Analyse du flux d'énergie 0.0.1

On considére que la propagation de la marées dans un estuaire est similaire à la propagation d'une onde barotrope dans un canal étroit. En négligeant dans un premier temps la dissipation, avec η l'élévation, t le temps, h la profondeur, u la vitesse d'écoulement, x la distance le long du fleuve/canal et q la pesanteur, on obtient donc des équations d'onde équivalentes à celle d'une onde plane en l'absence de force de Coriolis :

$$\frac{\partial \eta}{\partial t} = -h \frac{\partial u}{\partial x}$$

$$\frac{\partial u}{\partial t} = -g \frac{\partial \eta}{\partial x} - ru$$
(1)

r est un coefficient de frottement soit indépendant de la vitesse (frottement linéaire, cacactéritique des zones de crèmes de vase en estuaire), soit dépendant de la vitesse (frottement turbulent quadratique) et se mettant alors sous la forme $r=C_drac{|u|}{H}$. En prenant la solution, avec η^* et u^* les amplitudes complexes respectivement de l'élévation et de la vitesse :

$$k = \omega c^{-1}$$

$$c = \sqrt{gh}$$

$$\eta = |\eta^*| \cos(\arg \eta^* + \omega t + kx)$$

$$u = |\eta^*| \sqrt{gh^{-1}} \cos(\arg \eta^* + \omega t + kx)$$

$$= |u^*| \cos(\arg \eta^* + \omega t + kx)$$

$$u^* = \eta^* \sqrt{gh^{-1}}$$
(2)

On a J le flux d'énergie tel que :

$$J = hu^* \cdot (\rho g \eta^*) \tag{3}$$

Avec (2) et (3), on obtient:

$$J = hu^* \cdot \left(\rho g \frac{u^*}{\sqrt{gh^{-1}}}\right) \tag{4}$$

on peut écrire la relation suivante entre J et u:

$$h^{-1}\gamma_u J = \rho |u^*|^2 \tag{5}$$

avec:

$$\gamma_u = h \frac{\sqrt{gh^{-1}}}{hg} = \frac{1}{\sqrt{gh}} \tag{6}$$

De manière à peu près identique pour la relation entre J et η , avec (2) et (3), on obtient :

$$J = h\eta^* \sqrt{gh^{-1}} \cdot (\rho g\eta^*) \tag{7}$$

on peut écrire la relation suivante entre J et η :

$$J = \gamma_{\eta} \left| \eta^* \right|^2 \tag{8}$$

avec:

$$\gamma_{\eta} = h\sqrt{gh^{-1}}\rho g = \rho g\sqrt{gh} \tag{9}$$

Cas linéaire 0.0.2

On a dans le cas linéaire :

$$\frac{\partial J}{\partial x} = -\rho r h \left| u^* \right|^2 \tag{10}$$

Avec (5), on peut réécrire (10) de la manière suivante :

$$\frac{\partial J}{\partial r} = -r\gamma_u J \tag{11}$$

On peut dériver 11 de la manière suivante :

$$J = J_0 e^{-r\gamma_u x} \tag{12}$$

D'où on obtient :

$$J_{\mathsf{amont}} = J_{\mathsf{aval}} e^{-r\gamma_u \Delta x} \tag{13}$$

On prend:

$$\gamma_0 = \gamma_u \Delta x \tag{14}$$

Avec (8), (13) et (14) on obtient :

$$\begin{split} &\gamma_{\eta_{\text{amont}}}\eta_{\text{amont}}^2 = \gamma_{\eta_{\text{aval}}}\eta_{\text{aval}}^2 e^{-\gamma_0 r} \\ &\gamma_{\eta_{\text{amont}}}^{\frac{1}{2}}\eta_{\text{amont}} \eta_{\text{amont}} = \gamma_{\eta_{\text{aval}}}^{\frac{1}{2}}\eta_{\text{aval}} e^{-\frac{1}{2}\gamma_0 r} \\ &\frac{\eta_{\text{amont}}}{\eta_{\text{aval}}} = \left(\frac{\gamma_{\eta_{\text{aval}}}}{\gamma_{\eta_{\text{amont}}}}\right)^{\frac{1}{2}} e^{-\frac{1}{2}\gamma_0 r} \\ &\ln \frac{\eta_{\text{amont}}}{\eta_{\text{aval}}} = \frac{1}{2} \ln \frac{\gamma_{\eta_{\text{aval}}}}{\gamma_{\eta_{\text{amont}}}} - \frac{1}{2}\gamma_0 r \end{split} \tag{15}$$

qu'on réécrit:

$$\ln_{\eta} = \gamma_1 - \frac{1}{2}\gamma_0 r \tag{16}$$

en notant:

$$\ln_{\eta} \equiv \ln \left(\eta_{\text{amont}} \eta_{\text{aval}}^{-1} \right) \tag{17}$$

et en prenant:

$$\gamma_1 = \frac{1}{2} \ln \left(\gamma_{\eta_{\text{aval}}} \gamma_{\eta_{\text{amont}}}^{-1} \right) \tag{18}$$

Finalement, on peut obtenir r à partir de γ_0 , γ_1 et \ln_η avec :

$$r = 2\frac{\gamma_1 - \ln_\eta}{\gamma_0} \tag{19}$$

Comme le montre l'équation (19), on peut obtenir r à partir de γ_0 , γ_1 et \ln_η , ce dernier étant calculés à partir des observations amont et aval. Il reste donc à obtenir γ_0 et γ_1 , qui dépendent de la géométrie du fleuve et donc ne peuvent être déterminé qu'expérimentalement avec 2 expériences de simulations avec deux valeurs de r, ci-après $r_{(1)}$ et $r_{(2)}$ et de deux valeurs de $\ln_\eta \equiv \ln\left(\eta_{\rm amont}\eta_{\rm aval}^{-1}\right)$, ci-après $\ln_{\eta(1)}$ et $\ln_{\eta(2)}$ et obtenues à partir des 2 expériences avec $r_{(1)}$ et $r_{(2)}$. En réécrivant (16) pour chaque expérience, on obtient :

$$\ln_{\eta(1)} = \gamma_1 - \frac{1}{2}\gamma_0 r_{(1)} \tag{20}$$

$$\ln_{\eta(2)} = \gamma_1 - \frac{1}{2} \gamma_0 r_{(2)} \tag{21}$$

En prenant la différence (20)-(21), on peut isoler γ_0 avec :

$$\ln_{\eta(1)} - \ln_{\eta(2)} = \gamma_1 - \frac{1}{2} \gamma_0 r_{(1)} - \gamma_1 + \frac{1}{2} \gamma_0 r_{(2)} = \frac{1}{2} \gamma_0 \left(r_{(1)} - r_{(2)} \right) \\
2 \frac{\ln_{\eta(1)} - \ln_{\eta(2)}}{r_{(1)} - r_{(2)}} = \gamma_0$$
(22)

Une fois γ_0 obtenu, on peut donc obtenir γ_1 avec 20 ou 21 :

$$\gamma_1 = \ln_{\eta(1)} + \frac{1}{2} \gamma_0 r_{(1)} = \ln_{\eta(2)} + \frac{1}{2} \gamma_0 r_{(2)} \tag{23}$$

Une fois γ_0 et γ_1 obtenus, il est donc possible d'avoir r en fonction de $\ln_{\eta} \equiv \ln\left(\eta_{\rm amont}\eta_{\rm aval}^{-1}\right)$ issu des observations avec l'équation (19).

0.0.3 Cas quadratique linéarisé

La linéarisation du cas quadratique consite à noter :

$$r = C_d h^{-1} |u^*| (24)$$

On réécrit donc 19 de la manière suivante :

$$C_{d}h^{-1}|u^{*}| = 2\frac{\gamma_{1} - \ln_{\eta}}{\gamma_{0}}$$

$$C_{d} = 2h\frac{\gamma_{1} - \ln_{\eta}}{\gamma_{0}|u^{*}|}$$
(25)

qu'on réécrit:

$$C_d = 2\frac{\gamma_1 - \ln_\eta}{\gamma_0'} \tag{26}$$

en prenant, avec 14 et 6:

$$\gamma_0' = \frac{\gamma_0 |u^*|}{h} = \frac{\gamma_u \Delta x |u^*|}{h} = \frac{\Delta x |u^*|}{h\sqrt{gh}} \tag{27}$$

D'après la fonction karman_Cd2D dans TUGOm, en prenant H la hauteur d'eau et $\kappa=0.4$ la constante de Von Karmann (voir constants.h), on a C_d tel que :

$$C_d = \left(\kappa \frac{H - z_0}{H \ln \frac{H}{z_0} + z_0 - H}\right)^2 \tag{28}$$

En prenant en compte que $H\gg z_0,$ on obtient l'approximation de C_d suivante :

$$C_d \approx C_d^{\sim} = \left(\frac{\kappa}{\ln \frac{H}{z_0} - 1}\right)^2$$

$$= \left(\frac{\ln H - 1 - \ln z_0}{\kappa}\right)^{-2}$$
(29)

Cette approximation est validée par la figure 1.

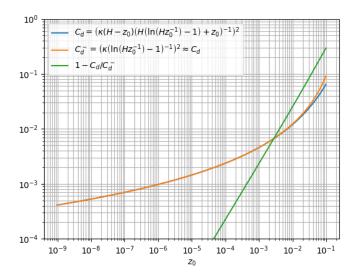


Fig. 1 : Validation de l'approximation de C_d par l'équation 29 pour H=1. On voit que pour $z_0<10^{-2}$, on a une erreur sur C_d inférieure à 3%.

On peut réécrire (29) de la manière suivante :

$$C_d = (\gamma_2 - \kappa^{-1} \ln z_0)^{-2} \tag{30}$$

en prenant:

$$\gamma_2 = (\ln H - 1) \,\kappa^{-1} \tag{31}$$

À partir de (26) et (30), on obtient :

$$2\gamma_0'^{-1} (\gamma_1 - \ln_\eta) = C_d = (\gamma_2 - \kappa^{-1} \ln z_0)^{-2}$$

$$(2\gamma_0'^{-1})^{\frac{1}{2}} (\gamma_1 - \ln_\eta)^{-\frac{1}{2}} = \gamma_2 - \kappa^{-1} \ln z_0$$

$$\gamma_2 - (2\gamma_0'^{-1})^{\frac{1}{2}} (\gamma_1 - \ln_\eta)^{-\frac{1}{2}} = \kappa^{-1} \ln z_0$$

$$\exp\left(\kappa \left[\gamma_2 - (2\gamma_0'^{-1})^{\frac{1}{2}} (\gamma_1 - \ln_\eta)^{-\frac{1}{2}}\right]\right) = z_0$$
(32)

et on peut mettre en place la calibration analytique comme expliqué en 0.0.5.

0.0.4 Cas quadratique

On a le travail de dissipation tel que :

$$\frac{\partial J}{\partial x} = -C_d \left| u^* \right|^3 \tag{33}$$

d'où on obtient :

$$\frac{\partial J}{\partial x} = -\gamma_0 C_d J^{\frac{3}{2}} \tag{34}$$

ce qui induit une décroissance du flux d'énergie en x^{-2} :

$$J = kx^{-2}$$

$$J^{1.5} = k^{1.5}x^{-3}$$

$$\frac{\partial J}{\partial x} = -2kx^{-3} = -2k^{-0.5}J^{1.5} = -\gamma_0 C_d J^{1.5}$$

$$k = 4\left(\gamma_0 C_d\right)^{-2}$$

$$J = 4\left(\gamma_0 C_d x + \gamma_1\right)^{-2}$$
(35)

d'où on ne peut pas dériver C_d de manière simple.

0.0.5 Méthode

Comme le montre l'équation (32), on peut obtenir z_0 à partir de γ_0' , γ_1 , γ_2 et \ln_η , ce dernier étant calculés à partir des observations amont et aval. Les variations de γ_0' n'ont que peu d'impact sur z_0 . Il reste donc à obtenir γ_1 et γ_2 , qui dépendent de la géométrie du fleuve et donc ne peuvent être déterminé qu'expérimentalement avec 2 expériences de simulations. Tout ceci sera expliqué en 0.0.5.1. Du fait des non-linéarités et des interférences entre zones, γ_1 et γ_2 ne peuvent être déterminés précisément au premier essai : une itération est nécessaire. L'algorithme d'un cycle de calibration sera détaillé en $\ref{eq:controlle}$?

0.0.5.1 Développements mathématiques

On peut obtenir γ_1 et γ_2 à partir de deux valeurs de z_0 , ci-après $z_{0(1)}$ et $z_{0(2)}$ et de deux valeurs de $\ln_{\eta} \equiv \ln\left(\eta_{\text{amont}}\eta_{\text{aval}}^{-1}\right)$, ci-après $\ln_{\eta(1)}$ et $\ln_{\eta(2)}$ et obtenues à partir des 2 expériences avec $z_{0(1)}$ et $z_{0(2)}$. En réécrivant (32) pour chaque expérience, on obtient :

$$\gamma_2 - \left(2\gamma_0^{\prime - 1}\right)^{\frac{1}{2}} \left(\gamma_1 - \ln_{\eta(1)}\right)^{-\frac{1}{2}} = \kappa^{-1} \ln z_{0(1)} \tag{36}$$

$$\gamma_2 - \left(2\gamma_0'^{-1}\right)^{\frac{1}{2}} \left(\gamma_1 - \ln_{\eta(2)}\right)^{-\frac{1}{2}} = \kappa^{-1} \ln z_{0(2)} \tag{37}$$

En prenant la différence (36)-(37), on peut commencer à isoler γ_1 avec :

$$\begin{split} \gamma_2 - \left(2\gamma_0'^{-1}\right)^{\frac{1}{2}} \left(\gamma_1 - \ln_{\eta(1)}\right)^{-\frac{1}{2}} - \gamma_2 - \left(2\gamma_0'^{-1}\right)^{\frac{1}{2}} \left(\gamma_1 - \ln_{\eta(2)}\right)^{-\frac{1}{2}} &= \kappa^{-1} \ln \frac{z_{0(1)}}{z_{0(2)}} \\ - \left(\gamma_1 - \ln_{\eta(1)}\right)^{-\frac{1}{2}} + \left(\gamma_1 - \ln_{\eta(2)}\right)^{-\frac{1}{2}} &= \left(2\gamma_0'^{-1}\right)^{\frac{1}{2}} \kappa^{-1} \ln \frac{z_{0(1)}}{z_{0(2)}} \end{split} \tag{38}$$

Si on prend:

$$a = \gamma_1 - \ln_{\eta(2)}$$

$$b = \gamma_1 - \ln_{\eta(1)}$$
 (39)

on peut réécrire 38 de la manière suivante :

$$a^{-\frac{1}{2}} - b^{-\frac{1}{2}} = \left(2\gamma_0'^{-1}\right)^{\frac{1}{2}} \kappa^{-1} \ln \frac{z_{0(1)}}{z_{0(2)}} \tag{40}$$

on sait aussi que:

$$a - b = \ln_{\eta(1)} - \ln_{\eta(2)} \tag{41}$$

L'équation (41) n'a pas de solution triviale et donc sa résolution est réalisée par une méthode itérative. On peut retrouver a et b avec la fonction f telle que $f:(a-b,a^{-0.5}-b^{-0.5})\to a$. On donne à la fonction f les arguments suivants :

$$\delta = a - b$$

$$\delta_{-\frac{1}{2}} = a^{-\frac{1}{2}} - b^{-\frac{1}{2}} \tag{42}$$

La fonction f est itérative : on calcule une première solution avec :

$$a_0 = \left(-2\frac{\delta_{-\frac{1}{2}}}{\delta}\right)^{-\frac{2}{3}}$$

$$b_0 = a_0 + \delta \tag{43}$$

et on itère avec :

$$a_{n+1} = a_n \left(\frac{a_n^{-0.5} - b_n^{-0.5}}{\delta_{-\frac{1}{2}}} \right)^{\frac{2}{3}}$$
(44)

Pour le reste du développement, on peut en tout cas retenir que :

$$f\left(\delta, \delta_{-\frac{1}{2}}\right) \approx \left(-2\frac{\delta_{-\frac{1}{2}}}{\delta}\right)^{-\frac{2}{3}} \tag{45}$$

On a

$$\gamma_{1} = \ln_{\eta(1)} + f\left(\ln_{\eta(1)} - \ln_{\eta(2)}, \left(2\gamma_{0}^{\prime - 1}\right)^{\frac{1}{2}} \kappa^{-1} \ln \frac{z_{0(1)}}{z_{0(2)}}\right) \approx \ln_{\eta(1)} + \left(-2\frac{\left(2\gamma_{0}^{\prime - 1}\right)^{\frac{1}{2}} \kappa^{-1} \ln \frac{z_{0(1)}}{z_{0(2)}}}{\ln_{\eta(1)} - \ln_{\eta(2)}}\right)^{-\frac{2}{3}} \tag{46}$$

Une fois γ_1 obtenu, on peut donc obtenir γ_2 aussi à partir de 36 ou 37 :

$$\gamma_2 = \kappa^{-1} \ln z_{0(1)} + \left(2\gamma_0'^{-1}\right)^{\frac{1}{2}} \left(\gamma_1 - \ln_{\eta(1)}\right)^{-\frac{1}{2}} = \kappa^{-1} \ln z_{0(2)} + \left(2\gamma_0'^{-1}\right)^{\frac{1}{2}} \left(\gamma_1 - \ln_{\eta(2)}\right)^{-\frac{1}{2}} \tag{47}$$

Quand z_0 est multiplié par 100 entre 2 expériences, η est diminué d'environ 10%. On a donc :

$$\ln \frac{z_{0(1)}}{z_{0(2)}} \approx -4.6$$

$$\ln_{n(1)} - \ln_{n(2)} \approx 0.1$$

$$\left(\gamma_1 - \ln_{\eta(1)} \right) \gamma_0^{\prime - \frac{1}{3}} \approx \left(-2 \frac{2^{\frac{1}{2}} \kappa^{-1} \ln \frac{z_{0(1)}}{z_{0(2)}}}{\ln_{\eta(1)} - \ln_{\eta(2)}} \right)^{-\frac{2}{3}} \approx 0.021$$
 (48)

On reprend l'équation (32):

$$\exp\left(\kappa \left[\gamma_2 - (2\gamma_0'^{-1})^{\frac{1}{2}} (\gamma_1 - \ln_\eta)^{-\frac{1}{2}}\right]\right) = z_0 \tag{32}$$

Avec 47. on a:

$$\begin{split} z_0 &= \exp\left(\kappa \left[\kappa^{-1} \ln z_{0(1)} + \left(2\gamma_0'^{-1}\right)^{\frac{1}{2}} \left(\gamma_1 - \ln_{\eta(1)}\right)^{-\frac{1}{2}} - \left(2\gamma_0'^{-1}\right)^{\frac{1}{2}} \left(\gamma_1 - \ln_{\eta}\right)^{-\frac{1}{2}}\right]\right) \\ &= \exp\left(\ln z_{0(1)} + \kappa \left(2\gamma_0'^{-1}\right)^{\frac{1}{2}} \left[\left(\gamma_1 - \ln_{\eta(1)}\right)^{-\frac{1}{2}} - \left(\gamma_1 - \ln_{\eta}\right)^{-\frac{1}{2}}\right]\right) \end{split}$$

La différence entre $\ln_{\eta(1)}$ et \ln_{η} est en générale de 0.05. On a donc, pour $\gamma_0'=10$:

$$\begin{split} \left(\gamma_1 - \ln_{\eta(1)}\right)_{\left(\gamma_0' = 10\right)} &= 0.021 \times 10^{\frac{1}{3}} = 0.05 \\ z_{0\left(\gamma_0' = 10\right)} &= \exp\left(\ln z_{0(1)} + \kappa \left(2 \times 10^{-1}\right)^{\frac{1}{2}} \left[0.05^{-\frac{1}{2}} - (0.05 + 0.05)^{-\frac{1}{2}}\right]\right) \\ z_{0\left(\gamma_0' = 10\right)} &= \exp\left(\ln z_{0(1)} + 0.23\right) \end{split}$$

et pour $\gamma_0'=10^4$:

$$\begin{split} \left(\gamma_1 - \ln_{\eta(1)}\right)_{\left(\gamma_0' = 10^4\right)} &= 0.021 \times 10^{\frac{4}{3}} = 0.45 \\ z_{0\left(\gamma_0' = 10^4\right)} &= \exp\left(\ln z_{0(1)} + \kappa \left(2 \times 10^{-4}\right)^{\frac{1}{2}} \left[0.45^{-\frac{1}{2}} - (0.45 + 0.05)^{-\frac{1}{2}}\right]\right) \\ z_{0\left(\gamma_0' = 10^4\right)} &= \exp\left(\ln z_{0(1)} + 4.3 \times 10^{-4}\right) \end{split}$$

Changer γ_0' d'un facteur 1000 modifie z_0 d'un facteur $\exp{(0.23)}=1.26$ ce qui est tout à fait négligeable.

Donc une fois γ_1 et γ_2 obtenus, il est donc possible d'avoir z_0 en fonction de $\ln_\eta \equiv \ln\left(\eta_{\rm amont}\eta_{\rm aval}^{-1}\right)$ issu des observations avec l'équation (32) en négligeant la valeur de γ_0' .

[2 zones avec Langon-Castet/Dorte-La Réole]