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1 Throughout the paper we use the terminology ‘‘iso
referred to as ‘‘epineutral direction’’ or simply ‘‘neutra
which is tangent to the locally-referenced potential
definition is purely local (McDougall, 1987), rather tha
more generally refers to the direction tangent to
referenced to an arbitrary fixed pressure.
Ocean models usually rely on a tracer mixing operator which diffuses along isoneutral directions. This
requirement is imposed by the highly adiabatic nature of the oceanic interior, and a numerical simulation
needs to respect these small levels of dianeutral mixing to maintain physically realistic results. For non-
isopycnic models this is however non-trivial due to the non-alignment of the vertical coordinate isosur-
faces with local isoneutral directions, rotated mixing operators must therefore be used. This paper con-
siders the numerical solution of initial boundary value problems for the harmonic (Laplacian) and
biharmonic rotated diffusion operators. We provide stability criteria associated with the conventional
space–time discretizations of the isoneutral Laplacian operator currently in use in general circulation
models. Furthermore, we propose and study possible alternatives to those schemes. A new way to handle
the temporal discretization of the rotated biharmonic operator is also introduced. This scheme requires
only the resolution of a simple one-dimensional tridiagonal system in the vertical direction to provide the
same stability limit of the non-rotated operator. The performance of the various schemes in terms of sta-
bility and accuracy is illustrated by idealized numerical experiments of the diffusion of a passive tracer
along isoneutral directions.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Most ocean numerical models employ isoneutral1 mixing opera-
tors either to parameterize the effect of unresolved mesoscale eddies
(Gent and McWilliams, 1990; Smith and Gent, 2004), or more basically
to control dispersive errors (Lemarié et al., 2012). It is thus very com-
mon for non-isopycnic models to implement a rotation of the diffusion
tensor in a direction non-aligned with the computational grid. The
benefits of a rotated mixing operator in simulating large scale flows
are undeniable (e.g., Danabasoglu et al. (1994), Lengaigne et al.
(2003)). Much of the improvements brought by the Gent and McWil-
liams (1990) parameterization of mesoscale eddies in coarse resolu-
tion models are also generally attributed to the orientation of lateral
diffusive transport to be along isoneutral directions (Gent, 2011).

Redi (1982) provided the continuous form of the rotation ten-
sor; however additional efforts were required to proceed to the ac-
tual implementation at the discrete level. Several works (Cox,
ll rights reserved.

: +1 310 206 3051.
é).
neutral direction’’ (sometimes
l direction’’ in the literature)
density surface and whose

n ‘‘isopycnal direction’’ which
a potential density surface
1987; Danabasoglu and McWilliams, 1995; Griffies et al., 1998;
Mathieu et al., 1999; Beckers et al., 1998, 2000) tackled this prob-
lem that turned out to be more tedious than expected. The discret-
ization in space raises difficulties to properly conserve the
monotonicity (Mathieu and Deleersnijder, 1998; Beckers et al.,
2000) and global tracer variance dissipation (Griffies et al., 1998)
properties of the continuous operator once the problem is discret-
ized. Moreover, due to the small vertical, relative to horizontal, grid
distance typically used in numerical models the vertical and cross
terms of the tensor can impose a severe restriction on the time step
when explicit-in-time methods are used to advance the rotated
operator. This stability problem is alleviated by the use of a stan-
dard backward Euler scheme for the vertical component of the ten-
sor (Cox, 1987), at the expense of splitting errors2 and associated
errors in the balance between the active tracer isoneutral diffusive
fluxes (Griffies, 2004, Chap. 16). This approach is used in all the
state-of-the-art ocean climate models. The existing work on the iso-
neutral diffusion has been essentially carried out on the second-or-
der (Laplacian) operator and under the small slope approximation
(Cox, 1987; Gent and McWilliams, 1990).
2 In the context of this paper, splitting errors are associated with the splitting of the
isoneutral Laplacian operator into a time-explicit part (the horizontal components
and cross-derivative terms) and a time-implicit part (the vertical component).

http://dx.doi.org/10.1016/j.ocemod.2012.04.007
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Although very few studied so far, a rotated biharmonic operator
may be of interest for high resolution simulations due to its known
property of scale selectivity. A biharmonic operator non-aligned
with the direction of the computational grid is used in Marchesi-
ello et al. (2009) and Lemarié et al. (2012), and discussed in Griffies
(2004) (Chap. 14). Because global climate models are now target-
ing increasingly higher horizontal resolution, the question of the
viability of such an operator is not only relevant for the regional
modeling community but also for the ocean climate community.
As an illustration, Hecht (2010) shows that for a 0.10 resolution
global model the use of a Lax–Wendroff scheme with an intrinsic
numerically-induced diffusion aligned with the horizontal direc-
tion leads to too much of a spurious dianeutral mixing in the Equa-
torial Pacific. This result suggests that even for eddy-resolving
simulations an isoneutral mixing operator could be required. This
motivates the design of a scale-selective (high-order) rotated oper-
ator. This is however not straightforward to maintain the stability
of such an operator which can produce undesirable effects like
overshooting/undershooting (Delhez and Deleersnijder, 2007)
and spurious cabelling processes (Griffies, 2004, Chap. 14). To our
knowledge, the current implementations of rotated biharmonic
operators are based on an explicit Euler scheme in time with ad
hoc tapering or clipping of the neutral slopes to maintain good sta-
bility properties (Marchesiello et al., 2009). This approach has
however the undesirable effect to allow spurious dianeutral mixing
even at places where the slopes are modest and satisfy the small
slope approximation.

The aim of this paper is to study a set of space–time discretiza-
tions of the rotated harmonic and biharmonic mixing, and to assess
them in terms of accuracy, stability and monotonicity violations.
One additional constraint we impose to ourselves is accuracy rela-
tive to large grid slope ratios (defined as the ratio between the neu-
Table 1
Important notations for the three-dimensional analysis of the isoneutral mixing operators

State variables

q Three dimensional tracer (can be temperature or salinity)
q Three dimensional density field

Coordinates and spatial operators
x1, x2 Horizontal coordinates
x3 Vertical coordinate, pointing upward.
Dxm Measure of the grid-box interface in the xm direction
Dt Time-step for the temporal discretization
@m ¼ @xm Partial derivative in the xm direction
D2 Isoneutral Laplacian operator, defined in (2.1)
D4 Isoneutral biharmonic operator, defined in (2.8)
F = (F(1),F(2),F(3)) Diffusive flux, defined in (2.7) at a continuous level and in (2.13),
Jmðq;qÞ Jacobian determinant, defined as @mq@3q � @mq@3q
dmq Discrete differentiation in the xm direction, defined in (2.12) (for d

directions is presented in Section 5.6)

Parameters
jm Diffusivity in the xm direction
Bm Hyperdiffusivity in the xm direction
a = (a1,a2,0) Neutral slope vector, defined in (2.5)
sm grid slope ratio, defined in (2.22)
bm Parameter controlling the stencil of the spatial discretization of iso
w± Switches to select the computational stencil depending on the orie
h Stabilizing parameter for the Method of Stabilizing Corrections, de
~j Stabilizing diffusivity for the Method of Stabilizing Corrections, de
rm Parabolic Courant number in the xm direction, defined in (3.4)

rð4Þm
Square root of the biharmonic Courant number in the xm direction

zmn Discrete Fourier modes multiplied by Dt, defined in (3.14)
/m Normalized Fourier frequency (j/mj 6 p) in the xm direction
k Exact amplification factor of the isoneutral Laplacian (Section 3) a
~k Approximate amplification factor obtained after space–time discre

operators
l2 Ratio between the maximum time-steps allowed for stability of th

Euler scheme, defined in (3.33)
l4 Same as l2 for the biharmonic operator, defined in (4.14)
tral slope and the aspect ratio of the computational grid) in order
to make the scheme adequate for use in a terrain-following r-coor-
dinate model. Indeed, problems with r models are generally more
pernicious than with z-level models because it is not unusual that
the slope between the computational grid and the isoneutral direc-
tion steepens to be greater than the grid aspect ratio. The paper is
organized as follows. In Section 2 we introduce the formulation of
the isoneutral mixing problem as well as three different ways to
discretize the problem in space. Then Sections 3 and 4 are respec-
tively dedicated to the temporal discretization of the rotated Lapla-
cian and biharmonic operators. Section 5 provides the useful
details to proceed to the actual implementation of the different
schemes in ocean models. Finally, numerical experiments are de-
signed to illustrate the properties of various space–time discretiza-
tions in Section 6. For clarity, the important notations used
throughout the paper are given in Table 1.

An alternative approach to the use of isoneutral mixing opera-
tors is the design of a vertical coordinate system following the iso-
pycnals (e.g., Hallberg and Adcroft, 2009; Hofmeister et al., 2010;
Leclair and Madec, 2011). The present paper is a complementary
effort in exploring the merits of different approaches to represent-
ing the nearly adiabatic flow in the oceanic interior.
2. Isoneutral mixing problem formulation

2.1. Continuous formulation

This section briefly introduces the continuous form of the prob-
lem under investigation throughout the paper. The three spatial
directions are labeled x1, x2 for the horizontal coordinates, and x3

for the vertical coordinate. We note q the tracer of interest, r
, where m = 1,2,3 denotes the three spatial direction.

(2.14), and (2.19) at a discrete level

mq a particular instance of differentiation to allow computation of isoneutral

neutral mixing operators, defined in (2.21)
ntation of neutral slopes, defined in (2.15)
fined in (3.3)
fined in (4.1)

, defined in (4.2)

nd biharmonic (Section 4) operators
tization of the isoneutral Laplacian (Section 3) and biharmonic (Section 4)

e horizontal and the isoneutral Laplacian operators discretized using a forward
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the three-dimensional gradient operator and @m ¼ @xm ðm ¼ 1;3Þ.
Following Redi (1982) a mixing operator D2 leading to diffusion
along isoneutral directions with a diffusivity j can be defined as

D2 ¼ $ � ðR$qÞ ¼
X3

m¼1

@m

X3

n¼1

rmn@nq

 !
; R ¼ ½rmn�16m;n63; ð2:1Þ

with R the following rotation tensor

rmn ¼ j dmn �
ð@mqÞð@nqÞ
krqk2

 !
; ð2:2Þ

where dmn is the conventional Kronecker delta and q is the locally
referenced potential density. This form of the tensor shows that
the matrix R is symmetric positive semi-definite (rmm P 0 and
jrmnj 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmmrnn
p

) and thus defines a diffusion tensor. Moreover, by
construction, the diffusive flux which takes the form

F = (F(1),F(2),F(3)) with FðmÞ ¼ �
P3

n¼1rmn@nq satisfies the orthogonality
condition F � q\ = 0, with q\ the unit vector in the dianeutral direc-
tion. In the limit that horizontal density gradients are much more

smaller than vertical gradients (i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@1qÞ2 þ ð@2qÞ2

q
=@3q� 1), a

simpler form of the tensor, preserving the isoneutral form of mix-
ing, can be devised (Cox, 1987; Gent and McWilliams, 1990). This
assumption corresponds to the so-called small slope approxima-
tion, and reduces the tensor (2.2) to

rmn ¼ jdmn; ð1 6 m; n 6 2Þ;
rm3 ¼ r3m ¼ �j@mq=@3q; ð1 6 m 6 2Þ;
r33 ¼ jðð@1qÞ2 þ ð@2qÞ2Þ=ð@3qÞ2:

8><>: ð2:3Þ

This formulation of the rotated diffusion under the small slope
approximation had also been derived early by Solomon (1971) in
a two-dimensional (x1,x3) case. Throughout this paper we consider
the small slope approximation and we allow an anisotropy in the
diffusivities (i.e., j1 – j2), the corresponding matrix form of the
tensor is

R ¼
j1 0 j1a1

0 j2 j2a2

j1a1 j2a2 j1a2
1 þ j2a2

2

0B@
1CA; ð2:4Þ

with

a ¼ ða1;a2;0Þ ¼ �
ð@1q; @2q;0Þ

@3q
; ð2:5Þ

the neutral slope vector. It is straightforward to check that this form
of the tensor preserves the symmetry as well as the semi-positive
definiteness of the full tensor (2.2). For a Laplacian diffusion of a tra-
cer field q in an unbounded domain X ¼ R3, we can cast the corre-
sponding evolution problem over a time interval [0,T] under a
conservative form

@tq ¼ D2ðqÞ ¼ $ � ðR$qÞ ¼ �$ � F in X� ½0; T�;
qjt¼0 ¼ q0ðx1; x2; x3Þ in X;

�
ð2:6Þ

with q0 a given initial condition, and

�F ¼
�Fð1Þ

�Fð2Þ

�Fð3Þ

0B@
1CA ¼ j1ð@1qþ a1@3qÞ

j2ð@2qþ a2@3qÞ
�a1Fð1Þ � a2Fð2Þ

0B@
1CA: ð2:7Þ

This problem is here temporarily defined on an unbounded spatial
domain in order to facilitate the theoretical study in Sections 3
and 4. For bounded domains, we provide the necessary boundary
conditions in Section 5. Using the notations previously defined,
the problem for the rotated biharmonic operator reads
@tq ¼ D4ðqÞ ¼ �D2ðUÞ; with U ¼ D2ðqÞ; in X� ½0; T�;
qjt¼0 ¼ q0ðx1; x2; x3Þ in X;

�
ð2:8Þ

For the biharmonic case, the diffusivities j1 and j2 in (2.4) must
be replaced by

ffiffiffiffiffi
B1
p

and
ffiffiffiffiffi
B2
p

with B1 and B2 the hyper-diffusivi-
ties. Following Griffies (2004) (Chap. 14), we formulate the bihar-
monic operator as the composition of two rotated Laplacian
operators with coefficients

ffiffiffiffiffiffi
Bm
p

ðm ¼ 1;2Þ because this form en-
sures that, at the continuous level, the variance of q is strictly
dissipated. In the remainder of the paper we focus on the initial
value problems (2.6) and (2.8) with the tensor of rotation defined
in (2.4).

Unless explicitly said differently, we will use throughout the pa-
per the subscript m to denote the horizontal directions, m = (1,2).

2.2. Spatial discretization of the isoneutral diffusion operator

2.2.1. Semi-discrete considerations
The spatial discretization of the isoneutral diffusion operator is

a difficult problem which have been thoroughly tackled by Cox
(1987), Beckers et al. (1998, 2000), Griffies et al. (1998). We, first,
briefly introduce the delicacies associated with the implementa-
tion of the operator D2. Because the x1 and x2 directions are inde-
pendent when adopting the small slope approximation, we
consider only the problem defined in the (x1,x3) plane. As derived
in Beckers et al. (2000), the continuous formulation of the rotated
Laplacian operator can be formulated as

D2ðqÞ ¼ @1 j1
J1ðq;qÞ
@3q

� �
� @3 j1

@1q
@3q

J1ðq;qÞ
@3q

� �
where J1ðq;qÞ ¼ @1q@3q� @1q@3q is a Jacobian determinant. The
main difficulty resides in the evaluation of the J1ðq;qÞ=@3q term
on a staggered grid. This term has to be evaluated at the cell inter-
faces referred to as u-points and w-points in Fig. 1. Note that, usu-
ally, the neutral slope @1q/@3q used in practice is not the result of a
discretization scheme only, but additional ad hoc constraints taking
the form of a smoothing, tapering, or clipping procedure are ap-
plied; more details concerning this point are given in Section 5.
Defining the arithmetic average operators ��ð1Þ in the horizontal
and ��ð3Þ in the vertical, and noting that the natural position of the
@1q and @1q (resp. @3q and @3q) terms is at u-points (resp. w-points),
several linear discretizations of the Jacobian determinant can be
proposed using a semi-discrete view of the problem:

� A simple discrete analog of the Jacobian J1 has been imple-
mented in the early versions of the MOM-GFDL3 model (Cox,
1987; Danabasoglu and McWilliams, 1995), at u-points and w-
points the discretization reads
Ju
1ðq;qÞ ¼ @3q @1q� @1q @3q

ð3;1Þ

@3q
ð3;1Þ

� �
Jw

1 ðq;qÞ ¼ @3q @1q
ð3;1Þ � @1q

ð3;1Þ @3q
@3q

� �
8>><>>: ð2:9Þ

where q and q are subject to a double averaging in the x3 and x1

directions before differencing, which makes this approach prone
to a computational mode (Griffies et al., 1998). Note that the @3q
in front of the parenthesis has a passive role here because this is
formally J1ðq;qÞ=@3q that we aim at discretizing.
� An other way to compute the Jacobian is by differencing before

averaging, as proposed in Griffies et al. (1998). In this case we
have



Fig. 1. Grid stencil, constructed upon 12 triads, involved in the computation of the rotated Laplacian operator in the (x1,x3) plane. Each triad has an associated quarter cell
(gray shaded areas). The zonal F(1) and vertical F(3) components of the isoneutral diffusive flux are computed at the cell interfaces surrounding the (i,k) location (dark grey
shaded points). The numbering of the triads is meant to be consistent with the one used in Griffies (2004) (Chap. 16).
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Ju
1ðq;qÞ ¼ @3q @1q� @1q @3q

@3q

h ið1;3Þ !

Jw
1 ðq;qÞ ¼ @3q @1q

ð1;3Þ
� @1q

ð1;3Þ
@3q
@3q

h i� �
;

8>>>><>>>>: ð2:10Þ

where the term in brackets could be simply replaced by @q/ @q,
however we keep @3q explicitly to clearly identify the neutral
slopes.
� To obtain more symmetry between the u and w points we can

define the following quantity at the corners of the grid cells
(sometimes referred as to W-points)
JW
1 ðq;qÞ ¼ @3q @1q

ð3Þ � @1q
ð3Þ @3q

@3q

� 	ð1Þ !

which gives
Ju
1ðq;qÞ ¼ JW

1 ðq;qÞ
ð3Þ
; and Jw

1 ðq;qÞ ¼ JW
1 ðq;qÞ

ð1Þ
:

This discretization has the interesting property to define the
neutral slopes at W-points only, which makes it more convenient
to handle the tapering, clipping, or smoothing procedure. Indeed,
for the schemes (2.9) and (2.10) this procedure has to be done
twice, at u and w points. However this discretization has the ma-
jor drawback not to reduce to the classical (1, � 2,1) stencil
when the neutral slopes vanish, which disqualifies it.
� We can suggest a last approach which would consist in provid-

ing more flexibility to the discretization by introducing two sets
of weights mu

n and mw
n in the problem. We define the operator ��ðmuÞ

as the weighted average of the four w-points surrounding a u-
point, and ��ðmwÞ as the weighted average of the four u-points sur-
rounding a w-point. A generalization of scheme (2.10) is
Ju
1ðq;qÞ ¼ @3q @1q� @1q @3q

@3q

h iðmuÞ� 
� �
Jw

1 ðq;qÞ ¼ @3q @1q
ðmwÞ � @1q

ðmwÞ @3q
@3q

h i� �
;

8>><>>: ð2:11Þ
The parameters mu
n and mw

n are set by requiring additional properties
of the discretization scheme. An example is the LINEAR1 scheme of
Beckers et al. (2000) which sets the mu

n and mw
n coefficients to get the

most compact stencil in the dianeutral direction to reduce the
amount of spurious dianeutral mixing. This scheme reduces to a
(1,�2,1) stencil in the diagonal when the angle between the com-
putational grid and the isoneutral direction is ±45 degrees; this
property is not satisfied by (2.10).

To our knowledge, three different schemes are currently in use
in ocean models. The Nucleus for European Modeling of the Ocean
(NEMO, Madec (2008)) and Coupled Large-scale Ice Ocean (CLIO,
Goosse et al. (2008), Mathieu et al. (1999)) models use the Cox
(1987) discretization (2.9). In NEMO, an horizontal two-dimen-
sional Laplacian operator acting to smooth the neutral slopes pro-
vides the extra diffusion needed to stabilize the scheme (Cox,
1987; Mathieu and Deleersnijder, 1998; Griffies et al., 1998). In
the Modular Ocean Model (MOM, Griffies (2010)) and Parallel
Ocean Program (POP, Smith et al. (2010)) the discretization
(2.10) based on the tracer/density triad formalism (Fig. 1) is used.
A triad is defined as an elementary computational stencil of the
jacobian J1ðq;qÞ, and therefore of the rotated operator (Griffies
et al., 1998). In MOM, an extra vertical smoothing of the @3q term
is used (Griffies, 2010, Chap. 16). Finally, even if not explicitly doc-
umented, the scheme (2.11) is implemented in the r-coordinate
Regional Oceanic Modeling System (ROMS, Shchepetkin and
McWilliams (2005)) and is routinely used so far to rotate along
geopotentials the explicit diffusion in the sponge layers near the
open boundaries. We describe below the procedure to compute
the weighted averages, and we show that this scheme can also
be expressed in a tracer triad formalism. In the present study,
the MOM/POP discretization is referred to as TRIADS, the NEMO/
CLIO discretization as COX, and the ROMS discretization as SW-
TRIADS (SW stands for switching).

From our experience, besides the instability identified by Grif-
fies et al. (1998), the TRIADS and COX schemes provide very similar
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results. The differences are greater between the TRIADS and the
SW-TRIADS schemes, we thus focus our study on those two
schemes only.

2.2.2. Discrete fluxes
We define

d1qiþ1
2;j;k
¼ qiþ1;j;k � qi;k and d3qi;j;kþ1

2
¼ qi;j;kþ1 � qi;j;k: ð2:12Þ

The metric terms ðDx2Þiþ1
2;j

and ðDx3Þiþ1
2;j;k

are the horizontal and ver-

tical measures of the corresponding grid-box interfaces and
ðDx1Þiþ1

2;j
is the distance between qi+1,j,k and qi,j,k. The vertical index

k varies from k = 1 for the first grid cell next to the ocean floor to
k = N at the surface, N corresponds to the number of vertical levels
of the discretization. The methodology to compute the dmq terms to
obtain the isoneutral directions is given explicitly later in Section
5.6 and differs from the formula (2.12).

The interfacial F(1) flux discretized using the TRIADS scheme
reads

�Fð1;triadsÞ
iþ1

2;j;k
¼ j1ðDx2Þiþ1

2;j
ðDx3Þiþ1

2;j;k

d1qiþ1
2;j;k

ðDx1Þiþ1
2;j
�

d1qiþ1
2;j;k

ðDx1Þiþ1
2;j
� 1
4

d3qi;j;k�1
2

d3qi;j;k�1
2

("

þ
d3qiþ1;j;kþ1

2

d3qiþ1;j;kþ1
2

þ
d3qiþ1;j;k�1

2

d3qiþ1;j;k�1
2

þ
d3qi;j;kþ1

2

d3qi;j;kþ1
2

)#
: ð2:13Þ

Using the notations introduced in Fig. 1, we see that the TRIADS
scheme uses the four triads labelled 2, 4, 5, and 6 with the same
weight w = 1/4. The derivatives in the x1-direction are computed
along the horizontal segment of a triad while the derivatives in
the x3-direction are computed along the vertical segment. Alterna-
tively, the spirit of the LINEAR1 scheme introduced in Beckers et al.
(2000) is to weight those triads depending on the orientation of the
slope by keeping only two of them. The LINEAR1 scheme was
originally derived for a constant slope, we extend this scheme to
the case with spatially variable neutral slopes to obtain the more
general SW-TRIADS scheme. If we assume a stable stratification
(i.e., d3qi;j;kþ1

2
< 0; 8k), this scheme reads

�Fð1;sw-triadsÞ
iþ1

2;j;k
¼j1ðDx2Þiþ1

2;j
ðDx3Þiþ1

2;j;k

d1qiþ1
2;j;k

ðDx1Þiþ1
2;j

�1
2

wþ
iþ1

2;j;k

ðDx1Þiþ1
2;j

d3qi;j;k�1
2

d3qi;j;k�1
2

 ("

þ
d3qiþ1;j;kþ1

2

d3qiþ1;j;kþ1
2

!
þ

w�
iþ1

2;j;k

ðDx1Þiþ1
2;j

d3qi;j;kþ1
2

d3qi;j;kþ1
2

þ
d3qiþ1;j;k�1

2

d3qiþ1;j;k�1
2

 !)#
:

ð2:14Þ

with

wþ
iþ1

2;j;k
¼max d1qiþ1

2;j;k
;0

� �
; w�iþ1

2;j;k
¼min d1qiþ1

2;j;k
;0

� �
:

ð2:15Þ

Depending on the orientation of the slope, either triads 4 and 5 are
selected, or triads 2 and 6. This results in a compact four point
stencil for the discretization of the Fð1;sw-triadsÞ

iþ1
2;j;k

interfacial flux. The
cancellation of the contribution of cross-isoneutral points with
the SW-TRIADS scheme tends to reduce the amount of spurious dia-
neutral mixing associated with discretization errors. This point will
be exemplified in Section 6. The discretization of the vertical flux
F(3) does not raise any additional difficulty for the TRIADS scheme
and can be found in Griffies et al. (1998). We show in the next sub-
section a way to construct the vertical flux Fð3;sw-triadsÞ

i;j;kþ1
2

so that the
SW-TRIADS scheme satisfies a globally diminishing tracer variance.

2.3. Global tracer variance dissipation

As shown in Griffies et al. (1998), the TRIADS scheme has been
constructed to ensure that the discretized operator globally satis-
fies the tracer variance dissipation property of the continuous
operator. This scheme is designed on the basis of the variational
principle. A weak form of the problem under investigation can be
defined through

G½q� ¼ �1
2

Z
X
rq � ðRrqÞdX ð2:16Þ

where G½q� is a functional whose Frèchet derivative dG½q�=dq gives
the diffusion operator. Due to the symmetric positive semi-definite
property of the diffusion tensor R, G is negative semi-definite. This
property implies that the corresponding operator acts to decrease
the total tracer variance, indeed Griffies et al. (1998) showed that
@t
R

X q2 dX ¼ 4G½q�. Unlike the COX scheme, the TRIADS scheme pro-
vides a negative semi-definite functional at the discrete level, thus
ensuring that the corresponding discretized operator is globally
strictly dissipative (Griffies et al., 1998; Smith and Gent, 2004;
Griffies, 2004). The reader is referred to Griffies (2004) (Chap. 16)
for more details about the foundations for the dissipation functional
and its discretization.

Consistent with the notations introduced in Griffies (2004)
(Chap. 16) the discretization of the functional G, in the (x1,x3)
plane, is given by

Gðx1�x3Þ½q� ¼�1
2

X
i;k

X12

n¼1

AðnÞVðnÞ d1qðnÞ
Dx1ðnÞ

þa1ðnÞ
d3qðnÞ
Dx3ðnÞ

� 	2

�
X

i;k

X12

n¼1

LðnÞi;k

 !
;

ð2:17Þ

where the subscripts (i,k) run over all the cells of the computational
domain. In (2.17), A(n) is the diffusivity associated with triad n, V(n)
is the volume of quarter-cell n, Dx1(n) and Dx3(n) are respectively
the length of the horizontal and vertical segments of triad n. For a
given cell (i,k), the contribution to the discrete functional is given
by
P12

n¼1LðnÞi;k which corresponds to 12 nonpositive components asso-
ciated with 12 quarter cells, built in such a way that there is a un-
ique volume V(n) and diffusivity A(n) for each quarter-cell
(represented as light gray shaded areas in Fig. 1). This procedure en-
sures that Gðx1�x3Þ½q� is negative semi-definite. For example, the con-
tribution of triad 1 to the discretized diffusion operator is given by

dLð1Þi;k

dqi;k
¼�Að1ÞVð1Þ d1qð1Þ

Dx1ð1Þ
þa1ð1Þ

d3qð1Þ
Dx3ð1Þ

� �
1

Dx1ð1Þ|fflfflffl{zfflfflffl}
contribution to Fð1Þ

� a1ð1Þ
Dx3ð1Þ|fflfflffl{zfflfflffl}

contribution to Fð3Þ

0BBB@
1CCCA

ð2:18Þ

which shows that when a triad is used to compute F(1), the same
triad is used to compute F(3). The only difference between the
TRIADS and the SW-TRIADS schemes is in the weighting of the 12
triads, the SW-TRIADS scheme simply cancels the contribution of
certain triads depending on the orientation of the neutral slope
a1, which is equivalent to set A(n) to zero for those triads. This
means that once a triad n is rejected during the computation of
F(1,sw�triads) it cannot be used again to compute F(3,sw�triads) because
the diffusivity A(n) associated with this triad is zero. If we follow
this simple rule, we find that there is a unique way to define the
vertical interfacial flux Fð3;sw-triadsÞ

i;j;kþ1
2

:

�Fð3;sw-triadsÞ
i;j;kþ1

2
¼j1

ðDx3Þi;j;kþ1
2

d3qi;j;kþ1
2

wþ
i�1

2;j;k

ðDx1Þi�1
2;j

d1qi�1
2;j;k

ðDx1Þi�1
2;j
�
d3qi;j;kþ1

2

d3qi;j;kþ1
2

�
d1qi�1

2;j;k

ðDx1Þi�1
2;j

 !"

þ
wþ

iþ1
2;j;kþ1

ðDx1Þiþ1
2;j

d1qiþ1
2;j;kþ1

ðDx1Þiþ1
2;j
�
d3qi;j;kþ1

2

d3qi;j;kþ1
2

�
d1qiþ1

2;j;kþ1

ðDx1Þiþ1
2;j

 !

þ
w�

i�1
2;j;kþ1

ðDx1Þi�1
2;j

d1qi�1
2;j;kþ1

ðDx1Þi�1
2;j
�
d3qi;j;kþ1

2

d3qi;j;kþ1
2

�
d1qi�1

2;j;kþ1

ðDx1Þi�1
2;j

 !

þ
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iþ1
2;j;k

ðDx1Þiþ1
2;j
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2;j
�
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d1qiþ1

2;j;k

ðDx1Þiþ1
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ð2:19Þ
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ρ0

x1

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Computational stencil, represented as triads (black lines), involved in the computation of the rotated Laplacian operator with the SW-TRIADS scheme for different
orientations between the computational grid (dashed lines) and the isoneutral direction which corresponds to horizontal lines in the (x1,gq0/q0) frame. In cases (a)–(d), six
triads are selected while eight triads are selected in (e) and 4 in (f).
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where W corresponds to the number of selected triads, i.e., the
number of nonzero w± terms. For W = 2, it is easy to check that
the rotated operator discretized with the SW-TRIADS scheme is
based on exactly six triads and is consistent with the functional dis-
cretization (2.17) where the contribution of the six other triads is
rejected by setting their associated diffusivities to zero. As illus-
trated in Fig. 2, we have W = 2 for the common situations encoun-
tered in ocean models. There are however some degenerated
cases (Fig. 2(e) and (f)) for which W – 2. In those very specific cases,
the scheme does not satisfy the functional discretization because
some triads are used to compute F(3) with a different weight than
it is used to compute F(1). We can show easily that when the strat-
ification has a 2Dx1 mode, as studied in Griffies et al. (1998), the
SW-TRIADS scheme ensures a global tracer variance reduction.

The SW-TRIADS scheme is a special instance of the TRIADS
scheme, it thus makes the implementation of this scheme as
straightforward. When spatially variable diffusion coefficients are
used, each triad must be weighted by the corresponding coeffi-
cient. Usually, those coefficients are computed at the horizontal
interfacial u points. In this case, in (2.19) the constant diffusivity
j1 should be dropped and each coefficient w± must be multiplied
by the corresponding diffusivity. Because each triad crosses exactly
one u point (Fig. 1) there is a unique diffusivity associated with a
given triad.

It is worth mentioning that the tracer variance diminishing
property should not be confused with the total variation diminish-
ing (TVD) property which is monotonicity preserving. As we show
in Section 6, the rotated operators discretized with the TRIADS or
the SW-TRIADS scheme do not preserve monotonicity (Mathieu
and Deleersnijder, 1998; Beckers et al., 2000).

Because the rotated biharmonic operator corresponds to two
successive rotated Laplacian operators, it does not raise any addi-
tional difficulties as long as the spatial discretization is concerned.
In the two following sections we consider the time integration of
the rotated operators, and we assume that the slope vector a is
spatially constant and that the grid is uniform to make the stability
analysis tractable. For a constant slope, the discrete approximationfD2 of the rotated operator at the position (i,j,k) is given by

ðfD2Þi;j;k¼�
Fð1Þ

iþ1
2;j;k
�Fð1Þ

i�1
2;j;k

Dx1Dx2Dx3
þ

Fð2Þ
i;jþ1

2;k
�Fð2Þ

i;j�1
2;k

Dx1Dx2Dx3
þ

Fð3Þ
i;j;kþ1

2
�Fð3Þ

i;j;k�1
2

Dx3

24 35
¼
X1

p¼�1

X1

l¼�1

lð1Þp;l qiþp;j;kþlþ
X1

p¼�1

X1

l¼�1

lð2Þp;l qi;jþp;kþl; ð2:20Þ



4 A nine-point discrete Laplacian operator would provide a stability criterion which
is somewhat less restrictive than for the usual five-point one.
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with

lðmÞp;l

h i
�16p;l61

¼ jm

Dx2
m

ðbm�1Þ sm
2 smðsm�bmÞ ð1þbmÞ sm

2

1� smbm �2 1þ s2
m

� 
þ2smbm 1� smbm

ð1þbmÞ sm
2 smðsm�bmÞ ðbm�1Þ sm

2

0B@
1CA

ð2:21Þ

where

sm ¼
Dxm

Dx3
am ð2:22Þ

is the grid slope ratio, bm � 0 gives the TRIADS scheme and bm = 1
for sm P 0 (resp. bm = �1 for sm < 0) the SW-TRIADS scheme. The ro-
tated Laplacian operator in the xm-direction is thus discretized on a
centered 9-point stencil if bm = 0 and on a more compact 7-point
stencil if jbmj = 1. As far as the rotated biharmonic is concerned,
the discretization is based on a 25-point stencil with the TRIADS
and a 19-point stencil with the SW-TRIADS. We do not investigate
this possibility in this study, but the parameter bm could be used
as a degree of freedom to derive alternative properties of the
discretization.

The grid slope ratio sm, introduced in (2.21), is a key dimension-
less parameter that will be used throughout this paper. This
parameter corresponds to the ratio between the neutral slope am

and the aspect ratio Dx3/Dxm. We thus have sm = ±1 for a ±45 de-
grees slope. Values of jsmj greater than 1 generally lead to a degra-
dation of the accuracy of the rotated diffusion due to the need for
extrapolation to compute the isoneutral direction. For typical
applications with a coarse resolution global climate model, jsmj
can reach Oð10Þ values (e.g., sm = 10 for am = 5 � 10�3,
Dx1 = 100 km, and Dx3 = 50 m). Note that the use of slope clipping
or tapering sets an upper bound on sm which can not be arbitrarily
large in this case. Large grid slope ratios should not be confused
with large neutral slopes, meaning that large values of sm can exist
even under the small slope approximation. In the context of a r to
geopotentials rotation, as in Marchesiello et al. (2009), sm corre-
sponds to the so-called hydrostatic inconsistency number.

3. Time discretization of the isoneutral Laplacian operator

3.1. Proposed schemes

The overall objective of this section is to derive a time-integra-
tion scheme whose stability limit is imposed by the horizontal
components of the tensor. In this case the constraint on the time
step Dt of the temporal discretization would be equivalent be-
tween the rotated and the non-rotated operators. Moreover, be-
cause we are considering a diffusive process, we do not feel
necessary to strive to design a high-order scheme in time, the
aim is to keep the study as simple as possible. The rotated Lapla-
cian operator D2, with neutral slopes am and diffusivities jm, can
be linearly decomposed into a sum of three functions
D2ðqÞ ¼

P3
m¼1GmðqÞ, where

GmðqÞ ¼ @m jm @mqþ am@3q½ �ð Þ þ @3 amjm@mqð Þ ðm ¼ 1;2Þ;
G3ðqÞ ¼ @3 j1a2

1 þ j2a2
2

� �
@3q

� 
:

(
ð3:1Þ

We consider that the piece G0(q) = G1(q) + G2(q) is always treated
explicitly in time-integration schemes, whereas G3 represent a stiff
and unidirectional contribution that can be treated implicitly, if
needed. The integration of the G0 term in an implicit manner
would require the solution of a complicated implicit system in
the horizontal direction which would be laborious to implement
in parallel and would significantly affect the performances of the
numerical model. The common practice in climate models is to
use a standard backward Euler scheme to advance the vertical
G3 component of the tensor (Cox, 1987). Using the time step
Dt > 0, we note qn the approximation qn 	 q(tn), with tn = nDt.
The semi-discretized version of the scheme introduced by Cox
(1987) is

qnþ1 ¼ qn þ Dt G0ðqnÞ þ G3ðqnþ1Þ
� �

: ð3:2Þ

In the following this scheme will be referred to as (IMP) scheme.
Moreover, the fully explicit version, i.e., with G3(qn) instead of
G3(qn+1) in (3.2), will be denoted by (EXP).

Following the work of Douglas (1962), Andreev (1967) or Craig
and Sneyd (1988) (see also in ’t Hout and Welfert (2009) for a re-
view), split schemes such as alternating direction implicit (ADI)
have proved valuable in the approximation of the solutions of mul-
ti-dimensional parabolic problems with mixed derivatives. This
type of scheme is usually implemented with unidirectional implicit
corrector steps in each spatial direction to pursue an unconditional
stability. Alternatives to this scheme allowing one or more spatial
directions to be treated explicitly can be found in Douglas and
Gunn (1964), van der Houwen and Verwer (1979) or Hundsdorfer
(2002). Those authors propose a multi-stage method: at the first
stage, a consistent (explicit) approximation of the operator is eval-
uated, while all succeeding stages serve to improve the stability.
This scheme has been called Method of Stabilizing Corrections (re-
ferred to as (MSC) hereafter) in van der Houwen and Verwer (1979)
and seems particularly well suited for our problem because it pro-
vides a consistent, efficient, and easy-to-implement scheme with
degrees of freedom to ensure good stability properties. Moreover,
we see in Section 4 that this approach can be extended to the
time-integration of the rotated biharmonic operator. For the diffu-
sion problem (2.6), the (MSC) scheme reads

qH ¼ qn þ Dt G0ðqnÞ þ G3ðqnÞf g;
qnþ1 ¼ qH þ hDt G3ðqnþ1Þ � G3ðqnÞ

� �
;

(
ð3:3Þ

where h P 0 is a real parameter. Note that for our purpose we only
allow a stabilizing correction in the vertical direction. In (3.3), h = 0
gives the (EXP) scheme and h = 1 the (IMP) scheme. For h = 1/2, we
retrieve the Crank–Nicolson scheme, however we will see later that
this scheme is not particularly well-suited in the context of the iso-
neutral Laplacian operator because it does not stabilize the
cross-derivative terms as effectively as the (IMP) scheme. In the
next section we study the stability range of the (EXP), (IMP) and
(MSC) methods subject to the TRIADS or SW-TRIADS discretizations
in space.

3.2. Important results

We give here the important results of our study on the Lapla-
cian operator, the associated proof is provided in Section 3.3. Those
results are given in terms of the parabolic Courant number

rm ¼ jm
Dt

Dx2
m
: ð3:4Þ
3.2.1. Horizontal Laplacian operator
When using an Euler forward scheme, the stability limit of the

two-dimensional horizontal Laplacian operator, discretized on a
five-point stencil,4 is

r1 þ r2 6
1
2
: ð3:5Þ
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3.2.2 Isoneutral Laplacian operator
� TRIADS discretization

– The (EXP) scheme is stable for
r1 1þ s2
1

� 
þ r2 1þ s2

2

� 
6

1
2

ð3:6Þ
which is always more restrictive than (3.5).
– The stability limit of the (IMP) scheme is given by (3.5).
– The same stability constraint (3.5) is obtained for the

(MSC) scheme when h is chosen such that
s2
1r1þs2

2r2
� 

h¼1
2

max �1þ2 r1 1þs2
1

� 
þr2 1þs2

2

� � �
;0

� �
:

ð3:7Þ
The value of h ranges from h = 0 when the (EXP) scheme is sta-
ble to h = 1 when r1 + r2 = 1/2. The amount of implicit diffusion
is thus always smaller with the (MSC) scheme compared with
the (IMP) scheme.
� SW-TRIADS discretization

– The (EXP) scheme is stable for
r1 max s2
1;1

� �
þ r2 max s2

2;1
� �

6
1
2

ð3:8Þ
which shows that for s2
1 6 1 and s2

2 6 1 the stability constraint
is the same as the non-rotated operator.

– As for the TRIADS case, the (IMP) scheme is stable if con-
dition (3.5) is satisfied.

– The stability condition (3.5) applies to the (MSC) scheme
for
h ¼max
js1j � 1
js1j

;
js2j � 1
js2j

;0
� 


ð3:9Þ
Before demonstrating those results, we draw a few remarks:
� As shown in Section 3.2.1, the values of h given in (3.7) and

(3.9) are sufficient conditions for stability. Some conservative
choices have been made during the analysis to simplify the
results.
� The value of h in (3.7) is equal to 1 when r1 + r2 = 1/2. Conse-

quently, if the diffusivities jm are constant everywhere and
such that r1 + r2 = 1/2, the (MSC) scheme is equivalent to the
(IMP) scheme. The (MSC) scheme can, however, be particularly
interesting when flow-dependent diffusion coefficients are used
because it minimizes the amount of implicit vertical diffusion
required for stability.
� The Crank–Nicolson scheme (i.e., h = 1/2) does not provide a

sufficient condition ensuring that the isoneutral Laplacian oper-
ator can be advanced with the same time step as the horizontal
diffusion operator. Indeed, we show in (3.7) that values of h lar-
ger than 1/2 are required, especially when r1 + r2 = 1/2.

We now provide the methodology to derive the stability
conditions.

3.3. Proof through linear stability analysis

We first assume that the tracer q can be Fourier decomposed as

qðx1; x2; x3; tÞ ¼
X

k

AkðtÞ exp i
X3

m¼1

kmxm

 !
; i ¼

ffiffiffiffiffiffiffi
�1
p

ð3:10Þ
with k = (k1,k2,k3) the three-dimensional wave-vector. Substitution
in (2.6) leads to the linear damping equation

dq
dt
¼ �gq; with g ¼

X2

m¼1

jmðkm þ amk3Þ2; ð3:11Þ

and subsequently

qðtnþ1 ¼ tn þ DtÞ ¼ expð�gDtÞqðtnÞ ¼ kqðtnÞ: ð3:12Þ

k = e�gDt provides the exact damping obtained with a ‘‘perfect’’ dis-
cretization. We can derive the approximate damping ~k provided by
the space–time discretization

qðtnþ1Þ ¼ ~kðz11; z22; z33; z31; z13; z32; z23ÞqðtnÞ; ð3:13Þ

where the zmn terms are all real and obtained by substitution of dis-
crete Fourier modes in (2.20) and multiplication by Dt:

zmm ¼�2rmð1�cos/mÞ m¼1;2

z33 ¼�2 s2
1r1þ s2

2r2
� 

ð1�cos/3Þ

zm3¼ z3m ¼�smrm sin/m sin/3�bmð1�cos/mÞð1�cos/3Þ½ � m¼1;2
ð3:14Þ

with /m = kmDxm (j/mj 6 p) the normalized Fourier frequencies.
Using those notations, we obtain gDt ¼

P2
m¼1rm /m þ sm/3ð Þ2 in

(3.12).
The response function of the (MSC) time scheme (3.3) subject to

the spatial discretization (2.20) and (2.21) is

~k ¼ 1þ z0 þ z33

1� hz33
; z0 ¼

X2

m¼1

ðzmm þ zm3 þ z3mÞ: ð3:15Þ

Stability of the scheme under investigation is obtained for j~kj 6 1.
In the subsequent paragraphs we first show that the condition

~k 6 1 is satisfied whatever the value of h, and whatever the spatial
discretization. Then, we show that the TRIADS scheme always pro-
vides a more restrictive stability range than the SW-TRIADS
scheme. Eventually, we derive the requirements to satisfy the con-
straint ~k P �1 which ensures that the corresponding scheme is
stable.

3.3.1. Upper bound on ~k
To emphasize the fact that the zmm terms are negative, we

define ym ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rmð1� cos /mÞ

p
, and y3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

31 þ y2
32

q
(with y3m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s2
mrmð1� cos /3Þ

p
) so that zmm ¼ �y2

m. Moreover, we introduce
the vector vm ¼ ðsin /m; 1mð1� cos /mÞÞ, with 1m such that
bm = �1m13 and j1mj 6 1. We can easily show that

zm3 ¼ z3m ¼ �smrmðvm � v3Þ ð3:16Þ

and for m = 1,2 (thanks to the condition j1mj 6 1)

rmkvmk2
6 rm sin2 /m þ ð1� cos /mÞ

2
n o

¼ y2
m; ð3:17Þ

where k�k defines the ‘2-norm. Eqs. (3.16) and (3.17) imply that

�z33 �
X2

m¼1

ðzmm þ zm3 þ z3mÞ ¼ y2
1 þ y2

2 þ y2
3 þ 2s1r1ðv1

� v3Þ þ 2s2r2ðv2 � v3Þ

P
X2

m¼1

rmkvmk2 þ s2
mrmkv3k2

þ 2smrmðvm � v3Þ

¼
X2

m¼1

rmkvm þ smv3k2 P 0: ð3:18Þ
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This result is sufficient to show that ~k 6 1, indeed thanks to (3.15)
we have

~k ¼ 1� �z33 �
P2

m¼1ðzmm þ zm3 þ z3mÞ
1þ hy2

3

( )
6 1; ð3:19Þ

because we showed that the term in curly brackets is positive. Note
that this result is valid whatever jbmj 6 1 and hence whatever the
spatial discretization. This result means that stability of the time
discretization is obtained for ~k P �1. In the following we first show
that if this condition is satisfied by the TRIADS scheme the same
applies to the SW-TRIADS scheme.

3.3.2. Effect of the cross-terms
As shown in (3.14), the difference between the two spatial dis-

cretizations under consideration appears only in the z3m terms. The
definition of the slope dependent parameter bm for the SW-TRIADS
scheme is such that for all sm, bmsm = jsmj. Substitution in (3.14)
leads to

�z3m ¼ rm½sm sin /m sin /3 � jsmjð1� cos /mÞð1� cos /3Þ�
6 rmsm sin /m sin /3: ð3:20Þ

This inequality shows that the cross-terms discretized using the
SW-TRIADS scheme always provide a less restrictive stability con-
straint than when using the TRIADS scheme (which corresponds
to bm = 0 in (3.14)). It means that the condition ~k P �1 is more dif-
ficult to satisfy with the TRIADS discretization. We thus consider in
the remainder of this section the most restrictive case bm = 0. We
provide in Appendix B the results obtained for a non-zero value of
bm with the SW-TRIADS discretization.

3.3.3. Stability conditions
Starting from (3.15), stability is obtained for

~kP�1()
X2

m¼1

um�2 1þhy2
3

� 
60; um¼ y2

mþy2
3m�z3m�zm3:

ð3:21Þ

Taking sm = 0 (i.e., y3m = z3m=0) and h = 0 in (3.21) we find the stabil-
ity constraint y2

1 þ y2
2 6 2 which corresponds to the usual constraint

(3.5) obtained when the horizontal Laplacian operator is integrated
using an Euler explicit scheme. Ideally, this is the stability
constraint we are targeting for the general case sm – 0 so that the
rotated Laplacian operator does not involve the use of a smaller
time step than the non-rotated Laplacian operator. The stability
condition (3.21) can be more conveniently written as

uh
1 þuh

2 6 2; with uh
m ¼ um � 2hy2

m3: ð3:22Þ

The stability analysis therefore requires the derivation of a proper
upper bound for the uh

m functions. For clarity, we describe the com-
putation of such an upper bound in Appendix A, and we recall here
only the final result:

uh
1 þuh

2 6 2r1Mðh; s1Þ þ 2r2Mðh; s2Þ; ð3:23Þ

where

Mðh; smÞ ¼ 1þ s2
mð1� 2hÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

m

� 
1þ s2

mð1� 2hÞ2
� �r

: ð3:24Þ

Combining (3.22) and (3.23) we get the following criteria for
stability,

2r1Mðh; s1Þ þ 2r2Mðh; s2Þ 6 2: ð3:25Þ

In the fully-explicit (EXP) case (i.e., h = 0) we get
Mð0; smÞ ¼ 2 1þ s2

m

� 
, the associated stability criteria reads

r1 1þ s2
1

� 
þ r2 1þ s2

2

� 
6

1
2
: ð3:26Þ
This result leads to the stability condition (3.6) and is consistent
with the result found in Mathieu et al. (1999) (Eq. (31)). Further-
more, for h = 1 (i.e., the (IMP) scheme), we get Mð1; smÞ ¼ 2 and thus
r1 + r2 6 1/2 which corresponds to the stability limit of the non-ro-
tated operator. This result shows that by treating implicitly the ver-
tical component of the tensor there is no additional constraint
arising from the cross-terms. Finally, for the (MSC) scheme the opti-
mal value of h providing a minimum of implicit diffusion is solution
of the equation r1Mðh; s1Þ þ r2Mðh; s2Þ ¼ 1. However, the analytical
solution of this equation is extremely complex and would be
impractical anyway for real applications. We, therefore, proceed
in a more conservative way by noting that for h 6 1

Mðh; smÞ 6Mzðh; smÞ ¼ 2 1þ s2
m

� 
� 2hs2

m: ð3:27Þ

It is now straightforward to determine the analytical solution hw of
the equation r1M

zðh; s1Þ þ r2M
zðh; s2Þ ¼ 1:

s2
1r1 þ s2

2r2
� 

hH ¼ 1
2

max �1þ 2 1þ s2
1

� 
r1 þ 2 1þ s2

2

� 
r2;0

� �
:

ð3:28Þ
We can check that hw = 0 if the (EXP) scheme is stable and hw = 1 for
r1 + r2 = 1/2. In Fig. 3 we show the values of the stabilizing param-
eter hw associated with the TRIADS scheme as well as the values of
the stabilizing parameter obtained in Appendix B with the SW-
TRIADS. We, first, want to emphasize the fact that those values of
h are sufficient conditions for stability but are not the optimal val-
ues, conservative choices have been made during our analysis. This
remark explains why in Fig. 3 larger values of h are shown for the
SW-TRIADS, compared to the TRIADS (particularly for small values
of rm), although we argue earlier that the TRIADS scheme always
provide a more restrictive stability condition than the SW-TRIADS
scheme. It can be shown that the value of h given in (3.28) for the
TRIADS scheme is also a sufficient condition for stability with the
SW-TRIADS scheme.

In general, we see that the value of h required to maintain sta-
bility of the scheme can be smaller than 1 in numerous cases and
hence that splitting errors (as defined in footnote 2) associated
with the (IMP) scheme can be further reduced. It, however, still
needs to be checked that this reduction of splitting errors has a
clear and meaningful impact on the physical solution of numerical
models. This question is left for a future study.

3.4. Non-oscillatory scheme

Throughout the previous subsection we have considered the
requirement j~kj 6 1 which is a necessary condition for stability.
However a more severe condition 0 6 ~k 6 1 may be required to
ensure a non-oscillatory behavior of the temporal integration
(Mathieu et al., 1999). This corresponds to the so-called ‘‘no flip-
flop’’ condition, as opposed to the condition j~kj 6 1 which allows
a flip-flop behavior in time unlike the exact solution of the problem
under investigation (Cushman-Roisin and Beckers, 2011, Chap. 5).
Indeed, we see in (3.13) that negative values of ~k would allow
the solution to oscillate at each time step because ~k, ~k2, ~k3; . . .

would change sign. It is straightforward to extend the results de-
scribed in Section 3.3 to the ‘‘no flip-flop’’ case. In the non-rotated
case, (3.5) reduces to
r1 þ r2 6 1=4; ð3:29Þ
which means that the time step must be divided by two. In the ro-
tated case, the (EXP) scheme satisfies the condition ~k P 0 for

r1 1þ s2
1

� 
þ r2 1þ s2

2

� 
6

1
4
: ð3:30Þ

For the (IMP) scheme, the absence of flip-flop requires

r1 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

1

q� �
þ r2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

2

q� �
6

1
2

ð3:31Þ



Fig. 3. Optimized values hw (for r2 = 0) of the stabilizing parameter h obtained with the TRIADS scheme (left) and the SW-TRIADS scheme (right) with respect to r1 and s1.
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which is the condition used in the CLIO model to set Dt (Mathieu
et al., 1999). The inequality (3.31) shows that the no flip-flop condi-
tion is satisfied under a stability constraint more restrictive than
(3.29). In the case of the (MSC) scheme, the no flip-flop condition
is achieved if (3.29) is satisfied and if h is chosen such that

s2
1r1 þ s2

2r2
� 

hH ¼ 1
2

max �1þ 4 1þ s2
1

� 
r1 þ 4 1þ s2

2

� 
r2;0

� �
:

ð3:32Þ

For this value of h the scheme satisfies the ‘‘no flip-flop’’ condition if
the horizontal terms do, which reduces to (3.29). In (3.32), the value
of hw varies from hw = 0 when (3.30) is satisfied to hw = 2 when
r1 + r2 = 1/4. The aim here is not to claim that flip-flops should
not be allowed. Indeed, the widely used horizontal Laplacian
operator advanced with a forward Euler scheme allows flip-flops
for 1/4 6 r1 + r2 6 1/2 and it did not turn out to be problematic
in practice. This paragraph was meant to illustrate that, unlike the
(IMP) scheme which is restricted by the cross-terms, the (MSC)
scheme is general enough to ensure additional properties of the
time discretization like the absence of flip-flops.
3.5. Comments

The literature on multi-dimensional parabolic problems with
mixed derivatives has been focused on demonstrating the stability
of the method of stabilizing corrections (and/or the ADI method).
To our knowledge, there are no systematic studies on the impact
of the stabilizing step on the accuracy of the solution. This point
is discussed in this section and turns out to be very helpful to antic-
ipate the behavior of the scheme in practical situations.
3.5.1. Spatial discretization
In Fig. 4 we show the amplification factor obtained when the

(EXP) scheme is stable. Because in this case there are no splitting
errors, this figure is indicative of the differences between the two
spatial discretizations under consideration. To make the interpre-
tation of the results easier, we consider the no flip-flop case. In
the figure, we can not formally identify the direction of the compu-
tational grid because it represents a wavenumber space, but it is
instructive to look at the amplification factor in several directions.
Using (3.10), we find that rq and (k1,k3) are collinear. Moreover it
is straightforward to see that the dianeutral direction and
q\ = (�a1,1) are collinear too, as well as the isoneutral direction
and qk = (1,a1). We specifically look at two directions in the
(/1,/3) plane corresponding to two different angles between rq
and the isoneutral/dianeutral direction:
� D1 = /1 + s1/3 = 0 (i.e., rq � qk = 0) corresponds to the direction
along which rq is perpendicular to the isoneutral direction. In
this case, q is constant in the isoneutral direction (because the
iso-q lines are perpendicular torq). Because an isoneutral mix-
ing operator should not affect a tracer constant in the isoneutral
direction, we expect the amplification factor k to be equal to one
along this line, otherwise it would indicate that the slope is
computed in an inaccurate way and that dianeutral mixing
occurs.
� A perpendicular to D1 is D2 = /3 � s1/1 = 0 (i.e., rq � q\ = 0)

which corresponds to the direction along which rq is aligned
with the isoneutral direction. In this case, we see from Fig. 4
(top panels) that the exact amplification factor is equivalent
to the one of a one-dimensional Laplacian operator, indeed we
would have gDt ¼ r1 1þ s2

1

� 2
/2

1.

Along the line D1 = 0, the SW-TRIADS always provide a damping
in better agreement with the exact one, compared to the TRIADS
scheme, thus indicating a more accurate computation of the direc-
tion of diffusion for s1 = 1/2 as well as s1 = 2. We see that, for /3 = 0,
all the discretizations have the same behavior and that the mode
j/1j = p is effectively damped. This was expected because the dif-
ference between the TRIADS and SW-TRIADS schemes is in the
cross-terms which vanish for /3 = 0. Unlike the SW-TRIADS, the
TRIADS scheme has also the property to efficiently damp the
checkerboard mode (j/1j,j/3j) = (p,p), whatever the grid slope ratio
(Fig. 4). The lack of damping associated with the SW-TRIADS is not
problematic to solve the initial value problem (2.6) because we as-
sume some regularity of the initial condition, and the checkerboard
mode is not present in this case. However, when advective terms
are considered they can allow the creation and accumulation of
dispersive errors which are expected to be controlled by diffusive
processes. We usually do not rely on the rotated operator to damp
small scale noise in the vertical direction because the vertical mix-
ing parameterization does it efficiently (otherwise grid-scale noise
would arise when an horizontal Laplacian operator is used). In the
horizontal direction, those operators are generally the only source
of numerical filtering, and we thus expect them to control small-
scale noise. For example, for s1 = 1/2, the TRIADS scheme does it
efficiently while the SW-TRIADS scheme damps the 2Dx1 mode
(j/1j = p) only for well-resolved scales in the vertical (j/3j 6 p/2).
Note that it is, however, expected that the 2Dx3 mode (j/3j = p)
is already significantly damped by the vertical mixing scheme.
The weak damping with the SW-TRIADS scheme can be seen also
along the line D2 = 0. In this direction, the exact amplification fac-
tor and the TRIADS scheme ensure a monotonic damping, indeed k
monotonically decreases when we go from well-resolved to



Fig. 4. Exact amplification factor in the (/1,/3) plane for r1 ¼ 1=4 1þ s2
1

� 
(i.e., when the (EXP) scheme is stable) with s1 = 1/2 (top, left) and s1 = 2 (top,right) in the two-

dimensional (x1,x3) case (i.e., j2 = 0). Amplification factor for the (EXP) scheme with the TRIADS discretization (middle, left for s1 = 1/2 and middle, right for s1 = 2) and with
the SW-TRIADS discretization (bottom, left for s1 = 1/2 and bottom, right for s1 = 2) for the same values of r1. The thick black line is D1 = 0, the thick gray line is D2 = 0.

F. Lemarié et al. / Ocean Modelling 52–53 (2012) 9–35 19
poorly-resolved scales (i.e., when j/1j or j/3j increases). This
property is not satisfied by the operator discretized with the
SW-TRIADS. We thus expect the TRIADS to provide a better control
of numerical noise and the SW-TRIADS to provide a more accurate
computation of the direction of diffusion. Moreover, it is worth
mentioning that numerical noise in the tracer fields can project
into irreversible dianeutral mixing errors, especially when local
Richardson number-dependent vertical mixing schemes are used
in the oceanic interior.
3.5.2. Space–time discretization
We show in Fig. 5 the amplification factor for s1 = 1/2 and s1 = 2

when the (MSC) scheme is used with values of h chosen such that
there are no flip-flops in time. If we note Dtq the time step of the
(EXP) scheme and Dt0 the time step of the (MSC) scheme, we get
the ratio l2 defined as

l2 ¼
Dt0

Dtq
¼ 1þ s2

1: ð3:33Þ

For s1 = 1/2, we have l2 = 5/4, and l2 = 5 for s1 = 2. When l2 is close
to one, as for s1 = 1/2, splitting errors are very small. We see that the
left panels in Fig. 5 are very similar to the left panels in Fig. 4. For
l2 = 5, the damping along the line D1 = 0 increases which indicates
that the computation of the direction of diffusion become less and
less accurate (Fig. 5, right panels). The space–time discretization
is also relatively inaccurate along the line D2 = 0 and the SW-TRIADS
scheme suffers from non-monotonic damping. However, the



Fig. 5. Same as Fig. 4 for the (MSC) scheme with r1 = 1/4 (i.e., when the horizontal Laplacian advanced with the (EXP) scheme is stable and satisfies the no flip-flop condition).
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schemes still perform well as long as the vertical scales are well-re-
solved (i.e., j/3j < p/2).
4. Time discretization of the isoneutral biharmonic operator

4.1. Proposed scheme

As mentioned in the paper’s introduction, the isoneutral bihar-
monic operator has never been thoroughly studied in the literature
so far. One possible explanation is that people working on rotated
operators were mainly interested in large-scale flows for which
the scale-selectivity property is not a priority. Moreover, a very
drastic reduction of the time step is required to maintain stability
of such an operator. The aim of the present section is to tackle this
last point by deriving a time integration scheme enabling an effi-
cient and easy implementation of a rotated biharmonic operator.
To our knowledge, no alternative to the usual explicit Euler scheme
has been proposed. It is of course feasible to mimic the (IMP)
scheme used for the rotated Laplacian operator but it would require
the solution of a penta-diagonal system, and additional constraints
would arise from the cross terms anyway. Indeed, an implicit verti-
cal biharmonic operator can not stabilize the second order terms in
x3. Even if it is relatively counter-intuitive we show in the remain-
der of this section that it is possible to stabilize a biharmonic oper-
ator by means of a simple Laplacian operator. An alternative
approach could be to use a combination of an implicit Laplacian
operator and an implicit biharmonic operator in the vertical to sta-
bilize separately the second-order and fourth-order terms, but it
would increase substantially the complexity of the scheme.
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In the same spirit as the method of stabilizing corrections intro-
duced in Section 3.1, we thus propose to integrate the rotated
biharmonic operator D4 in the following way:

qH ¼ qn þ DtD4ðqnÞ;
qnþ1 ¼ qH þ Dt@3 ~j@3qnþ1 � ~j@3qn

� �
:

(
ð4:1Þ

In (4.1), an explicit and consistent approximation of the operator is
first computed, followed by a second stage aiming at improving the
stability. For the aforementioned reasons, we decided to use a sec-
ond-order diffusive operator for this second stage. Instead of the
stabilizing parameter h used in the previous section, we use here
a stabilizing vertical diffusivity ~j.

4.2. Important results

We first provide the results and prove them in Section 4.2.1. We
keep the notations from the previous section but now with rm re-
placed by

rð4Þm ¼
ffiffiffiffiffiffiffiffiffiffiffi
DtBm
p

Dx2
m

; ð4:2Þ

where Bm is the hyperdiffusivity in the xm direction.

4.2.1. Horizontal biharmonic operator
When using an Euler forward scheme, the stability limit of the

two-dimensional horizontal biharmonic operator is

rð4Þ1 þ rð4Þ2

� �2
6

1
8
: ð4:3Þ

This result is also given in Griffies (2004) (Chap. 18).

4.2.2. Isoneutral biharmonic operator
� TRIADS discretization

– The (EXP) scheme is stable for
:

rð4Þ1 1þ s2
1

� 
þ rð4Þ2 1þ s2

2

� � �2
6

1
8
: ð4:4Þ

– The stability constraint of the (MSC) scheme is the same
as the stability limit (4.3) for

~j ¼ 8
Dx2

3

Dt

� �
rð4Þ1 s2

1 þ rð4Þ2 s2
2

� �
1þ s2

1

� 
rð4Þ1 þ 1þ s2

2

� 
rð4Þ2

� �
ð4:5Þ

� SW-TRIADS discretization
– The (EXP) scheme is stable for
;

rð4Þ1 max s2
1;1

� �
þ rð4Þ2 max s2

2;1
� �� �2

6
1
8
: ð4:6Þ

– The stability constraint of the (MSC) scheme is given by
(4.3) for

~j ¼ 8
Dx2

3

Dt

� �
S1rð4Þ1 þ S2rð4Þ2

� �
ð1þ S1Þrð4Þ1 þ ð1þ S2Þrð4Þ2

� �
ð4:7Þ

with Sm ¼max s2
m � jsmj;0

� �
.

Note that, if we take Sm ¼ s2
m in (4.7), we retrieve (4.5). Using the

notations introduced in Section 2.2, we could write in a generic
way Sm = sm(sm � bm), thus showing that Sm corresponds to the
weight of the vertical points (i,j,k + 1) and (i,j,k � 1) in the stencil
(2.21). We now give the proof of the stability results.

4.3. Linear stability analysis

We, first, define a vertical Courant number ~r ¼ ~jDt=Dx2
3 associ-

ated with the stabilizing stage in (4.1), and we introduce
~y3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~rð1� cos /3Þ

p
. The aim of this stability analysis is to deter-

mine a value of ~r (and hence ~j) ensuring that the stability con-
straint of the rotated biharmonic operator is imposed by the
horizontal components of the operator. Note that the exact ampli-
fication factor is now given by k = exp (�gDt) with

g ¼
P2

m¼1Bmðkm þ amk3Þ4, while the amplification factor after dis-
cretization is

~k ¼ 1�
y2

1 þ y2
2 þ y2

3 � z13 � z31 � z23 � z32
� 2

1þ ~y2
3

¼ 1� u1 þu2ð Þ2

1þ ~y2
3

;

ð4:8Þ

where um is defined in (3.21). It is straightforward to check that
~k 6 1, stability is thus obtained for ~k P �1; this condition is equiv-
alent to

u1 þu2ð Þ2 � 2~y2
3 6 2: ð4:9Þ

We can first easily check that the stability limit of the horizontal

biharmonic operator (i.e., with sm = 0) is given by ðy2
1 þ y2

2Þ
2
6 2,

leading to rð4Þ1 þ rð4Þ2

� �2
6 1=8. Furthermore, using the upper bound

on um found in Appendix A, we can derive the stability constraint
for the forward Euler scheme (i.e., ~j ¼ 0),

u1 þu2ð Þ2 6 4 rð4Þ1 Mð0; s1Þ þ rð4Þ2 Mð0; s2Þ
� �2

¼ 16 rð4Þ1 1þ s2
1

� 
þ rð4Þ2 1þ s2

2

� � �2
6 2; ð4:10Þ

where M is defined in (3.24), (4.10) leads to the expected result
(4.4). As an illustration, this stability constraint implies that for
s1 = s2 = 2, the time step used with the horizontal biharmonic oper-
ator should be reduced by a factor of 25 when using the rotated
biharmonic operator.

In the general case ~j – 0, we again use the upper bound on um

to get

u1þu2ð Þ2�2~y2
3 6BðhÞ¼4 rð4Þ1 Mðh;s1Þþhy2

13þrð4Þ2 Mðh;s2Þþhy2
23

� �2
�2~y2

3;

ð4:11Þ

stability is obtained for BðhÞ 6 2. For simplicity, we take h = 1 (i.e.,
M ¼ 2)

Bðh ¼ 1Þ ¼ 16 rð4Þ1 þ rð4Þ2 þ ðr
ð4Þ
1 s2

1 þ rð4Þ2 s2
2Þð1� cos /3Þ

� �2

� 4~rð1� cos /3Þ ¼ 16 rð4Þ1 þ rð4Þ2

� �2

þ ð1� cos /3Þ 16 rð4Þ1 s2
1 þ rð4Þ2 s2

2

� �
2 rð4Þ1 þ rð4Þ2

� �hn
þðrð4Þ1 s2

1 þ rð4Þ2 s2
2Þð1� cos /3Þ

i
� 4~r

o
: ð4:12Þ

The stability constraint Bðh ¼ 1Þ 6 2 thus reduces to

rð4Þ1 þ rð4Þ2

� �2
6 1=8 if the term in curly brackets in (4.12) is nega-

tive or zero. This requirement is satisfied for

~r P rH ¼ 8 rð4Þ1 s2
1 þ rð4Þ2 s2

2

� �
1þ s2

1

� 
rð4Þ1 þ 1þ s2

2

� 
rð4Þ2

� �
; ð4:13Þ

which demonstrates (4.5). Less conservative values of ~r could be
derived (like the one used in Lemarié et al. (2012)), however the
algebra becomes very quickly complicated and tedious. The optimal



Fig. 6. Exact amplification factor in the (/1,/3) plane for rð4Þ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=16 1þ s2

1

� 2
q

(i.e., when the (EXP) scheme is stable) with s1 = 1/2 (top, left) and s1 = 2 (top, right) in the two-
dimensional (x1,x3) case (i.e., j2 = 0). Amplification factor for the (EXP) scheme with the TRIADS discretization (middle, left for s1 = 1/2 and middle, right for s1 = 2) and with
the SW-TRIADS discretization (bottom, left for s1 = 1/2 and bottom, right for s1 = 2) for the same values of r1.The thick black line is D1 = 0, the thick gray line is D2 = 0.
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value (4.7) of the stabilizing parameter ~r obtained with the
SW-TRIADS scheme is provided in Appendix B.

4.3.1. Non-oscillatory scheme
As for the Laplacian operator, we can derive the necessary con-

straints to satisfy ~k P 0 instead of ~k P �1. In this case, 1/8 should
be replaced by 1/16 in (4.3), (4.4), and (4.6). Furthermore, if the sta-
bilizing diffusivity (4.5) is multiplied by two, the (MSC) scheme
satisfies the ‘‘no flip-flop’’ condition for rð4Þ1 þ rð4Þ2

� �2
6 1=16.

4.4. Comments

We show in Figs. 6 and 7 the amplification factor obtained with
a rotated biharmonic operator for s1 = 1/2 and s1 = 2 with the (EXP)
and the (MSC) schemes in the no flip-flop case. We can draw the
same remarks as for the Laplacian operator: the SW-TRIADS com-
putes more accurately the direction of diffusion, however it suffers
from a lack of damping of the checkerboard mode. The ratio l4 be-
tween the time step of the (MSC) scheme and the one of the (EXP)
scheme is given by

l4 ¼ 1þ s2
1

� 2
: ð4:14Þ

For s1 = 1/2, we get l4 	 1.56. In this case, the results are very sim-
ilar between the (MSC) and the (EXP) schemes. For s1 = 2, the ratio
becomes stiffer with l4 = 25. However, the scheme behaves in a
similar manner (Fig. 7, right panels) than the (EXP) scheme
(Fig. 6, right panels).

4.5. Partial conclusion and limitations of our approach

We have shown so far that the Laplacian and biharmonic
rotated operators can be made stable by combining an explicit-
in-time evaluation with a semi-implicit stabilizing step. This



Fig. 7. Same as Fig. 6 for the (MSC) scheme with rð4Þ1 ¼ 1=4 (i.e., when the horizontal biharmonic advanced with the (EXP) scheme is stable and satisfies the no flip-flop
condition).
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approach has the advantage to be extremely easy to implement
because it requires only the inversion of a simple tridiagonal sys-
tem in the vertical. For quite large grid slope ratios (s1 = 2) the
scheme performs relatively well but as the slope steepens to
s1 = 10 (Fig. 8) it can suffer from a lack of damping of the smallest
resolved scales, especially for the rotated biharmonic operator.
This behavior is reminiscent of the Crank–Nicolson scheme for
which the small scale structures are not damped in the limit of
large time-steps (Manfredi and Ottaviani, 1999). This problem
thus arises when the time step used with the (MSC) scheme is
significantly larger than the stability limit of the (EXP) scheme,
i.e., when l4 or l2 are large (for s1 = 10 we have l4 	 10,000).
This lack of damping affects only the vertical direction. The hori-
zontal terms of the tensor, which are advanced explicitly, are still
’’active‘‘. Because the TRIADS scheme requires a larger value of ~j
to stabilize the time-integration, this lack of damping is generally
more pronounced with this scheme. This issue is also more obvi-
ous when we try to suppress the flip-flops in time by increasing
the value of ~j (Fig. 8).

The fact that we restrict ourselves to implicit integrations only
in the vertical direction reduces significantly the range of possible
methods to try to mitigate this problem. If steep grid slope ratios
are expected and accuracy matters, we could combine the (MSC)
with a time-splitting approach, not to penalize the whole model.
When using an Euler explicit scheme, if s1 reaches Oð10Þ values
we should decrease the time step by a factor 104 compared to
the time step of the horizontal biharmonic operator (indeed,
l4 	 10,000 for s1 = 10). Several sub-steps of the (MSC) scheme to
advance the rotated operator from time n to n + 1 would still be
significantly more computationally efficient than using an explicit
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Euler scheme. The use of a small number of sub-step clearly im-
proves the damping properties of the rotated biharmonic operator
which smoothes more efficiently the poorly resolved scales (Fig. 9).
Based on the results shown in Fig. 9 we can recommend the use of
4 sub-steps to maintain a good accuracy of the rotated operator for
steep grid slope ratios. We checked that for very large values of s1

(s1 = 106), 4 sub-steps are still sufficient to damp the smallest
scales (not shown). Note that an even number of sub-steps ensures
the absence of flip-flops.

5. Implementation of the proposed schemes in existing models

In this section, we provide additional information required for
the implementation of the various schemes introduced in the pre-
vious sections.

5.1. Time-scheme for diffusive processes

As mentioned earlier, the majority of the global ocean climate
models makes use of a rotated Laplacian operators advanced with
the (IMP) scheme. For those models, the implementation of the
(MSC) scheme is straightforward and does not require any addi-
tional global array for storage. In numerical models like ROMS or
MitGCM5 using a predictor–corrector scheme where provisional val-
ues qnþ1

2 are given by a predictor step (e.g., a Leapfrog-Adams–Moul-
ton interpolation in ROMS or an Adams–Bashforth extrapolation in
MitGCM), the (MSC) scheme and the implicit vertical diffusion can
be combined with the corrector step in the following way:

qnþ1;H ¼ qn þ Dt RHSnþ1
2 þ Dt D4ðqnÞ � Dt @3 ~j@3qn½ �

qnþ1 ¼ qnþ1;H þ Dt @3 ðK3 þ ~jÞ@3qnþ1
� �

;

(
ð5:1Þ

where K3 is the vertical eddy-diffusivity given by an appropriate
parameterization of the sub-grid scale vertical mixing, and RHS con-
tains all the terms other than diffusive terms. More generally, the
explicit part of the stabilizing correction must be applied at the ini-
tial time of the tracer time step (i.e., at time n for ROMS/MitGCM,
n � 1/2 for MOM4p1 (Griffies, 2010, Eq. (8.8)), or n � 1 for NEMO/
POP), and the implicit part at the final time (i.e., at time n + 1 for
ROMS/MitGCM/NEMO/POP, or n + 1/2 for MOM4p1). For models
using a Leapfrog scheme, like NEMO or POP, Dt must be replaced
by 2Dt (Madec, 2008; Smith et al., 2010).

5.2. Boundary conditions

We have considered so far a model problem defined on an un-
bounded domain. For realistic applications, the specification of
boundary conditions is required and is based upon two require-
ments: the mixing operator conserves the tracer content and re-
duces the global tracer variance. Conservation of the tracer being
diffused imposes F(3) = 0 at x3 = f (with f the free-surface) and
x3 = �H (with H the depth of the water column). To ensure that
the boundary conditions are consistent with the global tracer var-
iance diminishing property it is convenient to use the tracer/den-
sity triads formalism defined in Section 2.3. Using the notations
introduced in Fig. 1, we consider that the grid cell (i,k) is located
at the ocean floor. The no-flux boundary condition requires
Fð3Þ

i;k�1
2
¼ 0 which involves that the triads 3,4,11 and 12 cancel. More

generally, each time a given triad crosses the boundary the diffu-
sivity A(n) associated with this triad in the discrete functional
(2.17) should be zero, and this triad can not participate in the com-
putation of the F(1) interfacial fluxes in the grid-cell next to a
boundary. At the bottom (i.e., for k = 1) we have
5 Massachusetts Institute of Technology General Circulation Model, mitgcm.org
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This approach can be seen as a diffusivity tapering because j1 is di-
vided by two in the bottom most grid box. An other way to specify a
boundary condition is to consider that Fð3Þ

i;j;12
¼ 0 because

ðd3qi;j;12
Þ�1 ¼ 0 at the bottom. In this case we get
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This second approach is recommended only if a specific procedure
is used to ensure that (@3q)�1 goes smoothly to zero as a boundary
is approached. The same remarks apply at the surface. For realistic
applications, the direction of diffusion is generally progressively
aligned with the horizontal direction when approaching the surface.
This ‘‘boundary rotation’’ is generally done to avoid the rotated
operator to interact with the parameterization of sub-grid scale ver-
tical mixing and also to stay consistent with the small slope limit in
the well mixed surface layer.

In the horizontal, homogeneous Neumann boundary conditions
(i.e., @1q = @1q = 0) are imposed through masking at the coast.
Again, because the biharmonic operator corresponds to two suc-
cessive Laplacian operators, the specification of the boundary con-
ditions does not imply additional difficulties, and the second
boundary condition at the coast required for this operator is simply
@3

1q ¼ @3
1q ¼ 0. It is straightforward to extend the results of this

paragraph to the x2-direction. The boundary condition for the sta-
bilizing step in the (MSC) scheme is an homogeneous Neumann
condition to ensure conservation of the tracer content.

A major difficulty when rotating the diffusion in the isoneutral
direction is to maintain the numerical integrity of the scheme in
poorly stratified regions, including boundary layers and convective
regions. Here, the notion of numerical integrity encompasses sev-
eral aspects: stay consistent with the small slope approximation,
smoothly satisfy the boundary condition when conditions (5.4)
and (5.5) are used, avoid any infinite slopes and associated infinite
fluxes which would introduce numerical instabilities. In the next
two subsections, we discuss more specifically those delicacies.

5.3. Boundary rotation

A specific procedure is required to safely consider that the neu-
tral slope varies smoothly in the boundary layer and cancels at the
surface. Several ways to handle the transition from isoneutral to
horizontal mixing have been proposed in the literature (e.g.,
Treguier et al., 1997; Fox-Kemper et al., 2008; Ferrari et al.,
2008; Ferrari et al., 2010, see also Griffies (2004) (Chap. 15) for a



Fig. 8. Amplification factor of the rotated Laplacian operator along the line D1 = 0 (top, left) and D2 = 0 (top, right), and of the rotated biharmonic operator along D1 = 0
(bottom, left) and D2 = 0 (bottom, right) for s1 = 10, r1 = 1/4 and rð4Þ1 ¼ 1=4. The gray lines (resp. black lines) are obtained with a stabilizing diffusivity preventing flip-flops
(resp. allowing flip-flops) with the (MSC) scheme. The results obtained with the TRIADS (resp. SW-TRIADS) discretization are represented with thick lines (resp. thick dashed
lines). The thin black lines correspond to the exact amplification.

Fig. 9. Amplification factor of the rotated biharmonic operator along the line D2 = 0, for s1 = 10. The results are shown for the TRIADS scheme when a sub-stepping of the
operator is used with nmsc = 1,2,4 or 8 sub-steps of the (MSC) scheme, and with nexp ¼ 1þ s2

1

� 2 sub-steps of the (EXP) scheme. The case nmsc = 1 corresponds to rð4Þ1 ¼ 1=4.
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review on this topic through 2003). Those methodologies are gen-
erally specifically designed in the framework of the Gent and
McWilliams (1990) parameterization to avoid any spurious recir-
culation in the surface layer when an eddy-induced velocity is
used. Indeed, the eddy-induced velocity, parameterizing the effect
of mesoscale eddies, is usually defined with respect to the vertical
derivative of the neutral slopes, the type of boundary rotation
adopted in the surface layer therefore interacts with the parame-
terization. For this reason, a linear clipping, ensuring a constant
eddy-induced velocity in the surface layer, is usually applied to
the neutral slopes between the base of the surface boundary layer
and the surface (Gnanadesikan et al., 2007; Madec, 2008). How-
ever, recent advances in the understanding of the role of eddy
fluxes in the mixed layer have led to a redesign of the function
responsible for the boundary rotation (Ferrari et al., 2008; Fox-
Kemper et al., 2008; Colas et al., 2012). A somehow different way
to proceed is presented in Ferrari et al. (2010) where the eddy-in-
duced velocity is computed from a vertical mode decomposition
under the assumption that the parameterized eddy-transport is
dominated by low baroclinic modes. In this case, the computation
of the eddy-induced velocity does not require any slope limiting or
boundary rotation procedure, and those delicacies are transferred
to the isoneutral diffusion operator only.

In a more general view, when considering the isoneutral diffu-
sion independently of the eddy-induced velocity, the important
term to keep under control is (@3 q)�1 and no longer the neutral
slopes.

5.4. Diffusion slope limit

We provide here a simple example of a procedure to stay con-
sistent with the small slope limit and to satisfy the boundary con-
ditions, although many other procedures might be perfectly valid.
We first define the quantity

ð@1qÞmax
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¼ max
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and the maximum slope amax allowed. The value of (d3q)�1, defined
at a cell vertical interface, that can be used in practice to compute
the neutral slopes is given by

d3qi;j;kþ1
2

� ��1
¼max � Fðx3Þ �amax

ðDx3Þi;j;kþ1
2
ð@1qÞmax

i;j;kþ1
2

;min �e; d3qi;j;kþ1
2

� ��1
� 
( )

:

ð5:6Þ

In the case of an unstable stratification, the enforcement of a mini-
mum stratification e maintains the diffusion in the horizontal direc-
tion. In the case of a stable stratification, but with large slopes, the
slope is bounded by a maximum value amax. The procedure (5.6) en-
sures that the limiting of (d3 q)�1 is ’’felt‘‘ the same way when the
slopes are computed at u and w points. The analytical function F
in (5.6) enables the implementation of a boundary rotation. The va-
lue of this function is typically 1 in the oceanic interior and de-
creases to 0 when approaching the boundaries.
Fig. 10. Annual mean of the maximum value of the ratio Dt/Dtq for each water column (
the rotated biharmonic operator and Dtq the time-step which would be needed to advan
Dt/Dtq is first computed using seasonal averages and is then averaged to get the annua
In Section 7, we provide a critical discussion on the choice of the
actual slope am (as in (5.6)) rather than on the grid slope ratio sm to
maintain the numerical integrity of the isoneutral mixing
operators.
5.5. Isoneutral directions

The first implementations of the rotated operators were using
the in situ density to compute the dmq terms in the rotation tensor
(Cox, 1987). As mentioned earlier in Section 2.2.1, an extra hori-
zontal diffusion was generally required to control an instability
in the corresponding scheme. The source of this instability was
found later in Griffies et al. (1998) (see also Griffies (2004), Chap.
14). They showed that using the in situ density to compute the
dmq terms leads to a non-linear instability due to an imbalance be-
tween the active tracer isoneutral diffusive fluxes. The balance be-
tween those fluxes is achieved when the diffusive flux for potential
top), with Dt the time-step of the ROMS model using the (MSC) scheme to advance
ce the same operator but with the (EXP) scheme. Depth of the maximum (bottom).
l mean.



Table 2
Description of the numerical experiments discussed in Section 6. Those experiments are carried out using the rotated Laplacian operator (with j1 = 5 m2 s�1) and the rotated
biharmonic operator (with B1 = 5 � 10�1 m4 s�1) with either the SW-TRIADS or the TRIADS spatial discretizations. Dtq is given by the stability limit (3.6) for the Laplacian
operator and (4.4) for the biharmonic operator. Dt0 corresponds to the time step restriction arising from the horizontal component of the rotated operators; i.e., Dt0 ¼ Dx2

1=2j1 for
the diffusion, resp. Dt0 ¼ Dx4

1=8B1 for the hyperdiffusion. The ratio Dt0/Dtq is given for the LARGE experiments with the rotated Laplacian operator D2 and for the rotated
biharmonic operator D4.

Resolution Scheme Time step Maximum slope parameter (s1) Dt0/Dtq

Small Large Triads SW-triads

D2 D4 D2 D4

1024 � 96 (EXP) Dtq 0.08 0.35 1 1 1 1
256 � 48 (MSC) Dt0 0.16 0.70 1.5 2.25 1 1
128 � 48 (MSC) Dt0 0.32 1.4 2.96 9 1.96 3.84
64 � 24 (MSC) Dt0 0.32 1.4 2.96 9 1.96 3.84
32 � 24 (MSC) Dt0 0.64 2.8 8.8 77 7.84 61.5

Fig. 11. Two-dimensional (x1,x3) initial conditions for different experiments of a passive tracer (shaded) diffused along a density field (contours) with a moderate slope
between the computational grid and the isoneutral direction (top), and with a large slope (bottom).
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temperature and salinity combine to give zero locally referenced
potential density flux. In Griffies et al. (1998), a procedure to com-
pute the neutral slopes is presented to ensure this constraint. For
completeness, we briefly recall the basis of this procedure and ex-
press it with our notations. We first note that

dmqðH; S; x3Þ ¼ qðHÞdmHþ qðSÞdmS; ð5:7Þ

where

qðHÞ ¼ @q
@H

� 	
S;x3¼Const

; qðSÞ ¼ @q
@S

� 	
H;x3¼Const

with H the potential temperature and S the salinity. At a discrete
level, the natural placement for the q(H) and q(S) terms is the same
as H and S, and each triad has a unique associated value of q(H) and
q(S) (corresponding to the central q-point of a triad, Fig. 1). For the
potential temperature H, the flux (2.13) in the x1-direction should
thus be rewritten as
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same rules apply to the salinity flux and to the vertical flux F(3). As a
consequence of this methodology, the isoneutral diffusive flux of
the locally referenced potential density discretely vanishes triad-
by-triad, as long as the (EXP) scheme is used for the time integra-
tion. As discussed earlier, the splitting errors associated with the
(IMP) time discretization of the isoneutral Laplacian operator rein-
troduces an imbalance in the active tracer isoneutral diffusive
fluxes. The use of the (MSC) scheme is a way to minimize this
imbalance because it introduces only the minimum amount of im-
plicit diffusion necessary to stabilize the temporal integration.

In Lemarié et al. (2012), the neutral slopes are computed using
the ‘‘elementary adiabatic differences’’ as defined in Shchepetkin
and McWilliams (2011) (Eq. (4.8)). In this case, the exact balance
between the active tracer isoneutral diffusive fluxes was not satis-
fied, however the absence of such a balance did not turn out to be
problematic for a realistic multi-decadal basin-scale Pacific simula-
tion, although this issue may be more acute elsewhere and for
longer timescales.
5.6. Diagnosing the stability condition of the rotated biharmonic
operator in a basin-scale model simulation

Based on the prescriptions to handle poorly stratified regions,
introduced in (5.6), and on the ROMS Pacific configuration de-
scribed in Lemarié et al. (2012), we show in Fig. 10 an offline diag-
nostics of the maximum value of the quantity rð4Þ1 1þ s2

1

� 
þ

�
rð4Þ2 1þ s2

2

� 
Þ2=ð1=8Þ for each water column. This quantity, derived

from the stability condition (4.4) for the rotated biharmonic oper-
ator advanced with the (EXP) scheme, provides an estimate of the
stiffness of the stability condition for the isoneutral biharmonic
operator. To generate the figure, we considered Dt = 4200 s (i.e.,
the ROMS baroclinic time-step used in Lemarié et al. (2012) to
integrate the Pacific configuration in time), B1 ¼ jujDx3

1=12,
B2 ¼ jv jDx3

2=12, amax ¼ 1=10, and F(x3) = (x3/hbl)2[3 � 2(x3/hbl)] for
x3 6 hbl (F(x3) = 1 otherwise) where hbl is the depth of the surface
boundary layer diagnosed by the parameterization of the vertical
mixing. For this configuration, the value of Dxm varies from
50 km at the equator to 35 km at high latitudes. The hyperdiffusiv-
ities Bm are those given in Marchesiello et al. (2009) and Lemarié
et al. (2012).

As mentioned earlier, it is not unusual to get very stiff stability
conditions especially in shallow areas, including coastal regions,
Fig. 12. Time history of the error ‘2-norm for different grid resolutions, in the SMALL exp
the results obtained with the TRIADS scheme, and the dashed gray lines to the results ob
and in the Kuroshio extension. The maximum stability constraint
is generally found either at the depth of the thermocline (green
shaded area in Fig. 10, bottom panel) or at the bottom (blue shaded
area in Fig. 10, bottom panel). Fig. 10 is meant to illustrate that
even if the time-step of numerical models is generally set by
hyperbolic terms, the use of a forward Euler scheme to integrate
the rotated biharmonic operator is impractical and would impose
a severe restriction on the time-step of the model, as could be ex-
pected from our study.

6. Numerical results

In this section, we present a set of idealized experiments to
investigate the behavior of the various space–time dicretization
schemes we introduced earlier in the paper.

6.1. Experimental setup

We have implemented a two-dimensional (x1,x3) testcase de-
fined on the computational domain X = [0,1] � [0,1] with a time-
independent stratification

qnðx1;x3Þ¼�tanh 5 x3�
1
4
�n8p3x3

1 sinðpx1Þ�
1
2

sinð2px1Þ
� 	2

( ) !
:

ð6:1Þ

The slope associated with this stratification is

a1 ¼ �
@1qn

@3qn

¼ n � Rðx1Þ; ð6:2Þ

where R(x) = 64p3x2 cos(px/2) sin(px/2)5(2px + 4pxcos(px) +
3sin(px)). In (6.1), n is a stiffness parameter used to define the
amplitude of the angle between the computational grid and the
local isoneutral direction. Choosing two values of n, we build
two set of experiments which are described in Table 2: a first
one with a small grid slope ratio between the computational grid
and the isoneutral direction (hereafter SMALL) and a second with
a large grid slope ratio (hereafter LARGE). The largest value we
consider is s 	 3 which, for example, would correspond to
a1 = 7.5 � 10�4, Dx1 = 100 km and Dx3 = 25 m.

The stratification (6.1) is shown in Fig. 11 along with the initial
condition
eriments (left) and in the LARGE experiments (right). The black lines correspond to
tained with the SW-TRIADS. Note the different vertical axis between the two panels.
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Fig. 13. Snapshots of a passive tracer diffused in the neutral direction after 25 � 10�3 s of integration in the LARGE case. Results obtained with the TRIADS scheme (resp. SW-
TRIADS scheme) are shown in the left panels (a), (c), (e), (g) and (i) (resp. the right panels (b), (d), (f), (h) and (j)) for different grid resolutions.
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where IX(x) is the indicator function.6 All the simulations described
in Table 2 are run with the same diffusivity j1 = 5 m2 s�1 and hyper-
diffusivity B1 = 5 � 10�1 m4 s�1.
6.2. Accuracy of the rotated operators

The accuracy of different space–time discretizations is checked
by computing a high resolution solution on a 1024 � 96 grid using
6 IX(x) = 1, if x 2X; IX(x) = 0 otherwise.
an explicit Euler scheme in time. This solution is taken as a solution
of reference for a set of four coarser grids, 256 � 48, 128 � 48,
64 � 24, and 32 � 24. With the exception of the reference solution,
all the simulations are done using the (MSC) scheme with the sta-
bilizing parameters (3.7), (3.9), (4.5) and (4.7) with j2 = 0 (resp.
B2 = 0). To build this hierarchy of grids we have considered that
when the horizontal resolution is refined by n2 the vertical resolu-
tion is refined by n (Table 2). This rule is meant to be quite consis-
tent with the usual practice in climate models. Due to the excessive
computational cost of the explicit-in-time rotated biharmonic
operator on the 1024 � 96 grid, we use the 256 � 48 grid as a solu-
tion of reference in this case.

The stratification (6.1) and the initial condition (6.3) are first de-
fined on the reference 1024 � 96 grid and then a coarsening proce-
dure is used to provide it to the entire hierarchy of grids. The same
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coarsening procedure is then applied to the solution of reference to
compute the ‘2-norm of the error for each grid of the hierarchy.
This procedure ensures that the error is initially zero. The results
obtained for the SMALL and the LARGE experiments are shown in
Fig. 12. When using the TRIADS scheme, the error is monotonically
decreasing when the grid is refined. For large grid slope ratios this
discretization leads to a significant amount of spurious dianeutral
diffusion due to discretization errors (Fig. 13(g) and (i)). The SW-
TRIADS scheme systematically leads to smaller errors whatever
the grid resolution and the grid slope ratio (Fig. 12). However,
the evolution of the errors with the resolution is relatively uncom-
mon. For example, in the LARGE experiments, the error is smaller
on the 128 � 48 grid than on the 256 � 48 grid. This is explained
by the fact that the errors of discretization associated with the
SW-TRIADS scheme do not monotonically increase when the grid
slope ratio s1 increases, as this is the case for the TRIADS scheme.
This point will be further discussed in Section 6.4 but it can be seen
from (2.21) that the discretization reduces to the classical 1, �2, 1
stencil in the oblique direction for s1 = 1, thus explaining why the
errors are small for the experiments for which the grid slope ratio
is close to one (e.g., for the 64 � 24 and 128 � 48 grids in the
LARGE case). As far as the biharmonic operator is concerned, the
results are very consistent with the one obtained with the rotated
a

c

e

g

Fig. 14. Snapshots of a passive tracer diffused in the neutral direction with a biharmonic o
TRIADS scheme (resp. SW-TRIADS scheme) are shown in the left panels (a), (c), (e), and
Laplacian operator (Fig. 14). The SW-TRIADS performs better than
the TRIADS when the grid slope ratio exceeds one, which is an
important asset when considering grid cells with a small aspect ra-
tio Dx3/Dx1 as it can happen for a r-coordinate models in shallow
areas. For very large values of s1 the direction of diffusion becomes
less and less accurate (Figs. 13(j) and 14(h)) and a larger vertical
stencil should potentially be required to lessen the discretization
errors.

Monotonicity violations are obvious from Figs. 13 and 14 where
the blue-shaded areas correspond to negative values whereas the
initial condition has positive values only. When the discretization
errors are increasing, thus leading to a spurious dianeutral diffu-
sion, the false extrema are significantly moderated. The biharmon-
ic operator generates large negative values (Fig. 14), however those
min–max violations are not necessarily associated with the rota-
tion of the tensor because the horizontal biharmonic operator also
produces overshoots with a similar order of magnitude (not
shown). It is worth mentioning that the part of the computational
domain with a flat stratification coincides with the location of the
initial condition (Fig. 11). Most of the overshoots with the bihar-
monic operator are generated during the initialization, this is the
reason why relatively large monotonicity violations are located
in this part of the computational domain.
b

d

f

h

perator after 25 � 10�3 s of integration in the LARGE case. Results obtained with the
(g) (resp. the right panels (b), (d), (f) and (h)) for different grid resolutions.
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6.3. Overshootings

Mathieu and Deleersnijder (1998) emphasized the non-mono-
tonic behavior of the discretized rotated diffusion operator. This
can be seen simply by looking at the diffusion of a dirac signal
along a direction non-aligned with the computational grid
(Fig. 15). Negative bands are generated on both sides of the isoneu-
tral direction along which the Dirac signal is propagating. The ro-
tated biharmonic operator presents two bands of negative values
separated by positive values. We can also see from those figures
that the cancellation of the contribution of the dianeutral points
in the discretization stencil of the SW-TRIADS scheme leads to a
thin signal elongated in the isoneutral direction while the TRIADS
scheme produces a thicker signal in both the s1 = 1/2 and s1 = 2
cases. Note that the case s1 = 1/2 corresponds to a maximum of dis-
cretization errors for the SW-TRIADS scheme in the limit that
s1 6 1; see discussion in Section 6.4.

Monotonicity is verified at a position (i,k) only if all the coeffi-
cients in the discretization stencil of the operator under consider-
a b

e f

Fig. 15. Diffusion of a Dirac signal in the neutral direction (contours) after t = 2.5 � 10�4

and (f) with a rotated Laplacian operator using the SW-TRIADS discretization; (c) and (g)
a rotated biharmonic operator using the SW-TRIADS discretization. The tracer field is deli
indicate negative values. The grid slope ratio is s1 	 1/2 for panels (a), (b), (c) and (d), a
ation are positive for points others than (i,k). It can be seen from
(2.21) that neither the TRIADS, nor the SW-TRIADS scheme verifies
this property. The continuous form of the rotated Laplacian opera-
tor has however the property not to amplify existing extrema
(Mathieu and Deleersnijder, 1998), this property is lost at the
discrete level due to the discretization of the cross-derivatives.
We quantify the monotonicity violation associated with the
SW-TRIADS and TRIADS schemes by computing

ei;k ¼max qnþ1
i;k � qmax

i;k ;0
� �

�min qnþ1
i;k � qmin

i;k ;0
� �

; ð6:4Þ

where

qðminÞ
i;k ¼min qn

i
c;k
c

� �
; qðmaxÞ

i;k ¼max qn
i
c;k
c

� �
; ð6:5Þ

with c = 1 for the Laplacian operator and c = 2 for the biharmonic
operator. The evolution of the maximum value of ei,k is shown in
Fig. 16 for the diffusion of a Dirac signal. This experiment is done
on the 256 � 48 grid with a diffusivity j1 and an hyperdiffusivity
c d

g h

s: (a) and (e) with a rotated Laplacian operator using the TRIADS discretization; (b)
with a rotated biharmonic operator using the TRIADS discretization; (d) and (h) with
berately not smoothed, cell-averaged values are shown. Note that blue-shaded areas
nd s1 	 2 for (e), (f), (g) and (h).



Fig. 16. Magnitude of min–max violations e for the rotated Laplacian operator (left) and for the rotated biharmonic operator (right) discretized either with the TRIADS scheme
(black lines) or the SW-TRIADS scheme (gray lines). The vertical line at t = 2.5 � 10�4 s represents the time corresponding to the plots in Fig. 15.

a b

Fig. 17. Diffusion of a Dirac signal (shaded) in the neutral direction (contours) using the SW-TRIADS-COMBI scheme: (a) for s1 	 1/2; (b) for s1 	 2. The results are shown after
2.5 � 10�4 s of integration. Panel (a) should be compared with Fig. 15(b) and panel (b) with with Fig. 15(f).
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B1 chosen so that it provides the same dissipative time scale at the
scale of the grid (i.e., B1 ¼ j1Dx2

1).
Fig. 16 shows that the magnitude of the min–max violations is

of the same order for the rotated harmonic and biharmonic opera-
tors. Even if Fig. 15 suggests that larger negative values are pro-
duced by the biharmonic operator, this does not mean that the
min–max violations are larger in this case, as we see from
Fig. 16. This is explained by the fact that the amount of dianeutral
diffusion, associated with discretization errors, is smaller with the
rotated biharmonic operator than with the rotated Laplacian oper-
ator and is insufficient to moderate the false extrema.

6.4. SW-TRIADS-COMBI scheme and scaling of the discretization errors

In this paragraph, we borrow the concept of the so-called COM-
BI scheme, introduced in Beckers et al. (2000), to assess the evolu-
tion of the discretization errors of the SW-TRIADS scheme with
respect to sm. To minimize overshootings, Beckers et al. (2000) pro-
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pose an inconsistent COMBI scheme which consists in adding an
additional horizontal or vertical diffusion to cancel the negative
weights in the stencil (2.21) and thus to maintain monotonicity.
With the TRIADS discretization this is not straightforward because
the negative weights are systematically in the diagonal direction.
For the SW-TRIADS scheme, it is easier to apply the concept of
the COMBI scheme; in (2.21) we see that, for sm positive and
sm < 1, it is sufficient to add a vertical diffusion with a coefficient
proportional to sm(1 � sm) and, for sm > 1, it is sufficient to add an
horizontal diffusion with a coefficient proportional to sm � 1. In
Fig. 17, we show the diffusion of a Dirac signal using the SW-TRI-
ADS-COMBI scheme (defined as the SW-TRIADS scheme combined
with the COMBI approach). The scheme seems to behave relatively
well for s1 	 2, however the amount of spurious dianeutral diffu-
sion is larger compared with the SW-TRIADS scheme. For s1 	 1/
2, the orientation of the diffusion is less accurate and the dirac sig-
nal is propagated too vertically relative to the isoneutral direction.
We can show that the extra diffusivity jv used for sm < 1 in the SW-
TRIADS-COMBI scheme is

jv ¼ jm
Dx3

Dxm
jamj � a2

m

� �
:

The expression of jv is also useful to quantify the discretization er-
rors associated with the SW-TRIADS scheme. The minimum of the
error is obtained for am = 0, or am = Dx3/Dxm (i.e., sm = 1) because
jv cancels in those cases, hence the scheme reduces to the classical
1, �2, 1 stencil and is monotonic. The maximum of the discretiza-
tion error is for am = Dx3/2Dxm (i.e., sm = 1/2), which leads to
jmax

v ¼ jm
4

Dx3
Dxm

� �2
. For sm > 1, the discretization error scales with

sm � 1 (which corresponds to the background horizontal diffusivity
of the SW-TRIADS-COMBI scheme) and thus keeps increasing with
increasing values of sm.

The value of jmax
v can be compared with the background vertical

diffusivity associated with the vertical mixing parameterizations
currently in use in ocean models, which is of the order of
10�5 m2 s�1 below the mixed layer. We see that it is not unusual,
regarding the typical horizontal and vertical resolutions used by
climate models, that the background vertical diffusion in the oce-
anic interior is sufficient to significantly moderate the overshoo-
tings associated with the use of a rotated mixing operator
discretized with the SW-TRIADS scheme, as long as the grid slope
ratio is smaller than one.
7. Conclusion

The use of a mixing operator non-aligned with the computa-
tional grid raises difficulties to maintain several properties of the
non-rotated operators: numerical stability, strict global tracer var-
iance dissipation, monotonicity (in the case of the Laplacian oper-
ator), and accuracy when the slopes steepen to greater than the
grid aspect ratio. In this paper, we present a set of conservative
space–time discretizations to investigate those delicacies. Since
we do not want the numerical models to be penalized by diffusive
processes, we consider only linear spatial discretizations and first-
order accurate temporal integrations. We do not strive to design
higher order schemes because the diffusive terms are used either
for numerical or physical closure (or both) and are thus supposed
to vanish anyway for sufficiently high resolution.

In the same spirit as the methods commonly used for multi-
dimensional parabolic problems with mixed derivatives, we intro-
duce a simple time-stepping scheme and we show its relevance
to handle the time-integration of the rotated harmonic and bihar-
monic operators. This method, which is known as Method of
Stabilizing Corrections (MSC), consists of a multi-stage approach:
at the first stage, a consistent (explicit) approximation of the
rotated operator is evaluated, while all succeeding stages serve
only to improve the stability. For both the rotated harmonic
and biharmonic operators, the stabilizing step is done using a ver-
tical Laplacian operator whose diffusivity is chosen through linear
stability analysis. The proposed scheme is made to enable the ro-
tated operators to be advanced with the same time step as the
non-rotated ones. For large grid slope ratios, the scheme can
however suffer from a lack of damping of the smallest resolved
scales in the vertical. To alleviate this problem a time-splitting
of the diffusion could be used with a few (typically of the order
of 4) small time steps using the (MSC) scheme within a larger
baroclinic time step. This approach would still be significantly
more computationally efficient than using an explicit Euler
scheme.

As noted previously in Beckers et al. (2000), all the consistent
linear spatial discretizations of the rotated operators produce false
dianeutral mixing and min–max violations. This issue is cumber-
some because, in general, min–max violations are larger for
schemes with small inherent dianeutral mixing, and conversely
schemes with a larger dianeutral mixing associated with discreti-
zation errors tend to moderate the overshootings. The rotated
biharmonic operator does not seem to generate significantly lar-
ger monotonicity violations than the rotated Laplacian operator
and than the non-rotated biharmonic operator. Furthermore, we
show that different spatial discretizations of the rotated operators
can lead to a quite different behavior of the solution especially for
large grid slope ratios. A compact discretization (referred to as
SW-TRIADS) whose stencil adapts to the orientation of the slope
provides more accuracy, hence has less spurious dianeutral mix-
ing, for situations where the neutral slope is greater than the ver-
tical to horizontal aspect ratio. However, this discretization does
not damp very efficiently small-scale noise, and dispersive errors
could thus go uncontrolled with this approach. As shown in Bec-
kers et al. (2000), the SW-TRIADS scheme can easily be made
monotonic by adding a vertical background diffusion (as long as
the grid slope ratio is less than one) at the expense of a larger
dianeutral contribution. However, under some circumstances,
the order of magnitude of this background diffusivity is expected
to be of the same order as the physically admissible dianeutral
diffusivity.

When using the isoneutral mixing operators under realistic con-
ditions, a specific procedure is required to maintain the consis-
tency with the small slope approximation made at a continuous
level to derive the rotation tensor, and to properly satisfy the
boundary conditions. To do so, we consider a clipping or tapering
based on a maximum value of the neutral slope am, as done tradi-
tionally in numerical climate models. However, our study shows
that the stability and the accuracy of the rotated operators are
much more dependent on the grid slope ratio sm rather than on
the actual slope am. This remark suggests that a clipping on the lo-
cal value of sm could be more appropriate. One drawback of this ap-
proach would be to allow the violation of the small slope
approximation when large values of am are associated with small
values of sm. Considering that the small slope limit is valid for
a2

m � 1, a slope am = 1/10 would imply a 1% error which suggests
some flexibility in the choice of amax. It is therefore not clear
whether violating the small-slope approximation (which may hap-
pen with a limiting acting on sm) is much more damaging for the
stratification than the loss of accuracy for large values of the grid
slope ratio (which may happen with a limiting acting on am). A
definitive answer to this question would require numerical exper-
iments under fully-realistic conditions. This point is left for a future
study, but this question certainly deserves more attention.

We show that rotated operators must be used with care if we
rely on those operators to efficiently smooth grid-scale noise along
the computational grid. Adding a background vertical, as it is
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commonly done through the vertical mixing parameterization, or
horizontal diffusion is a way to erase the deficiencies in terms of
smoothing but at the expense of additional numerically-induced
spurious dianeutral mixing. The requirements in terms of noise
control are tied to the numerical schemes used to handle the tracer
advection. When low-order schemes are used, larger dispersive
errors are expected and an operator providing an efficient numer-
ical filtering is crucial. In this case, the TRIADS scheme would be
recommended. An unexplored possibility could be to formulate
the advection in an isoneutral framework hence the numerical
noise would be prominently in the isoneutral direction and rotated
operators would be more adequate to control this noise.

Besides the idealized configurations studied in the present pa-
per, it is shown in Lemarié et al. (2012) that a rotated biharmonic
operator advanced with the (MSC) scheme in time and using the
SW-TRIADS discretization performs well for a realistic coarse-res-
olution basin-scale simulation with the Regional Oceanic Model-
ling System (ROMS, Shchepetkin and McWilliams, 2005) r-
coordinate model. Using this space–time discretization, we have
demonstrated that the use of an isoneutral biharmonic operator
significantly improves the conservation of intermediate water
properties and leads to a tightening of the thermocline compared
to an iso-r biharmonic operator. Because the grid slope ratio with
a r-coordinate is generally larger than with a z-level model we
took advantage of the gain of accuracy provided by the SW-TRIADS
scheme.
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Appendix A. Upper bound on uh
m ¼ um � 2hy2

m3

The aim of this appendix is to derive an upper bound for the
function uh

m introduced in Section 3. We keep the notations previ-
ously used in the paper, and for convenience we introduce the
parameters Xm = tan (/m/2), Xm 2 R ðm ¼ 1;3Þ; so that the expres-
sion of uh

m transforms to

uh
m ¼ 2rm

ðXm þ smX3Þ2 þ 1þ s2
m

� 
X2

mX2
3

h i
1þ X2

m

� �
1þ X2

3

� � � 2hs2
m

X2
3

1þ X2
3

0@ 1A:
ðA:1Þ

In the remaining of this section we successively study the behavior
of uh

m with respect to Xm and then to X3. We first get

Sign
@uh

m

@Xm

� �
¼ Sign smX3 1� X2

m

� �
þ Xm 1þ X2

3

� �� �
; ðA:2Þ

where the roots of the second order polynomial in Xm are

Xð
Þm ¼
1þ X2

3 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ X2
3

� �2
þ ð2smX3Þ2

r
2smX3

: ðA:3Þ

@uh
m

@Xm
is positive for Xð�Þm 6 Xm 6 XðþÞm which is sufficient to show that

uh
m reaches its maximum either for Xm ¼ XðþÞm or Xm ? �1. In

(A.1), we see that the asymptotic limit of uh
m for Xm going to infinity

either by positive or negative values is the same; the maximum of
uh
m is therefore obtained for Xm ¼ XðþÞm . Substituting Xm by XðþÞm in

(A.1) leads to

uh
m6uh

m XðþÞm

� �
¼ �uh

m

¼2rm 1þ2s2
mð1�2hÞ X2

3

1þX2
3

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4s2

m
X2

3

1þX2
3

1� X2
3

1þX2
3

 !vuut0@ 1A:
ðA:4Þ

After some algebra, we find

Sign
@ �uh

m

@X3

� �
¼ Sign ð1�2hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4s2

m
eX3ð1� eX3Þ

q
þð1�2eX3Þ

� �
;

eX3¼
X2

3

1þX2
3

2 ½0;1�: ðA:5Þ

This derivative cancels for

eX3 ¼ eX ð
Þ3 ¼ 1
2

1


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2hÞ2 1þ s2

m

� 
1þ ð1� 2hÞ2s2

m

vuut24 35: ðA:6Þ

The maximum of �uh
m is reached for eX3 ¼ eX ðþÞ3 if h 6 1/2 andeX3 ¼ eX ð�Þ3 otherwise. In both cases the maximum is the same and

provides the following upper bound for uh
m

uh
m 6 2rm �Mðh; smÞ; ðA:7Þ

where

Mðh; smÞ ¼ 1þ s2
mð1� 2hÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

m

� 
1þ s2

mð1� 2hÞ2
� �r

: ðA:8Þ
Appendix B. Stability analysis with the SW-TRIADS scheme

In this section, we extend the results found in Sections 3 and 4
for the TRIADS scheme to the SW-TRIADS discretization. The func-
tion uh

m (with m = 1,2) defined in (3.22) for bm = 0 (i.e., the TRIADS
scheme) becomes

uh;sw
m ¼ 2rm

ðXm þ smX3Þ2 þ ðsm � 1Þ2X2
mX2

3

h i
1þ X2

m

� �
1þ X2

3

� � � 2hs2
m

X2
3

1þ X2
3

0@ 1A
ðB:1Þ

for bm = 1 (i.e., the SW-TRIADS scheme with sm P 0). In this appen-
dix, we consider only the case sm P 0, it is straightforward to extend
by symmetry the results to the case sm 6 0. As we did in Appendix A
for uh

m, we study here the behavior of uh;sw
m with respect to Xm and

X3. After some algebra, we get

Sign
@uh;sw

m

@Xm

� �
¼ Sign smX3 1� X2

m

� �
þ Xm 1þ X2

3ð1� 2smÞ
� �� �

;

ðB:2Þ

where the roots of the second order polynomial in Xm are

Xð
Þm ¼
1þ X2

3ð1� 2smÞ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ X2
3ð1� 2smÞ

� �2
þ ð2smX3Þ2

r
2smX3

: ðB:3Þ

We can easily show that the maximum of uh;sw
m is for Xm ¼ XðþÞm

which leads to

uh;sw
m 6 uh;sw

m XðþÞm

� �
¼ �uh;sw

m

¼ 2rm 1þ 2ðsmðsm � 1Þ � 2hs2
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The sign of the derivative of this function with respect to X3 reads

Sign
@ �uh;sw

m

@X3

� �
¼ Sign ðsm � 1Þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4smðsm � 1ÞeX3

q� ��
�2smh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4smðsm � 1ÞeX3

q �
; ðB:5Þ

where eX3 ¼ X2
3= 1þ X2

3

� �
.

B.1. Rotated Laplacian operator

We recall that the space–time discretization under consider-
ation is stable for uh;sw

1 þuh;sw
2 6 2. In (B.5), we see that for

sm 6 1, @ �uh;sw
m =@X3 is negative, hence the maximum is for eX3 ¼ 0

which translates into uh;sw
m 6 4rm in (B.4). This shows that, in this

case, the scheme is stable for r1 + r2 6 1/2 which corresponds to
the stability condition of the non-rotated operator. Moreover, for
sm > 1, taking h = (sm � 1)/sm still ensures that @ �uh;sw

m =@X3 is nega-
tive, and thus leads to the same stability constraint. This last re-
mark is sufficient to conclude that the stability condition of the
rotated Laplacian operator discretized using the SW-TRIADS
scheme in space and the (MSC) scheme in time is equivalent to
the stability condition of the non-rotated Laplacian operator for

h ¼ hsw ¼max
js1j � 1
js1j

;
js2j � 1
js2j

;0
� 


: ðB:6Þ

If js1j and js2j are both smaller than 1 we get h = 0, and for jsmj?1,
h ? 1 which also shows that the (IMP) scheme is stable as long as
the horizontal terms of the tensor are stable.

B.2. Rotated biharmonic operator

Using (B.6), and following the methodology used in Section 4.3
to derive an expression for the stabilizing diffusivity ~rsw, we find
that

~r ¼ ~rsw ¼ 8 S1r1 þ S2r2ð Þ ð1þ S1Þr1 þ ð1þ S2Þr2ð Þ; Sm

¼max s2
m � jsmj;0

� �
: ðB:7Þ

Note that ~rsw vanishes when js1j and js2j are smaller than one.
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