.g., ρ = ρ1 + q1P translates
into ρ = ρ1exp {gq1(ζ − z)}).12 A derivation similar to Eq. (3.23) yields the net PGF

12Another consequence of this P ↔ z remapping is that it eliminates acoustic waves regardless whether
or not the Boussinesq approximation is used. This makes it possible to build a hydrostatic, non-Boussinesq
codes with relatively small additional effort. Non-hydrostatic, non-Boussinesq models must use other means
to deal with unwanted acoustic waves (e.g., implicit time-stepping or the use of anelastic approximation) that
may cause in a dramatic increase in code complexity.
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applied to the fluid element (Fig. 3.2),

F
i+ 1

2
= g
(
ζi − ζi+1

)[
ρ

(0)
1

Di +Di+1
2

+
∑
m

q(0)
m

Dm+1
i +Dm

i Di+1 + · · · +DiD
m
i+1 +Dm+1

i+1
(m+ 1)(m+ 2)

]
.

(6.12)

This corresponds to the continuous form,

−g

[
ρ

(0)
1 D+

∑
m

q(0)
m

Dm+1

m+ 1

]
∇xζ ≡ −gρD∇xζ, (6.13)

where ρ = ρ
(0)
1 +

∑
m

q(0)
m

Dm

m+ 1 is identified as the vertically averaged ρ. Therefore,

we conclude that if ρ non-uniformity is caused exclusively by compressibility, then ∇xζ

generates exactly the same acceleration,

1

ρD

∂

∂t

ζ∫
−h

ρu dz+ · · · = −g∇xζ, (6.14)

as in a uniform-density, shallow-water fluid. Furthermore, the acceleration by the full

PGF, − 1
ρ
∇xP = −g∇xζ, is independent of depth throughout the vertical column even

though both P = P(z) and ρ = ρ(z) are nonlinear functions of z; hence, a purely
barotropic (i.e., vertically uniform) flow can remain barotropic.
Note that Eq. (6.11) is similar to Eq. (6.4), except that now it is expanded in powers

of perturbed depth ζ − z, rather than just z, and therefore, from Eq. (6.11), ∇xρ �= 0 as
long as ∇xζ �= 0. Still the q

(0)
m -terms in the EOS do not change the acceleration caused

by the PGF. Here – unlike in the baroclinic case (Eqs. (6.4) and (6.5)) – the absence
of spurious acceleration by the barotropic PGF is valid only in the non-Boussinesq
case, with u and v defined as ρ-averaged rather than z-averaged velocity. The Boussi-
nesq replacement of the inertial in situ ρ with ρ0 creates a spurious multiplier ρ/ρ0 in
the PGF that destroys this property.13 At a first glance, Eq. (6.14) suggests that tak-
ing into account ρ non-uniformity in the barotropic mode with ρ∗ and ρ in Eq. (3.28)
offers no benefit relative to the use of the shallow-water-like PGF term,−gD∇xζ. How-
ever, Eqs. (3.28) and (6.14) are derived under two opposite assumptions about the ρ

structure: Eq. (3.28) assumes that the ρ non-uniformity comes purely from baroclinic
effects, and the flow is incompressible, hence ρ is conserved as Lagrangian tracer;

13This situation is similar to Case A of Dewar, Hsueh, McDougall and Yuan [1998] discussed in
Section 6.3, but in reverse, the dependency ρ = ρ(P) in Eq. (6.21) brings in PGF error when used within
the modified Boussinesq model.
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whereas Eq. (6.14) assumes that all non-uniformity comes exclusively from the bulk
compressibility. Besides the spurious ρ/ρ0 factor, we identify two types of dangerous
error: (i) the mode-splitting error due to the ρ = ρ(. . . , ζ − z) dependency since the
computation of the 3D PGF in Eq. (3.21) is based on the previous-time ζ and thus
receives a forward-in-time treatment; and (ii) an erroneous sensitivity of ρ∗ and ρ to
the vertical increase of in situ ρ by bulk compressibility that is mistaken for vertical
stratification.
The magnitude of the mode-splitting error of type (i) is estimated from the vertical

integral of the PGF due to ζ modulated by compressibility,

−g∇xζ ·
ζ∫

−h

exp

{
g
(
ζ − z′

)
c2s

}
dz′ ≈ − gD∇xζ︸ ︷︷ ︸

“fast”

− 1
2
· gD

c2s
· gD∇xζ︸ ︷︷ ︸

“slow”

. (6.15)

The “fast” term is treated within the barotropic mode using a small time-step. The
“slow” term is never computed explicitly, but is rather an outcome of computing the
vertical integral of 3D PGF based on ρ with the EOS using the ζ at the old time-step
– the most recent available value before barotropic time-stepping begins. As a result, it
remains unchanged during barotropic time-stepping even though it contains a gradient of
ζ.D = 5 km and cs = 1500m/s yield an error estimate of gD/(2c2s ) = 0.01, about 1% of
the PGF due to the ζ perturbation. This is comparable with levels of other mode-splitting
errors discussed in Section 3.2. It is expected to stay within the Courant-number limit
of baroclinic (slow) time-stepping, leaving its forward-in-time treatment as the primary
remaining concern. This type of splitting occurs whether or not the barotropic mode
accounts for ρ non-uniformity, and furthermore, it occurs in non-Boussinesq models
as well. For example, Robinson, Padman and Levine [2001] identified a similar error
(although they do not classify it as mode-splitting error) and an associated instability in a
model that uses a shallow-water form for the PGF in the barotropic mode. The instability
is manifested as a tidal response with spuriously elevated amplitude. The source of
instability is traced back to an inconsistency between ρ and horizontally averaged ρ(z)

profile (subtracted out in hopes of reducing PGF error); the former is computed using
instantaneous ζ and the latter using ζ = 0.Their proposed remedies include abandonment
of the averaged ρ(z) subtraction – a relatively minor effect – and total suppression of
compressibility in the EOS – sufficient to suppress the instability but not acceptable in
OGCMs because of loss of the thermobaric effect. Griffies, Pacanowski, Schmidt
and Balaji [2001] and McDougall, Greatbatch and Lu [2002] advocate the use
of the exact EOS Eq. (6.1) with a P that includes dynamic components due to both ζ

and ρ taken from the previous time-step. However, we believe that this brings a simi-
lar mode-splitting error and potential instability that most likely is only controlled by
their heavy barotropic-mode time-filtering by averaging over two baroclinic time-steps
(Section 3.3).
A better treatment for both types of errors is presented in Section 6.3 after an analysis

of alternative forms for the EOS.
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6.3. Consistency of EOS and boussinesq approximation

The EOS form (Eq. (6.2)) as an approximation to Eq. (6.1) was challenged by Dewar,
Hsueh, McDougall and Yuan [1998].14 Consider the response of a compressible
barotropic fluid with uniform � and S to an imposed surface PGF ∇xps (their Case A,
Fig. 1.1). If Eq. (6.2) is used for the EOS, the PGF is constant and equal to its surface
∇xps value throughout the vertical column. However, compressibility leads to changes
in ρ, and if the EOS more correctly uses in situ P , the ρ changes depend on the PGF
itself, and the true PGF will change with depth. Substituting their Eq. (2.3) into Eq. (2.2)
yields

∇xP = ∇xps + g

0∫
z

∇xP

c2s
dz′. (6.16)

This has the solution∇xP = ∇xps · e−gz/c2s ; i.e., now the PGF has an exponential ampli-
fier with depth. With typical abyssal values of cs = 1500m/s and z = −5000m, the
amplification factor is about 1.022, which is comparable to a typical PGF error due
to the Boussinesq approximation. However, the pressure gradient does not appear in
the PGF by itself but in the combination, (1/ρ)∇xP . Thus, by using the exact in situ
ρ that has the same compressibility amplifying factor, instead of the Boussinesq ρ0
without it, the depth-amplification effect is canceled in the PGF. For example, the
balancing geostrophic velocity (cf., their Eq. (2.3)) does not change at all between a
Boussinesq code with an approximate EOS and a non-Boussinesq code with the exact
EOS. Their Cases B and C (Fig. 1.1) involve baroclinic variations of � and S. In
contrast to the purely barotropic Case A, these cases do not have an exact cancel-
lation of the compressibility errors. However, as shown by Dukowicz [2001], more
than 90% of the error can be eliminated by a further modification of the EOS, so
the danger identified by Dewar, Hsueh, McDougall and Yuan [1998] is largely
avoidable.
The approach of Dukowicz [2001] splits the compressibility coefficient κ into two

parts,15

κ = 1

ρ

(
∂ρ

∂P

)
�,S

, κ = κ(P)(P)+ δκ(�, S, P), (6.17)

14Although ROMS uses an intermediate approximation to EOS (6.3), this criticism is still a concern because
of the absence of the−(1/c2s )Jx,s(P, z) term in Eq. (6.7) and its counterpart in Eq. (6.5). Sections 5.1 and 5.2
of Shchepetkin and McWilliams [2003] introduce two PGF schemes. One computes the density Jacobian
directly and then integrates it vertically (hence, entirely avoiding computation ofP), and the other is a primitive
form that first explicitly computes P . These two schemes are identical for an incompressible EOS, but the
statement that the PGF can be expressed entirely in terms of adiabatic ρ differences applies only to the first
scheme. Unless the EOS is modified to exclude bulk compressibility, the primitive form implicitly contains
an equivalent of the −(1/c2s )Jx,s(P, z) component.
15To avoid confusionwith ρ∗ in the barotropic PGF in Sections 3.2 and 6.2, wemodified the original notation

of Dukowicz [2001] by ρ∗ → ρ• and P∗ → P•.
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where κ(P) is much larger than δκ. The exact EOS (6.1) can be rewritten with two ρ

factors,

ρ = r(P) · ρ•(�, S, P). (6.18)

Without any approximation, the PGF, hydrostatic balance, and EOS can be alternatively
be expressed in terms of ρ• and a related pressure quantity P•:

1

ρ
∇xP ↔ 1

ρ•
∇xP

•, (6.19)

∂P

∂z
= −gρ ↔ ∂P•

∂z
= −gρ•, (6.20)

ρ = ρ(�, S, P) ↔ ρ• =
ρ
(
�, S, P(P•)

)
r(P•)

= ρ•(�, S, P•). (6.21)

The relations in the right column have the same functional forms as the original ones in
the left column, and the scaling factor r (P ) does not explicitly appear.
The practical value of the approximate EOS Eq. (6.4) or a fortiori the factored EOS

Eq. (6.18) for oceanic simulations comes from a dramatic narrowing with depth of the
range of realistic values for � and S (cf., Fig. 19 in Shchepetkin and McWilliams
[2003] and Fig. 2 in McDougall, Jackett, Wright and Feistel [2003]). For the
factored EOS form, r(P) can be chosen so that κ(P) strongly dominates δκ in Eq. (6.17)
in the abyss; hence, the nonlinear dependence of ρ onP or z is mostly absorbed into r(P),
which is subsequently scaled out in the ρ, P → ρ•, and P• transformation (Eq. (6.21)).
In the upper ocean,� and S aremore variable, and factoring is not as effective in keeping
δκ small compared with κ(P); however, the nonlinear compressibility is not as important
there, and useful approximations to the EOS can be made without sacrificing accuracy.
We choose the definition,

r(P) = ρJM95 (�0, S0, P) /ρJM95 (�0, S0, 0), (6.22)

where ρJM95(�, S, P) refers to the particular form of the EOS in Jackett and
McDougall [1995], and �0 and S0 are representative abyssal values (e.g., �0 = 1.5
and S0 = 34.74 are good choices for global or basin-scale modeling). Then,

ρ• = ρJM95(�, S, P)/r(P) (6.23)

has a substantially narrower dynamical range than the original ρ = ρJM95(�, S, P), and,
even more importantly, it does not grow with P or z. In the terminology of Dukowicz
[2001], this procedure “stiffens” the EOS. In a Boussinesq model based on Eq. (6.21),
ρ• is replaced with the reference value ρ0 (e.g., ρ0 = 1027.8 kg/m3 is consistent with
the�0 and S0 choices above and is closer to the actual ρ• than the more widely used ρ0
values of 1000 or 1025 kg/m3). The in situP used inside the EOS routine is approximated
with a background P0(z) computed from

dP0
dz

= −gρ0 · r(P0). (6.24)
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This approximates the EOS in Eq. (6.23) as

ρ• = ρ•(�, S, z). (6.25)

This is the same functional form as Eq. (6.2), but it accounts for the main effect of
ρ variation in computing P in the EOS; thus, it is closer to the exact EOS (6.1) in
representing the changes of α̂ and β̂ with depth. Finally, as in the PGF algorithm in
Shchepetkin andMcWilliams [2003], the resulting EOS (6.25) is split as in Eq. (6.4),
except that the expansion in powers of z is replaced with a (ζ − z) expansion that is
truncated after the linear term. To minimize round-off errors, the EOS is expressed as a
perturbation relative to ρ0.
This form of the EOS in Eq. (6.25) allows computation of adiabatic ρ differences

(Eq. (6.8)). These are averaged with a harmonic mean (Eq. (6.9)) that is subsequently
needed to construct cubic interpolants (Eq. (5.5)), segment integrals (Eq. (5.4)), and
discrete density Jacobian. The interpolant is guaranteed to maintain positive stratifica-
tion as long as the discrete density field is positively stratified. Although removing the
dominant part of the bulk compressibility, Eq. (6.21) makes point-wise differences of
ρ• much closer to adiabatic differences, one might be tempted to compute the baroclinic
PGF directly from ρ• without using adiabatic differencing. However, our experience
has shown that this is neither sufficiently accurate in practice nor robust when there are
sudden changes in stratification.
The transformation (Eq. (6.21)) offers a natural, simple remedy to reduce the mode-

splitting errors of both types (i) and (ii) in Section 6.2; the elimination of bulk passive
compressibility in the EOS effectively removes the second r.h.s. term in Eq. (6.15),
but unlike the remedy of Robinson, Padman and Levine [2001], it retains a physi-
cally accurate representation of the thermobaric effect. Computing ρ∗ and ρ from ρ•
is sufficient to eliminate their biases due to bulk compressibility, hence to avoid a type
(ii) error.
Despite the multistage transformation described here, the functional forms of the

EOS and PGF schemes in Shchepetkin and McWilliams [2003] remain unchanged,
requiring only a refitting of the polynomial coefficients in the EOS.16

6.4. Accuracy of the boussinesq approximation

The accuracy and utility of using the Boussinesq approximation for an OGCM is
assessed in several papersGreatbatch [2001],Greatbatch andMcDougall [2003],
McDougall andGarret [1992],McDougall,Greatbatch and Lu [2002], identify-
ing, among other issues, an inherent conflict between the assumption of constancy of ρ
(hence replacement of mass conservation with volume conservation) and the need to use

16Although more recent and supposedly more accurate versions of EOS have become available (Jackett,
McDougall, Feistel,Wright and Griffies [2006],McDougall, Jackett,Wright and Feistel [2003]),
the EOS functional form in Jackett andMcDougall [1995], inherited from the UNESCOEOS, is preferable
as the approximation standard because it is already close to the desired factored form, comprised of ρ(�, S) at
1 atm (P = 0 in our terms) multiplied by terms that account for compressibility effects. The rational functional
form used in the newer EOS mixes P terms together with � and S terms and makes it harder to separate out
P effects.
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the fully compressible EOS that implies ≈ 5% variation in ρ. This limits the accuracy
of the Boussinesq approximation, and there has emerged a slow but steady advocacy
for non-Boussinesq OGCMs (e.g.,Griffies, Pacanowski, Schmidt and Balaji [2001]
and the citations above).
In this situation, Dukowicz [2001] stands out because it constitutes a revision of

the Boussinesq approximation as traditionally applied to OGCMs that include a com-
pressible EOS in an ad hoc manner, breaking the internal consistency of the Boussinesq
approximation. The revision restores consistency by bringing the properties of the EOS
close to that for an incompressible fluid while still including the thermobaric effect.
This approach stays within the spirit of the Boussinesq approximation by making the
approximate PGF close to the full non-Boussinesq version without explicitly including
any non-uniformity of the inertial ρ. The bulk compressibility ratio r(P) is not used
anywhere except in the P0 ↔ z remapping (Eqs. (6.24) and (6.25)) for the stiffened
EOS, which brings a minor effect relative to the more traditional choice of replacing
P0 = −ρ0gz in EOS.
This aspect of Dukowicz [2001] was criticized by McDougall, Greatbatch

and Lu [2002] – in essence advocating discarding r(P) – since it leaves “no choice
but to interpret the horizontal velocity vector as the Eulerian-mean horizontal veloc-
ity, but not as the mass flux per unit area.” This is viewed as a drawback because it
prevents a reinterpretation of the prognostic variables in a Boussinesq model as density-
weighted rather than Eulerian averages. When a solution reaches a stationary state, the
difference between the reinterpreted Boussinesq model and a non-Boussinesq model
disappears (cf., Sections 4 and 5 inMcDougall, Greatbatch and Lu [2002], as well
as similar approaches for including some non-Boussinesq effects in Boussinesq models
Greatbatch [2001], Lu [2000]). This reinterpreted equivalence implies that the actual
Boussinesq errors are less than the usual estimate of ≈ 5% associated with the standard
formulation. The use of ρ• and r(p) in a Boussinesqmodel prevents this reinterpretation.
This limitation ofDukowicz [2001] can be substantially mitigated in a finite-volume

code by replacing Hi,j,k = z
i,j,k+ 12 − z

i,j,k− 12 in Eq. (3.5) with

Hi,j,k =
(
z
i,j,k+ 12 − z

i,j,k− 12
)
· r
[
P0

(
ζi,j −

z
i,j,k+ 12 + z

i,j,k− 12
2

)]
. (6.26)

This replacement automatically, and without additional computational effort, implies
a redefinition of the control volumes �Vi,j,k, interfacial contact surfaces, horizontal
flux (U

i+ 12 ,j,k, V
i,j+ 12 ,j,k), and vertical flux W

i,j,k+ 12 (Eq. (3.9)) as mass-weighted by
ρ = r(P0(z)). This yields themajor part of non-uniform inertialρ in transforming volume

conservation into approximate mass conservation with
∫ ∫ ∫

r(P0(z)) d3V .

Density Jacobian schemes use a contour integration to approximate �x�z ·
Jx,s(ρ, z) which is then integrated vertically (via a simple summation) to compute
point-wise pressure gradient. The latter one is subsequently multiplied by a horizontally
averaged Hi,j,k to convert it into the force applied to the control volume. This makes
the PGF be invariant with respect to a change of definition for Hi,j,k from the original
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to Eq. (6.26) because the velocity component is also multiplied by the same Hi,j,k. The
change in Hi,j,k also leaves the transformation (Eq. (6.21)) unaffected. The analysis of
Dukowicz [2001] only considers instantaneous errors associated with an inconsistent
use of a fully compressible EOS in a Boussinesq model, but this is not a guarantee that
the error will not grow in time. Recently, Losch,Adcroft and Campin [2004] and de
Szoeke and Samelson [2002] pointed out that the hydrostatic, Boussinesq equations in
z are isomorphic to the hydrostatic, non-Boussinesq equations in pressure coordinates.
This implies that the solution differences between Boussinesq and non-Boussinesq mod-
els should stay bounded in time since P and z differences do so. Because Eq. (6.26)
merely introduces a metric factor in the vertical coordinate while retaining the mathe-
matical structure Boussinesq code, we expect that the Boussinesq errors using Eq. (6.26)
also stay bounded.
The preceding discussion shows that the theoretical differences between Boussi-

nesq and non-Boussinesq hydrostatic models are much less than the initial estimates of
McDougall and Garret [1992] and Dewar, Hsueh,McDougall andYuan [1998].
The differences can be further reduced by application of the transformation (Eq. (6.21))
in combination with the quasi-Boussinesq r(P)-remapping (Eq. (6.26)). The Boussin-
seq apprroximation offers an important advantage for a cleaner mode-spliting algorithm
to avoid type (i) and (ii) errors (Section 6.2). Conversely, a more fundamental non-
Boussinesq code does not escape the need to assure monotonic stratification profiles
with higher-order Jacobian PGF schemes in generalized vertical coordinates and a com-
pressible EOS that includes thermobaric effects. In summary, we do not presently see a
strong case for preferring a non-Boussinesq OGCM.

7. Final remarks

In this chapter, we have discussedmany of the central algorithmic elements – the compu-
tational kernel – in an OGCM designed for large computations of highly turbulent flows.
Our currently preferred choices for these elements are summarized in Section 1 and dis-
cussed at length in the ensuing sections. A key aspect of OGCM design is the interplay
among the kernel elements, with abundant possibilities for both destructive interference
and constructive synergy. This perspective confounds any simple expectation that better
code modularity is the principal software step toward better OGCMs: while a modu-
lar structure may facilitate code adaptation, the most important design consideration is
the overall model performance in physical and numerical accuracy and computational
efficiency.
The use of oceanic models has historically followed a path downward in scale, from

basins and global domains to flows with smaller space and time scales and more tur-
bulent dynamics. At the present time, the simulation battle front is at mesoscale-eddy
resolution, but we can anticipate continuing scale refinements through a combination
of larger computers, further algorithmic advances, multiscale (nested-grid) methods,
and, of course, improved dynamical understanding of the simulated phenomena.
We intend to participate in these developmental directions and mention, in closing,



Computational Kernel Algorithms for Fine-Scale, Multiprocess, Longtime Oceanic Simulations 179

a newly constructed, non-hydrostatic version of ROMS Kanarska, Shchepetkin and
McWilliams [2007].
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